江苏省江阴市山观高级中学高考数学一轮复习函数第2课时函数的定义域和值域教学案

合集下载

江苏省江阴市山观高级中学高中数学 值域期末复习学案1(无答案)新人教版必修4

江苏省江阴市山观高级中学高中数学 值域期末复习学案1(无答案)新人教版必修4

山观中学一体化教[学]案(高一年级数学)一、课题:函数值域的求法(1)二、教学目标1.进一步加深和理解函数的概念,加深对函数的认识。

2.熟练的掌握函数值域的求法。

三、教学重点与难点函数值域的求法四、教学过程例1. 求下列函数的值域(1)21,{1,2,3,4,5}y x x =+∈(2)223,[2,3]y x x x =--+∈-(3)1y例2. 求函数值域(1)12x y x -=+ (2)1(4)2x y x x -=≥-+例3. 求下列函数值域(1)2221x y x -=+ (2)22225(12)1x x y x x x ++=≤≤+- (3)21x y x x =++例4. 求值域(1)y x =(2)2y x =例5. 求函数3y x =-值域五、课堂练习: 1. 函数223y x x =++的值域是2. 函数321x y x =-的值域是3. 函数2y =的值域是4. 函数25243y x x =-+的值域是六、课堂小结求值域的常用方法有:1.观察法2.图像法3.不等式法4.反表示法5.配方法6.换元法7.判别式法8. 单调性法函数的值域(1) 学案1. 函数241,[3,3]y x x x =--+∈-的值域是2. 函数234x y x =-的值域是 3. 函数2(14,)y x x x x Z =--≤≤∈的值域是4. 若函数()y f x =的值域是[2,4],则(2)y f x =-得值域是 ,函数()2y f x =-的值域是5. 函数26y x x k =-++的值域为(],0-∞,则k =6. 函数()()f x g x =,其中34()[,]89g x ∈,则函数()f x 的值域是 7. 函数222,03()6,20x x x f x x x x ⎧-≤≤=⎨+-≤<⎩的值域是 8. 函数2()(2)2(2)4f x a x a x =-+--的定义域为R ,值域为(],0-∞,则满足条件的实数a 的取值集合为9. 若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4--,则m 的取值范围是10. 求下列函数的值域:(1)3y x =-(2)12(25)2x y x x -=<≤- (3)221x x y x x +=++ (4)211x y x x -=++(5)2y =11.2()(2)f x a x b =-+的定义域是[2,5],值域是[3,21],求,a b 的值12.若函数2()1ax b f x x +=+的最大值为4,最小值为1-,求实数,a b 的值*13.若函数2321)(2+-=x x x f 的定义域和值域都是[]b ,1,求b 的值。

高三数学一轮复习教案(函数)

高三数学一轮复习教案(函数)

函数(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。

3.了解分段函数,能用分段函数来解决一些简单的数学问题。

4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。

5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。

2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念,会求与指数函数性质有关的问题。

4.知道指数函数是一类重要的函数模型。

(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数与对数函数互为反函数()。

(四)幂函数1.了解幂函数的概念。

2.结合函数的图像,了解它们的变化情况。

(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

2.理解并掌握连续函数在某个区间上存在零点的判定方法。

能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。

知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.能利用给定的函数模型解决简单的实际问题。

定义定义域区间对应法则值域一元二次函数一元二次不等式映射函数性质奇偶性单调性周期性指数函数根式分数指数指数函数的图像和性质指数方程对数方程反函数互为反函数的函数图像关系对数函数对数对数的性质积、商、幂与根的对数对数恒等式和不等式常用对数自然对数对数函数的图像和性质函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.函数概念(一)知识梳理1.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

.2 函数的定义域、值域及函数的解析式(教学案)-2015年高考数学(文)一轮复习精品资料(新课标)

.2 函数的定义域、值域及函数的解析式(教学案)-2015年高考数学(文)一轮复习精品资料(新课标)

2015年高考数学理一轮复习精品资料【新课标版】第二章 函数与基本初等函数I第02节 函数的定义域、值域及函数的解析式一、课前小测摸底细1.【教材改编】若c bx x x f ++=2)(,且0)1(=f ,0)3(=f ,则=-))1((f f ( ) A.8- B. 8 C. 32 D.292.【2014年高考安徽卷】设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D.21-3.【2014年高考江西卷】函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞ 【答案】C【解析】由题意得02>-x x ,解得0<x 或1>x ,所以选C. 4.函数xy 416-=的值域是 . 【答案】)4,0[【解析】由已知得164160<-≤x,所以4164160=<-≤x,即函数x y 416-=的值域是)4,0[.5.已知定义域为R |{∈x x ,且}1≠x 的函数)(x f 满足1)(21)11(+=-x f x f ,则=)3(f .二、课中考点全掌握 考点1:函数的定义域 【题组全面展示】【1-1】【成都外国语学校2014级高三开学检测试卷】函数x x f 6log 21)(-=的定义域为 . 【答案】]6,0(【解析】由题意可得:612log 0x -≥,可得61log 2x ≤,解得06x <≤. 【1-2】【2012年天津耀华中学月考】已知)(x f 的定义域为]21,21[-,则函数)21(2--x x f 的定义域为 .【1-3】【2012年天津耀华中学月考】已知函数)23(x f -的定义域为]2,1[-,则函数)(x f 的定义域为 .【1-4】【2012年合肥模拟】若函数122)(2+-+=a ax x x f 的定义域为R ,则a 的取值范围为________.【1-5】【浙江温州市十校联合体2014届高三上学期期初联考数学(文科)】函数234y x x =--+的定义域为( )A. (4,1)--B. (4,1)-C. (1,1)-D. (1,1]- 【答案】C【解析】由题意得210340x x x +>⎧⎨--+>⎩,解得11x -<<,所以所求函数的定义域为(1,1)-.综合定评:当函数解析式是由两个或两个以上数学式的和、差、积、商的形式时,定义域是使各个部分有意义的公共部分的集合,要注意全面考虑问题,不逆漏.第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数()f x 的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决.【新题变式探究】【变式一】【广东省佛山市一中2014届高三10月考】函数12()ln1xf x x x =+-的定义域为 ( ) A .),0(+∞ B .),1(+∞ C . )1,0(),+∞【变式二】【苏北四市2014届高三第一次质量检测】 函数()lg(23)x x f x =-的定义域为 .考点二:函数的解析式【题组全面展示】【2-1】已知是一次函数,并且(())43f f x x =+,求()f x .【2-2】【湖北孝感高中2014届高三年级九月调研考试】已知()y f x =是定义在R 上周期为4的奇函数,且02x ≤≤时,2()2f x x x =-,则1012x ≤≤时,()f x =_________________.【2-3】已知x xf lg )12(=+,则=)(x f .【2-4】已知)(x f )是二次函数,若0)0(=f ,且1)()1(++=+x x f x f ,试求)(x f 的表达式. 【答案】x x x f 2121)(2+=【解析】设)0()(2≠++=a c bx ax x f , 由0)0(=f 知0=c ,所以bx ax x f +=2)(, 又由1)()1(++=+x x f x f ,得1)1()1(22+++=+++x bx ax x b x a , 即1)1()2(22+++=++++x b ax b a x b a ax , 故有⎩⎨⎧=++=+112b a b b a ,解得21==b a ,所以x x x f 2121)(2+=. 【2-5】若函数)0()(≠+=a bax xx f ,1)2(=f ,又方程x x f =)(有唯一解,求)(x f 的解析式.综合点评:已知函数解析式的类型,一般用待定系数法求解,对含有参数的解析式,一般根据已知条件及函数的性质求出参数,从而得到其解析式. 【基础知识重温】1. 函数的表示法:解析法;列表法;图象法. 2.函数的三要素:定义域、值域和对应关系. 【方法规律技巧】1.求函数的解析式的常用方法:○1代入法:如已知2()1,f x x =-求2()f x x +时,有222()()1f x x x x +=+-.○2待定系数法:已知()f x 的函数类型,要求()f x 的解析式时,可根据类型设其解析式,确定其系数即可.○3拼凑法:已知[()]f g x 的解析式,要求()f x 的解析式时,可从[()]f g x 的解析式中拼凑出“()g x ”,即用()g x 来表示,,再将解析式的两边的()g x 用x 代替即可.○4换元法:令()t g x =,在求出()f t 的解析式,然后用x 代替()f t 解析式中所有的t 即可.○5方程组法:已知()f x 与[()]f g x 满足的关系式,要求()f x 时,可用()g x 代替两边的所有的x ,得到关于[()]f g x 的方程组,解之即可得出()f x .○6赋值法:给自变量赋予特殊值,观察规律,从而求出函数的解析式. 【新题变式探究】【变式一】下列函数中,不满足)2()(2x f x f =的是( )A .x x f -=)(B .||)(x x f =C .||)(x x x f -=D .1)(+=x x f【变式二】【湖北孝感高中2014届高三年级九月调研考试】已函数()f x 是定义在[]1,1-上的奇函数,在[0,1]上()()2ln 11xf x x =++-.(1)求函数()f x 的解析式;并判断()f x 在[]1,1-上的单调性(不要求证明); (2)解不等式()()22110f x f x -+-≥.考点三:函数的值域【题组全面展示】【3-1】【北京北师特学校2013届高三第二次月考】函数21y x =-的定义域是(,1)[2,5)-∞,则其值域是( ) A.1(,0)(,2]2-∞ B.(,2]-∞ C.1(,)[2,)2-∞+∞ D.(0,)+∞【3-2】【湖北孝感高中2014届高三年级九月调研考试文】若函数()(0,1)xf x a a a =>≠在[]2,1-上的最大值为4,最小值为m ,则m 的值是 .【3-3】【湖北省重点中学2014届高三10月阶段性统一考试(文)】已知函数()()()()cos 0260x x f x f x x ππ⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪-<⎩,则()5f -等于( )A.12 B.12- C.32 D.32- 【答案】A【解析】()()()()cos 0260x x f x f x x ππ⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪-<⎩,()()5155cos sin 2662f f πππ⎛⎫∴-==-==⎪⎝⎭,故选A. 【3-4】【山东省临沂市某重点中学2014届高三9月月考】已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域 ;(2)若函数()f x 的最小值为4-,求实数a 的值.【3-5】【山东省临沂市某重点中学2014届高三9月月考】已知函数[]6,2,12)(∈-=x x x f ,试判断此函数)(x f 在[]2,6x ∈上的单调性,并求此函数)(x f 在[]2,6x ∈上的最大值和最小值.综合点评:1. 若已知函数)(x f 的定义域为],[b a ,则函数)]([x g f 的定义域由不等式b x g a ≤≤)(求出;2.若已知函数))((x g f 的定义域为],[b a ,则)(x f 的定义域为)(x g 在],[b a x ∈时的值域.3.求解定义域为R 或值域为R 的函数问题时,都是依据题意,对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.【基础知识重温】1.在函数)(x f y =中与自变量x 相对应的y 的值叫做函数值,函数值的集合叫做函数的值域..函数的值域与最值均在定义域上研究.函数值域的几何意义是对应函数图像上纵坐标的变化范围.2.函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.在函数概念的三要素中,值域是由定义域和对应关系所确定的,因此,在研究函数值域时,既要重视对应关系的作用,又要特别注意定义域对值域的制约作用. 【方法规律技巧】函数值域的求法:利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值.利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围.利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx ey cx d++=+ (c a ,至少有一个不为零)的函数,求其值域可用此法.利用换元法:形如y ax b cx d =+±+型,可用此法求其值域. 利用基本不等式法:导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域2.分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值域范围是否符合相应段的自变量的取值范围.3.由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部 分剔除.【新题变式探究】【变式一】【山东省临沂市某重点中学2014届高三9月月考】已知函数2()21,()1xf xg x x =-=-,构造函数()F x 的定义如下:当|()|()f x g x ≥时,()|()|F x f x =,当|()|()f x g x <时,()()F x g x =-,则()F x ( )A .有最小值0,无最大值B .有最小值-1,无最大值C .有最大值1,无最小值D .无最大值,也无最小值【变式二】【成都外国语学校2014级高三开学检测试卷】方程083492sin sin =-+⋅+⋅a a a x x有解,则a 的取值范围( )A.0>a 或8-≤aB.0>aC.3180≤<aD.2372318≤≤a【答案】D 【解析】方程083492sin sin =-+⋅+⋅a a a x x有解,即sin 282(31)1x a+=+,因为1sin 1x -≤≤, 所以sin 1333x≤≤,sin 2322(31)329x ≤+≤,即3281329a ≤+≤,解得8723123a ≤≤.三、易错试题常警惕例1.已知函数(1)2f x x x +=+,求函数()f x 的解析式.例2.设函数2(0)()2(0)x bx c x f x x ⎧++≤=⎨>⎩,若(2)(0)f f -=,(1)3f -=-,则关于x 的方程()f x x =的根的个数为( )A .1B .2C .3D .411。

江苏省高三数学高考一轮复习导学案 函数的定义域和值域 苏教版

江苏省高三数学高考一轮复习导学案 函数的定义域和值域 苏教版

函数的定义域与值域【学习目标】1. 掌握求常规函数的定义域与值域的方法。

2. 了解特殊情形下的函数的定义域与值域的求法。

3. 以极度的热情投入学习,体会成功的快乐。

【学习重点】基本初等函数的定义域与值域的求法。

【学习难点】复合函数的定义域与值域的求法。

[自主学习] 一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式,就是 .h② 复合函数f [g(x )]的有关定义域,就要保证内函数g(x )的 域是外函数f (x )的 域.③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合. 二、值域:1.函数y =f (x )中,与自变量x 的值 的集合2.常见函数的值域求法,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法例如:① 形如y =221x +,可采用 法;② y =)32(2312-≠++x x x ,可采用 法或法;③ y =a [f (x )]2+bf (x )+c ,可采用 法;④ y =x -x -1,可采用 法;⑤ y =x -21x -,可采用 法;⑥ y =xx cos 2sin -可采用 法等.[典型例析](A )例1. 求下列函数的定义域: (1)y=xx x -+||)1(0(2)y=232531x x -+-;1·1-+x x变式训练1:求下列函数的定义域:(1)y=212)2lg(x x x -+-+(x-1)0; (2)y=)34lg(2+x x +(5x-4)0; (3)y=225x -+lgcosx;( B)例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(x1); (3)y=f()31()31-++x f x ; (4)y=f(x+a)+f(x-a).小结:(B)例3. 求下列函数的值域:(1)y=;122+--x x xx (2)y=x-x 21-; (3)y=1e 1e +-x x .(4)y=521+-x x; (5)y=|x|21x -.小结:(C )例4已知函数f(x)=x 2-4ax+2a+6 (x∈R).(1)求函数的值域为[0,+∞)时的a 的值;(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.[当堂检测]1.若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域__________。

(新人教)高三数学第一轮复习教案2.2.2函数(2)定义域

(新人教)高三数学第一轮复习教案2.2.2函数(2)定义域

一.课题:函数(2)——定义域二.教学目标:1. 掌握分式函数、根式函数定义域的求法;2. 进一步熟悉函数的三要素;3.进一步掌握函数图象的画法,会作分段函数的图象。

三.教学重点:函数的定义域、函数图象的画法。

四.教学过程:(一)复习:(提问)1.函数的定义,函数的三要素(函数相同的条件).2.下列函数中哪个与函数y x =是同一个函数?(1)2y =; (2)2x y x =; (3)y = (4)y = 解:(1)不是,定义域不同; (2)不是,定义域不同;(3)是相同函数;(4),0||,0x x y x x x ≥⎧===⎨-<⎩,当0x <时,对应法则不同,所以不是同一个函数。

3.用区间表示下列集合:(1){|||3}x x ≤; (2){|x x R ∈且0}x ≠; (3){|2x x ≤-或1}x >. 解:(1)[3,3]-; (2)(,0)(0,)-∞+∞U ; (3)(,2](1,)-∞-+∞U .(二)新课讲解:1.函数的图象:例1.(1)某种茶杯每个5元,买x 个茶杯的钱数(元)5y x =,{1,2,3,4}x ∈,画出该函数图象;(2)国内投寄信函(外埠),假设没每封信不超过20g 付邮资80分,超过20g 而不超过80g付邮资160分,依此类推,每封x g (0100)x <≤的信函应付邮资为(单位:分):80,(0,20]160,(20,40]240,(40,60]320,(60,80]400,(80,100]x x y x x x ∈⎧⎪∈⎪⎪=∈⎨⎪∈⎪∈⎪⎩,画出这个函数的图象;(3)画出函数,0||,0x x y x x x ≥⎧==⎨-<⎩的图象。

解:图略说明:函数图象通常是一段或几段光滑的曲线,但有时也可以由一些孤立点或几段线段组成。

2.函数的定义域:(1)已知函数式求定义域:例2.求下列函数的定义域:(1)1()2f x x =-; (2)()f x = (3)1()2f x x=-. 解:(1){|2}x x ≠,即(,2)(2,)-∞+∞U ;(2)2{|}3x x ≥-,即2[,)3-+∞; (3){|1x x ≥-且2}x ≠,即[1,2)(2,)-+∞U . 说明:从本例可以看出,求函数()y f x =的定义域时通常有以下几种情况:①如果()f x 是整式,那么函数的定义域是实数集R ;②如果()f x 是分式,那么函数的定义域是使分母不等于零的实数的集合;③如果()f x 为二次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合; ④如果()f x 是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合。

(江苏专版)高考数学一轮复习第二章第2讲函数的定义域与值域分层演练直击高考文

(江苏专版)高考数学一轮复习第二章第2讲函数的定义域与值域分层演练直击高考文

第2讲 函数的定义域与值域1.函数f (x )=x -4|x |-5的定义域为________.[解析] 由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0,得x ≥4且x ≠5.[答案] {x |x ≥4,且x ≠5}2.若x 有意义,则函数y =x 2+3x -5的值域是________. [解析] 因为x 有意义,所以x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,所以当x =0时,y min =-5. [答案] [-5,+∞) 3.函数y =1x 2+2的值域为________. [解析] 因为x 2+2≥2,所以0<1x 2+2≤12. 所以0<y ≤12.[答案] ⎩⎨⎧⎭⎬⎫y |0<y ≤124.(2018·南京四校第一学期联考)函数f (x )=x 2-5x +6lg (2x -3)的定义域为________.解析:要使f (x )有意义,必须⎩⎪⎨⎪⎧2x -3>0lg (2x -3)≠0x 2-5x +6≥0,所以⎩⎪⎨⎪⎧x >32x ≠2x ≥3或x ≤2,所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫32,2∪[3,+∞).答案:⎝ ⎛⎭⎪⎫32,2∪[3,+∞)5.若函数y =f (x )的定义域是[0,2 014],则函数g (x )=f (x +1)x -1的定义域是________.[解析] 令t =x +1,则由已知函数y =f (x )的定义域为[0,2 014]可知,0≤t ≤2 014,故要使函数f (x +1)有意义,则0≤x +1≤2 014,解得-1≤x ≤2 013,故函数f (x +1)的定义域为[-1,2 013].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 013,x -1≠0,解得-1≤x <1或1<x ≤2 013.故函数g (x )的定义域为[-1,1)∪(1,2 013]. [答案] [-1,1)∪(1,2 013]6.函数y =x -x (x ≥0)的最大值为________. [解析] y =x -x =-(x )2+x =-⎝⎛⎭⎪⎫x -122+14, 即y max =14.[答案] 147.(2018·南昌模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.[解析] 由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6].故当x ∈[-2,2]时,f (x )∈[-4,6].[答案] [-4,6]8.已知集合A 是函数f (x )=1-x 2+x 2-1x的定义域,集合B 是其值域,则A ∪B 的子集的个数为________.[解析] 要使函数f (x )的解析式有意义,则需⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0,x ≠0,解得x =1或x =-1,所以函数的定义域A ={-1,1}.而f (1)=f (-1)=0,故函数的值域B ={0},所以A ∪B ={1,-1,0},其子集的个数为23=8.[答案] 89.已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c的最小值为________.[解析] 由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.[答案] 1010.函数y =2x -1-13-4x 的值域为________. [解析] 法一:(换元法)设13-4x =t , 则t ≥0,x =13-t24,于是y =g (t )=2·13-t24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数, 所以g (t )≤g (0)=112,因此函数的值域是⎝⎛⎦⎥⎤-∞,112. 法二:(单调性法)函数的定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小, 所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是单调递增函数, 所以当x =134时,函数取得最大值f ⎝ ⎛⎭⎪⎫134=112,故函数的值域是⎝ ⎛⎦⎥⎤-∞,112.[答案] ⎝⎛⎦⎥⎤-∞,11211. (1)求函数f (x )=lg (x 2-2x )9-x2的定义域. (2)已知函数f (2x)的定义域是[-1,1],求f (x )的定义域.[解] (1)要使该函数有意义,需要⎩⎪⎨⎪⎧x 2-2x >0,9-x 2>0,则有⎩⎪⎨⎪⎧x <0或x >2,-3<x <3,解得-3<x <0或2<x <3, 所以所求函数的定义域为(-3,0)∪(2,3).(2)因为f (2x)的定义域为[-1,1], 即-1≤x ≤1,所以12≤2x≤2,故f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2. 12.已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.[解] (1)f (x )=x +1x +3,x ∈[0,a ](a >0). (2)函数f (x )的定义域为⎣⎢⎡⎦⎥⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎢⎡⎦⎥⎤1,32,f (x )=F (t )=tt 2-2t +4=1t +4t-2, 当t =4t 时,t =±2∉⎣⎢⎡⎦⎥⎤1,32,又t ∈⎣⎢⎡⎦⎥⎤1,32时,t +4t 单调递减,F (t )单调递增,F (t )∈⎣⎢⎡⎦⎥⎤13,613.即函数f (x )的值域为⎣⎢⎡⎦⎥⎤13,613.1.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),则a =________,b =________.[解析] 因为f (x )=12(x -1)2+a -12,所以其对称轴为x =1.即[1,b ]为f (x )的单调递增区间. 所以f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b ,②由①②解得⎩⎪⎨⎪⎧a =32,b =3.[答案] 3232.(2018·徐州质检)已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个.[解析] 列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}.[答案] 93.已知函数f (x )=log 13(-|x |+3)的定义域是[a ,b ](a 、b ∈Z ),值域是[-1,0],则满足条件的整数对(a ,b )有________对.[解析] 由f (x )=log 13(-|x |+3)的值域是[-1,0],易知t (x )=|x |的值域是[0,2],因为定义域是[a ,b ](a 、b ∈Z ),所以符合条件的(a ,b )有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5对.[答案] 54.(2018·常州调研)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是________.[解析] 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).[答案] ⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞) 5.若函数f (x )= (a 2-1)x 2+(a -1)x +2a +1的定义域为R ,求实数a 的取值范围.[解] 由函数的定义域为R ,可知对x ∈R ,f (x )恒有意义,即对x ∈R ,(a 2-1)x 2+(a -1)x +2a +1≥0恒成立. ①当a 2-1=0,即a =1(a =-1舍去)时,有1≥0,对x ∈R 恒成立,故a =1符合题意;②当a 2-1≠0,即a ≠±1时,则有⎩⎪⎨⎪⎧a 2-1>0,Δ=(a -1)2-4(a 2-1)×2a +1≤0,解得1<a ≤9. 综上,可得实数a 的取值范围是[1,9].6.已知二次函数f (x )=ax 2+bx (a 、b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ]?如果存在,求出m 、n 的值;如果不存在,说明理由.[解] (1) f (x )=-x 2+2x .(2)由f (x )=-x 2+2x =-(x -1)2+1,知f (x )max =1,所以4n ≤1,即n ≤14<1.故f (x )在[m ,n ]上为增函数,所以⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-2,n =0,所以存在m =-2,n=0,满足条件.7.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. [解] (1)因为函数的值域为[0,+∞), 所以Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)因为对一切x ∈R 函数值均为非负数, 所以Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.所以a +3>0.所以g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. 因为二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, 所以g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.所以g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.。

江苏省江阴市山观高级中学2016届高三数学一轮复习专题学案函数的图像

一、课题: 函数的概念和图像(3) 二、教学目标1. 知道函数图象的意义2. 画图象的基本方法:描点法和图象变换法。

平移变换、对称变换3. 培养数形结合的意识 三、教学重点与难点函数的图象的画法 四、教学过程 1、情境设置:许多函数可同时用三种方法来表示,今天着重研究图象法 有数无形不直观有形无数不入微 ——华罗庚 初中我们研究过直线、反比例及二次函数的图象的图象2、基础知识:1. 水平变换①水平平移:把函数)(x f y =的图象,沿x 轴轴方向向左(a>0)或向右(a<0)平移____ 个单位, 得到)(a x f y +=的函数图象。

②竖直平移:把函数)(x f y =的图象,沿y 轴轴方向向上(a>0)或向右下(a<0)平移____ 个单位, 得到a x f y +=)(的函数图象。

2.对称变换①函数)(x f y =的图象与函数)(x f y -=的图象关于___________对称; ②函数)(x f y =的图象与函数)(x f y -=的图象关于___________对称; ③函数)(x f y =的图象与函数)(x f y --=的图象关于___________对称; 3.翻折变换⑴如何由函数)(x f y =的图象得到函数)(x f y =的图象; ⑵如何由函数)(x f y =的图象得到函数)(x f y =的图象.例1 作出下列各函数的图像(1)1y x =- (2)1y x x Z =-∈(3)2243,03y x x x =--≤< (4)1(01)(1)x y xxx ⎧<<⎪=⎨⎪≥⎩例2 室内电话费是这样规定的:每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟付电话费0.36元,以此类推,每次打电话(010)x x <≤分钟应付电话费y 元:0.18,(0,3]0.36,(3,6]0.54,(6,9]0.72,(9,10]x x y x x ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,试画出这个函数的图像。

高三数学 函数的定义域和值域导学案 苏教版

函数的定义域与值域一、考纲要求:函数的概念B二、复习目标:了解函数定义域、值域的概念;掌握基本初等函数的定义域、值域;会求简单函数的定义域和值域。

三、重点难点:求简单函数的定义域和值域。

四、要点梳理:1、函数的定义域:(1)定义:________________________________________________________;(2)求函数定义域的主要依据:① 分式的分母不能为________; ②偶次方根的被开方数必须________; ③零的 ________次方无意义; ④ 对数函数的底数必须________,真数必须________;⑤实际问题中的函数定义域要根据自变量的实际意义确定。

2、函数的值域:(1)定义:________________________________________________________;(2)常见函数的值域:① (0)y kx b k =+≠ 的值域为_______;②2(0)y ax bx c a =++≠的值域为_______; ③ (0)k y k x=≠的值域为 _______; ④log (0,0)a y x a a =>≠的值域为 _______; ⑤ (0,0)x y a a a =>≠的值域为 _______;⑥sin ,cos y x y x ==的值域为 _______; ⑦ tan y x =的值域为 _______; ⑧1(0)y x x x=+≠的值域为 _______。

五、基础自测:1、函数1()1f x x =+_________________(必修一23P 例2改编) 2、函数{}2()(1)1,1,0,1,2,3f x x x =-+∈-的值域是_____________(必修一23P 例2改编)3、已知函数()f x =的定义域是__________________ (09江西卷)4、函数2211x y x -=+的值域是____________;函数24x y x =+的值域是_____________5、若函数21()(1)2f x x a =-+的定义域和值域都是[]1,(1)b b >,则_____,_____a b ==。

高考一轮复习第2章函数导数及其应用第2讲函数的定义域值域

第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f(x)的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R. (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f(x)=x 0的定义域为{x|x≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域:1.y =kx +b(k≠0)的值域是R .2.y =ax 2+bx +c(a≠0)的值域是:当a>0时,值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a<0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤4ac -b 24a . 3.y =kx (k≠0)的值域是{y|y≠0}.4.y =a x(a>0且a≠1)的值域是(0,+∞). 5.y =log a x(a>0且a≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f(x)与f(x +a)(a 为常数a≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x>1.( × ) (3)函数y =f(x)定义域为[-1,2],则y =f(x)+f(-x)定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a)的值域为R ,则a 的取值范围为⎝ ⎛⎦⎥⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × ) [解法二](判别式法):设x 2+2=t(t≥2),则y =t +1t ,即t 2-ty +1=0,∵t∈R,∴Δ=y 2-4≥0,∴y≥2或y ≤-2(舍去).( × )[解法三](配方法):令x 2+2=t(t≥2),则y =t +1t =⎝ ⎛⎭⎪⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t≥2时是增函数,所以t =2时,y min =322,故y∈⎣⎢⎡⎭⎪⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a)值域为R 应满足Δ≥0,即1-4a≥0,∴a≤14.题组二 走进教材2.(必修1P 17例1改编)函数f(x)=2x-1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x-1≥0x -2≠0,解得x≥0且x≠2,故选C .3.(必修1P 32T5改编)函数f(x)的图象如图,则其最大值、最小值分别为( B )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f(0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32,f(0) D .f(0),f(3)4.(必修1P 39BT1改编)已知函数f(x)=x +9x ,x∈[2,4]的值域为⎣⎢⎡⎦⎥⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎢⎡⎦⎥⎤6,132.题组三 走向高考5.(2020·北京,11,5分)函数f(x)=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f(x)有意义,则⎩⎪⎨⎪⎧x +1≠0,x>0,故x>0,因此函数f(x)的定义域为(0,+∞).6.(2016·北京,5分)函数f(x)=xx -1(x≥2)的最大值为2.[解析] 解法一:(分离常数法)f(x)=x x -1=x -1+1x -1=1+1x -1,∴x≥2,∴x-1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f(x)=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy-y =x ,∴x=y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-yy -1≥0,解得1<y≤2,故函数f(x)的最大值为2.解法三:(导数法)∵f(x)=x x -1,∴f′(x)=x -1-x (x -1)2=-1(x -1)2<0,∴函数f(x)在[2,+∞)上单调递减,故当x =2时,函数f(x)=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x>0,x +1>0,x≠0,解得-1<x<0或0<x<1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x<0或0<x≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1[解析] 由函数f(x)的定义域为(-1,0),则使函数f(2x +1)有意义,需满足-1<2x +1<0,解得-1<x<-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12. [引申1]若将本例中f(x)与f(2x +1)互换,结果如何? [解析] f(2x +1)的定义域为(-1,0),即-1<x<0, ∴-1<2x +1<1,∴f(x)的定义域为(-1,1).[引申2]若将本例中f(x)改为f(2x -1)定义域改为[0,1],求y =f(2x +1)的定义域,又该怎么办? [解析] ∵y=f(2x -1)定义域为[0,1].∴-1≤2x-1≤1,要使y =f(2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x≤0, 因此y =f(2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f(x)的定义域为[a ,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 求出; ②若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域. 〔变式训练1〕(1)(角度1)函数f(x)=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f(x)=ln(-2x +a)的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)已知函数y =f(x 2-1)的定义域为[-3,3],则函数y =f(x)的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x≤2,且x≠0.故选B .(2)因为-2x +a>0,所以x<a 2,所以a2=1,得a =2.故选D .(3)因为y =f(x 2-1)的定义域为[-3,3],所以x∈[-3,3],x 2-1∈[-1,2],所以y =f(x)的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x|1+|x|;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;(6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x|1+|x|=-1+21+|x|, ∵|x|≥0,∴|x|+1≥1,∴0<2|x|+1≤2.∴-1<-1+21+|x|≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x|1+|x|,得|x|=1-y 1+y.∵|x|≥0,∴1-y 1+y ≥0,∴-1<y≤1,即函数值域(-1,1].(2)解法一:配方法:y =-2⎝ ⎛⎭⎪⎫x -142+258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t≤258,又∵y=t 有意义,∴0≤t≤258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x≠0),得y -1=x +1x.∵⎪⎪⎪⎪⎪⎪x +1x =|x|+⎪⎪⎪⎪⎪⎪1x ≥2|x|·⎪⎪⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞)解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y)x +1=0.∵方程有实根,∴Δ=(1-y)2-4≥0.即(y -1)2≥4,∴y-1≤-2或y -1≥2.得y≤-1或y≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y′=1-1x 2=(x +1)(x -1)x 2<0, 得-1<x<0或0<x<1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y≤-1. ∴y ≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t(t≥0),得x =1-t22,∴y =1-t 22-t =-12(t +1)2+1≤12(t≥0),∴y ∈⎝ ⎛⎦⎥⎤-∞,12.即函数的值域为⎝ ⎛⎦⎥⎤-∞,12.解法二:单调性法∵1-2x≥0,∴x≤12,∴定义域为⎝ ⎛⎦⎥⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝ ⎛⎭⎪⎫-∞,12上均单调递增,∴y≤12-1-2×12=12,∴y∈⎝⎛⎦⎥⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎢⎡⎦⎥⎤-π2,π2,y =sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4, ∵θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴y∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x<-1),3(-1≤x≤2),2x -1(x>2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a≠0,f(x)值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x)+bf(x)+c(a≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b±cx +d (c≠0)的函数;如例3(4);形如y =ax +b±c 2-x 2(c≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝ ⎛⎭⎪⎫x>12.[解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y 1+y≥0.所以-1<y≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t≥0), 所以y≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x>12,所以x -12>0,所以x -12+12x -12≥2⎝ ⎛⎭⎪⎫x -12·12⎝ ⎛⎭⎪⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号.所以y≥2+12,即原函数的值域为⎣⎢⎡⎭⎪⎫2+12,+∞. 导数法:y′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f(x)=lg [(a 2-1)x 2+(a +1)x +1].(1)若f(x)的定义域为R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.[分析] (1)由f(x)的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立;(2)由f(x)的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a>53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=1>0,满足题意.∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎢⎡⎦⎥⎤32,4C .⎣⎢⎡⎦⎥⎤32,3D .⎣⎢⎡⎭⎪⎫32,+∞ [解析] (1)①当m =0时,y =8,其定义域为R. ②当m≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m>0,Δ=(-6m )2-4m (m +8)≤0, 解得0<m≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,∴32≤m≤3. 另:由y =x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴32≤m ≤3.。

高考数学一轮复习 第二章 基本初等函数、导数的应用 第2讲 函数的定义域与值域课件 文

[解析] 要使函数的定义域为 R,则 mx2+4mx+3≠0 恒成立. (1)当 m=0 时,得到不等式 3≠0 恒成立; (2)当 m≠0 时,要使不等式恒成立,
须mΔ>=0,(4m)2-4×m×3<0,
12/13/2021
第三十三页,共四十一页。
或mΔ<=0,(4m)2-4×m×3<0,
即m>0,
12/13/2021
第三十一页,共四十一页。
已知函数的值域求参数的值或取值范围问题,通常按求函数 值域的方法求出其值域,然后依据已知信息确定其中参数的 值或取值范围.
12/13/2021
第三十二页,共四十一页。
若函数 y=mx2m+x4-m1x+3的定义域为 R,则
实数 m 的取值范围是___0_,__34__.
【解析】 (1)要使函数 y= 3-2x-x2有意义, 则 3-2x-x2≥0, 解得-3≤x≤1, 则函数 y= 3-2x-x2的定义域是[-3,1]. (2)要使函数 g(x)=(f(x-2x1))0有意义,则必须有1x≤-21x≠≤02,,
所以12≤x<1,故函数 g(x)的定义域为12,1.
0≤x+12≤2, 0≤x-12≤2,
解得12≤x≤32,
所以函数 g(x)的定义域是12,32.
12/13/2021
第二十二页,共四十一页。
求函数的值域(高频考点) 求下列函数的值域. (1)y=x2+2x(x∈[0,3]); (2)y=11-+xx22; (3)y=x+4x(x<0); (4)f(x)=x- 1-2x.
或m<0,
解得
m(4m-3)<0 m(4m-3)<0.
所以 1≤f(x)≤10.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 函数的定义域和值域
1
.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:
① 已知函数的解析式,就是 .
② 复合函数f [g(x )]的有关定义域,就要保证内函数g(x )的 域是外函数f (x )的 域.
③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合. 二、值域:
1.函数y =f (x )中,与自变量x 的值 的集合.
2.常见函数的值域求法,就是优先考虑 ,取决于 ,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法) 例如:①形如y =
2
21x +,可采用 法;② y =)3
2(2
312-≠++x x x ,可采用 法或
法;③ y =a [f (x )]2
+bf (x )+c ,可采用 法;④ y =x -x -1,可采用 法;⑤ y =x -21x -,可采用 法;⑥ y =x
x cos 2sin -可采用 法等.
例1. 求下列函数的定义域: (1)y=
x
x x -+||)1(0 (2)y=
23
253
1
x x -+-;
1
·1-+x x
解:(1)由题意得,0||0
1⎩
⎨⎧>-≠+x x x 化简得,||1⎩⎨⎧>-≠x x x 即.01


⎧<-≠x x 故函数的定义域为{x|x <0且x≠-
(2)由题意可得,05032
2⎩⎨⎧≥-≠-x x 解得.553
⎪⎩
⎪⎨⎧≤≤-±≠x x
故函数的定义域为{x|-5≤x≤5且x≠±3
(3)要使函数有意义,必须有
,010
1⎩

⎧≥-≥+x x 即,11⎩⎨⎧≥-≥x x ∴x≥1,故函数的定义域为[1,+∞)
变式训练1:求下列函数的定义域:
(1)y=2
12)
2lg(x
x x -+-+(x-1)0
; (2)y=)34lg(2+x x +(5x-4)0
; (3)y=225x -+lgcosx;
解:(1)由⎪⎩
⎪⎨⎧≠->-+>-0
1,012022
x x x x 得⎪⎩⎪⎨⎧≠<<-<1,
432
x x x 所以-3<x <2且x≠1.
故所求函数的定义域为(-3,1)
(2)由⎪⎩⎪⎨⎧≠-≠+>+0
45,134034x x x 得⎪⎪⎪⎩


⎪⎨⎧≠
-≠->54
,
2143x x x 函数的定义域为).,5
4
()5
4,21(21,4
3+∞-⎪⎭
⎫ ⎝⎛--
(3)由⎩⎨⎧>≥-0cos 0
252x x ,得,)(22225
5⎪⎩
⎪⎨⎧∈+<<-≤≤-Z k k x k x π
πππ 借助于数轴,解这个不等式组,得函数的定义域为.5,23)2,2(23,5⎥⎦

⎝⎛-⎪⎭⎫⎢⎣⎡-
-ππππ 例2. 设函数y=f(x)的定义域为[0,1
],求下列函数的定义域
(1)y=f(3x); (2)y=f(x
1
);
(3)y=f()3
1()3
1
-++x f x ;
(4)y=f(x+a)+f(x-a).
解:(1)0≤3x≤1,故0≤x≤3
1的定义域为[0, 3
1]
(2)仿(1)解得定义域为[1

(3)由条件,y 的定义域是f )3
1(+x 与)3
1(-x 定义域的交集
列出不等式组,323134
3
13
23113101310≤≤⇒⎪⎪⎩⎪⎪⎨
⎧≤≤≤≤-⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤x x x x x 故y=f )3
1()31(-++x f x 的定义域为⎥⎦

⎢⎣
⎡32
,31. (4)由条件得,111010⎩
⎨⎧+≤≤-≤≤-⇒⎩⎨⎧≤-≤≤+≤a x a a
x a a x a x 讨论:
①当⎩⎨⎧+≤--≤,
11,1a a a a 即0≤a≤21
时,定义域为[a,1-a

②当⎩⎨
⎧+≤--≤,
1,a a a a 即-21
≤a≤0时,定义域为[-a,1+a ]
综上所述:当0≤a≤2
1
时,定义域为[a ,1-a ];当-2
1
≤a≤0时,定义域为[-a ,1+a

变式训练2:若函数f(x)的定义域是[0,1],则f (x+a)·f(x -a)(0<a <2
1)的定义域是 ( ) A.∅[a ,1-a ][-a ,1+a ]
[0,1]
解:
例3.
求下列函数的值域:
(1)y=
;1
22+--x x x
x (2)y=x-x
21- (3)y=
1
e 1e +-x
x
解:(1)方法一
(配方法)
∵y=1-,112+-x x 而,4
3
43)21(122≥+-=+-x x x
∴0<
,34112
≤+-x x ∴.131<≤-y ∴值域为⎪⎭

⎢⎣⎡-1,31.
方法二 (判别式法)
由y=,1
22+--x x x
x 得(y-1).0)1(2=+-+y x y x
∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2
-4y(y-1)≥0.
∴.13
1
≤≤-y ∵,1≠y ∴函数的值域为⎪⎭

⎢⎣⎡-1,31.(2)方法一 (单调性法) 定义域⎭
⎬⎫⎩
⎨⎧≤21|x x ,函数y=x,y=-x 21-均在⎥⎦
⎤ ⎝
⎛∞-21,上递增,
故y≤.2
1212121
=⨯--
∴函数的值域为⎥⎦


⎛∞-21,.
方法二 (换元法)
令x 21-=t,则t≥0,且x=.2
12
t --2
1(t+1)2
+1≤2
1(t≥0)
∴y∈(-∞,2
1]
(3)由y=1e 1e +-x x 得,e x =.
11y
y
-+x
>0,即
y
y
-+11>0,解得-1<y <
∴函数的值域为{y|-1<y <
变式训练3:求下列函数的值域: (1)y=
5
21+-x x (2)y=|x|2
1x
-
解:(1)(分离常数法)y=-)52(272
1++
x ,∵)
52(27
+x ≠0,
∴y≠-
2
1.故函数的值域是{y|y∈R,且y≠-2
1
(2)方法一 (换元法
∵1-x 2
≥0,令x=sin α,则有y=|sin αcos α|=2
1|sin2α
故函数值域为[0,2
1].
方法二 y=|x|·,4
1)21(12
2
2
4
2
+--=+-=-x x x x
∴0≤y≤,2
1即函数的值域为⎥⎦

⎢⎣⎡21,0.
例4.若函数f (x )=2
1x 2
-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值
解:∵f(x )=2
1
(x-1)2
+a-2
1.
∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间. ∴f(x )min =f (1)=a-2
1=1 ① f (x )max =f (b )=2
1b 2
-b+a=b ②
由①②解得⎪⎩
⎪⎨⎧
==.3,
23b a
变式训练4:已知函数f(x)=x 2
-
(1)求函数的值域为[0,+∞)时的a 的值;
(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域
解: (1)∵函数的值域为[0

∴Δ=16a 2
-4(2a+6)=0⇒2a 2
-a-3=0∴a=-1或a=2
3
.
(2)对一切x∈R ,函数值均非负,∴Δ=8(2a 2
-a-3)≤0⇒-1≤a≤2
3,∴a+3>0,
∴f(a)=2-a(a+3)=-a 2
-3a+2=-(a+2
3)2
+
417(a ⎥⎦⎤⎢⎣
⎡-∈23,1). ∵二次函数f(a)在⎥


⎢⎣
⎡-23,1上单调递减,∴f(a )min =f )23(=-4
19,f (a )max =f (-1)=4, ∴f(a)的值域为⎥⎦

⎢⎣⎡-
4,419.
1.求函数的定义域一般有三类问题:一是给出解释式(如例1),应抓住使整个解式有意义的自变量的集合;二是未给出解析式(如例2),就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义. 2.求函数的值域没有通用方法和固定模式,除了掌握常用方法(如直接法、单调性法、有界性法、配方法、换元法、判别式法、不等式法、图象法)外,应根据问题的不同特点,综合而灵活地选择方法.。

相关文档
最新文档