回旋加速器原理和考点分析

回旋加速器原理和考点分析
回旋加速器原理和考点分析

回旋加速器原理和考点分析

作者:丑佳丽 黑龙江省铁力职业教育中心学校

【内容摘要】 回旋加速器的原理和意义,并利用原理解决相关问题。增大加速电压或微粒的核质比增大,能使一个带电粒子获得很大的速度(能量), 但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U.回旋加速器是产生大量高能量的带电粒子的实验设备.交变电压的周期与带电粒子做匀速圆周运动的周期相等。高频交流电源的周期与带电粒子在D 形盒中运动的周期相同是加速条件。回旋加速器的优点是体积小,缺点是粒子的能量不会很高。高频考点:回旋加速器中的D 形金属盒,它的作用是静电屏蔽。带电粒子从电场中获得能量。 做题过程中注意应用公式推导和运算。

【关键词】 带电粒子 加速 回旋加速器

一、如何能使带电粒子在较小的范围内实现多级加速 1.如何使一个带电的微粒获得速度(能量) 由动能定理K E W ?= 221mv qU =

m

qU

v 2=

2.如何使一个带电粒子获得很大的速度(能量)

拓展:如: ①增大加速电压;②使微粒的核质比增大,等等。

3.带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法

4.实际所加的电压,能不能使带电粒子达到所需要的能量(不能)怎么办 多级加速::带电粒子增加的动能为

)

(2

121321212

02n n U U U U q qU qU qU qU mv mv E ++++=+++==-=

? 分析:方法可行,但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。 二、 回旋加速器的原理和考点 回旋加速器

图1

图2

图3

(1)回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U. (2)用途:回旋加速器是产生大量高能量的带电粒子的实验设备.

(3 ) 原理:a.电场加速:221mv qU = b.磁场约束偏转:r mv BqV 2=,Bq

mv

r = [1]

C .加速条件:高频交流电源的周期与带电粒子在

D 形盒中运动的周期相同,即: Bq

m

2T π=

=回旋电场T (4)高频考点:(1) 回旋加速器中的D 形金属盒,它的作用是静电屏蔽. (2) 回旋加速器最后使粒子得到的

最大速度:R mv BqV 2

max =,(R 为D 形盒半径)m

BqR

V =max , 最大动能:E max =2222122D B q R mv m = [2]

(3)交变电压的周期与带电粒子做匀速圆周运动的周期相等:2m

T T Bq

π==

粒交 (4) M 和N 间的加速电场很窄,可忽略加速时间.故粒子在回旋加速器中运动时间为:

22

max mv nUq =,2

T

n t =, 22max 1222D B R m t Uq Bq U ππE =??= 带电粒子在电场中的时间不能忽略:21t t t +=, 22

max mv nUq =,2

2T

n t = , a V t max 1=或者max 1mv Ft =

(5) 回旋加速器的优点是体积小,缺点是粒子的能量不会很高.按照狭义相对论,当粒子速度接近光速时,质量变大,则圆周运动的周期发生变化,粒子就不会总是赶上加速电场,这破坏了回旋加速器的工作条件. 三、经典例题

例1(2008广东物理卷第4题)1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,下列说法正确的是( )[3]

A .离子由加速器的中心附近进入加速器

B .离子由加速器的边缘进入加速器

C .离子从磁场中获得能量

D .离子从电场中获得能量

【解析】根据回旋加速器的原理可知,离子由加速器的中心附近进入加速器,选项A 正确B 错误;离子从电场中获得能量,选项C 错误D 正确。【标准答案】AD 例2.东城区

1.(18分)回旋加速器是用来加速带电粒子的装置,如图所示。它的核心部分是两个D 形金属盒,两盒相距很近(缝隙的宽度远小于盒半径),分别和高频交流电源相连接,使带电粒子每通过缝隙时恰好在最大电压下被加速。两盒放在匀强磁场中,磁场方向垂直于盒面,带电粒子在磁场中做圆周运动,粒子通过两盒的缝隙时反复被加速,直到最大圆周半径时通过特殊装置被引出。若D 形盒半径为R ,所加磁场的磁感应强度为B 。设两D 形盒之间所加的交流电压的最大值为U ,被加速的粒子为α粒子,其质量为m 、电量为q 。α粒子从D 形盒中央开始被加速(初动能可以忽略),经若干次加速后,α粒子从D 形盒边缘被引出。求: (1)α粒子被加速后获得的最大动能E k ;

(2)α粒子在第n 次加速后进入一个D 形盒中的回旋半径与紧接着第n +1次加速后进入另一个D 形盒后的回旋半径之比;

(3)α粒子在回旋加速器中运动的时间;

(4)若使用此回旋加速器加速氘核,要想使氘核获得与α粒子相同的动能,请你通过分析,提出一个简单可行的办法。

东城区参考答案

例2.(18分)(1)α粒子在D 形盒内做圆周运动,轨道半径达到最大时被引出,具有最

大动能。设此时的速度为v ,有 2mv qvB R = (1)可得qBR

v m =,α

粒子的最大动能E k =222

2122q B R mv m

=(4分),

(2)α粒子被加速一次所获得的能量为qU ,α粒子被第n 次和n +1次加速后的动能分别为

222

2122n

kn n q B R E mv nqU m

=== (2)

222

21

111(1)22n kn n q B R E mv n qU m +++===+(3),可得11

n n R n R n +=+(5分),

(3)设α粒子被电场加速的总次数为a ,则E k =222

2q B R aqU m

=(4),可得a 222q B R mU =(5),α粒子在加速

器中运动的时间是α粒子在D 形盒中旋转a 个半圆周的总时间t 。

2

T

t a =(6), 2m T qB π=

(7), 解得22BR t U π=(5分), (4)加速器加速带电粒子的能量为E k =2

2

2

2122q B R mv m =,由α粒子换成氘核,有222

222

1()222()2

q B R q B R m m =

,则1B =

2m

T qB

π=

,由α粒子换为氘核时,交

流电源的周期应为原来的2

倍。

【参考文献】 [1]张维善 《高中物理选修3-1》教科书 人民教育出版社 ;[2]彭前程 《高中物理选修3-1》教师用书 人民教育出版社 ;[3]广东物理试卷 2008

【作者简介】 丑佳丽 女 1982年11月26日出生 籍贯:黑龙江省铁力市 学历:本科 职称:中学物理二级 【研究方向】 物理教学

最新高考物理速度选择器和回旋加速器解题技巧及练习题

最新高考物理速度选择器和回旋加速器解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

1939年诺贝尔物理学奖——回旋加速器的发明

1939年诺贝尔物理学奖——回旋加速器的发明1939年诺贝尔物理学奖授予美国加利福尼亚州伯克利加州大学的劳伦斯 (Ernest Orlando Lawrence,1901——1958),以表彰他发明和发展了回旋加速器,以及用之所得到的结果,特别是人工放射性元素。 核物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式变革自然、探索自然、开发自然和更充分地利用大自然的潜力。各种加速器的发明对核物理学的发展起了很大的促进作用,而劳伦斯的回旋加速器则是这类创造中最有成效的一项。从30年代起,以劳伦斯不断革新回旋加速器的活动为代表,物理学转入了大规模的集体研究,仪器设备越来越复杂,物理学家越来越多地参加有组织的研究工作,物理学与技术的关系也越来越密切,操作调试要求协调配合,实验室的规模要以工程的尺度来衡量,可以说,大规模物理学的出现是我们时代的特征。 劳伦斯顺应这一形势,走在时代的前列。他以天才的设计思想、惊人的毅力和高超的组织才能,为原子核物理学和粒子物理学的发展作出了重大贡献。 劳伦斯1901年8月8日出生于美国南达科他州南部的坎顿(Canton)教师的家庭里,早年就对科学有浓厚兴趣,喜欢作无线电通讯实验,在活动中表现出非凡的才能,他聪慧博学,善于思考。劳伦斯原想学医,却于1922年以化学学士学位毕业于南达科他大学,后转明尼苏达大学当研究生。导师斯旺(W.F.G.Swann)对劳伦斯有很深影响,使他对电磁场理论进行了深入的学习。劳伦斯获得硕士学位后随斯旺教授转芝加哥大学,在那里他遇见了著名的年轻物理学家康普顿(https://www.360docs.net/doc/1d19034406.html,pton)教授。他往往在康普顿的实验室里陪康普顿整夜地进行X射线实验,和康普顿倾谈,从康普顿那里吸取了许多经验。劳伦斯在1925年以钾的光电效应为题完成博士学位。在这期间,业余从事用示波管做显像实验,如果不是有人捷足先登,说不定他会取得电视机的发明专利。他兴趣广泛,思路开阔,深得同行的赞许。劳伦斯在耶鲁大学继续研究两年之后,于1927年当上了助理教授。1928年转到伯克利加州大学任副教授。两年后提升,是最年轻的教授。在这里他一直工作到晚年,使伯克利加州大学由一所新学校变成了核物理的研究基地。 在劳伦斯选择科研方向时,卢瑟福学派的工作吸引了他,使他了解到“实验物理学家下一个重要阵地肯定是原子核”。但是,像卢瑟福那样用镭辐射的α粒子轰击原子核效果毕竟是有限的,因为能量不足,强度也弱。他深知出路在于找到一种办法,人为地使粒子加速,才能取得更好的效果。 1928年前后,人们纷纷在寻找加速粒子的方法。当时实验室中用于加速粒子的主要设备是变压器和整流器、冲击发生器、静电发生器、特斯拉(Tesla)线圈等等。这些方法全都要靠高电压,可是电压越高,对绝缘的要求也越苛刻,否

回旋加速器原理和考点分析

回旋加速器原理和考点分析 作者:丑佳丽 黑龙江省铁力职业教育中心学校 【内容摘要】 回旋加速器的原理和意义,并利用原理解决相关问题。增大加速电压或微粒的核质比增大,能使一个带电粒子获得很大的速度(能量), 但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U.回旋加速器是产生大量高能量的带电粒子的实验设备.交变电压的周期与带电粒子做匀速圆周运动的周期相等。高频交流电源的周期与带电粒子在D 形盒中运动的周期相同是加速条件。回旋加速器的优点是体积小,缺点是粒子的能量不会很高。高频考点:回旋加速器中的D 形金属盒,它的作用是静电屏蔽。带电粒子从电场中获得能量。 做题过程中注意应用公式推导和运算。 【关键词】 带电粒子 加速 回旋加速器 一、如何能使带电粒子在较小的范围内实现多级加速 1.如何使一个带电的微粒获得速度(能量) 由动能定理K E W ?= 221mv qU = m qU v 2= 2.如何使一个带电粒子获得很大的速度(能量) 拓展:如: ①增大加速电压;②使微粒的核质比增大,等等。 3.带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法 4.实际所加的电压,能不能使带电粒子达到所需要的能量(不能)怎么办 多级加速::带电粒子增加的动能为 ) (2 121321212 02n n U U U U q qU qU qU qU mv mv E ++++=+++==-= ? 分析:方法可行,但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。 二、 回旋加速器的原理和考点 回旋加速器 图1 图2 图3

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高中物理速度选择器和回旋加速器解题技巧及经典题型及练习题(1)

高中物理速度选择器和回旋加速器解题技巧及经典题型及练习题(1) 一、速度选择器和回旋加速器 1.如图为质谱仪的原理图。电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求: (1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少? (3)打在a 、b 两点的距离差△x 为多大? 【答案】(1)垂直纸面向外 (2)1U v B d = (3)12122()U m m x qB B d -?= 【解析】 【详解】 (1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知: 1U qvB q d = 解得:1U v B d = (3)两粒子均由洛伦兹力提供向心力 2 2v qvB m R = 可得:112m v R qB = ,222 m v R qB = 两粒子打在底片上的长度为半圆的直径,则: 1222x R R ?=- 联立解得:12122() U m m x qB B d -?= 2.如图所示,水平放置的平行板电容器上极板带正电,下极板带负电,两板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度为 B 匀强磁场.现有大量带电粒子沿中线 OO ′ 射

入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线 MN 右侧的磁场去掉,则其中比荷为 q m 的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两板间的距离为2 3mE qB ,带电粒子的重力不计。 (1)求下极板上 N 、P 两点间的距离; (2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷。 【答案】(1)3mE x =2)'4'7q q m m = 【解析】 【分析】 (1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,根据类平抛运动的的规律求解下极板上 N 、P 两点间的距离;(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速 圆周运动,根据几何关系求解圆周运动的半径,然后根据2 ''m v q vB R = 求解比荷。 【详解】 (1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动, qE qvB = 粒子过 MN 时的速度大小 E v B = 仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动, 沿电场方向:2 2 322mE qE t qB m = 垂直于电场方向:x vt = 由以上各式计算得出下极板上N 、 P 两点间的距离2 3mE x qB = (2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,设经过 P 点的粒子的比荷为 ' ' q m ,其做匀速圆周运动的半径为 R ,

回旋加速器

第六节 回旋加速器 ●教学目标 一、知识目标 1.知道回旋加速器的基本构造及工作原理. 2.知道回旋加速器的基本用途. 二、能力目标 先介绍直线加速器,然后引出回旋加速器,并对两种加速器进行对比评述,引导学生思维,开阔学生思路. 三、德育目标 1.通过介绍两种加速器的利和弊,告诉学生应辩证地去看待某一事物. 2.通过介绍回旋加速器不利的一面,希望学生掌握现在的基础知识,将来能研究出更切合实际的加速器. ●教学重点 回旋加速器的工作原理. ●教学难点 回旋加速器的基本用途. ●教学方法 阅读法、电教法、对比法 ●教学用具 实物投影仪、CAI 课件 ●课时安排 1课时 ●教学过程 [投影]本节课的教学目标: 1.知道回旋加速器的基本构造及工作原理. 2.知道加速器的基本用途. ●学习目标完成过程 一、引入新课 在现代的物理学中,为了进一步研究物质的微观结构,需要能量很高的带电粒子去轰击原子核,为了使带电粒子获得如此高的能量,就必须设计一个能给粒子加速的装置——加速器. 二、新课教学 让学生阅读课文,然后回答以下问题: [问题1]用什么方法可把带电粒子加速? [学生答]利用加速电场给带电粒子加速. [板书]由动能定理W =ΔE k qu =22 1mv , v =m qu /2 [问题2]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法? [学生答]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可增大加速电场两极板间的电势差. [问题3]实际所加的电压,能不能使带电粒子达到所需的能量?(不能)怎么办? [学生答]实际所加的电压,不能使带电粒子达到所需要的能量.不能,可采用高极加

高中物理速度选择器和回旋加速器试题(有答案和解析)

高中物理速度选择器和回旋加速器试题(有答案和解析) 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

回旋加速器与高考物理讲解

回旋加速器与高考物理讲解

————————————————————————————————作者: ————————————————————————————————日期: ?

回旋加速器与高考物理 河南省信阳高级中学陈庆威2015.12.08 一、命题分析 无论是2008广东物理卷第4题、2009年江苏物理第14题、2010年山东第25题、2011天津理综物理第12题,还是2015年我们刚经历过的浙江高考物理第25题。回旋加速器这个名字总是熟悉地出现在我们的高考试卷中。 回旋加速器是教材中带电粒子在电磁场中的运动的重要实例,也是近代物理的重要实验装置,是高考考查的重点和热点,高考试题中它可能为选择题,也可能为计算题,一旦出现在计算题中,多半要成为压轴题。这种题的综合性强、难度大、分值高、区分度大,因此也成为我们学习的重点,备考的热点。 二、工作原理 回旋加速器的工作原理如图所示,设离子源中放出的是带正电的粒子,带正电的粒子以一定的初速度v 进入下方D形盒中的匀强磁场做匀速圆周运动,运动半周 后回到窄缝的边缘,这时在A 1、A 1 '间加一向上的电场,粒子将在电场作用下被加 速,速率由v 0变为v 1 ,然后粒子在上方D形盒的匀强磁场中做圆周运动,经过半个周 期后到达窄缝的边缘A 2',这时在A 2 、A 2 ′间加一向下的电场,使粒子又一次得到加速, 速率变为v 2 ,这样使带电粒子每通过窄缝时被加速,又通过盒内磁场的作用使粒子回旋到窄缝,通过反复加速使粒子达到很高的能量。 ? 1、带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,粒子每经过一个周期,被电场加速二次。 2、将带电粒子在狭缝之间的运动首尾连接起来是一个初速度为零的匀加速直线运动。?3、带电粒子每经电场加速一次,回旋半径就增大一次,每次增加的动能为;所有各次半径之比为:;?4、对于同一回旋加速器,其粒子 的回旋的最大半径是相同的。?5、由最大半径得:; ?回旋周数:; ?所需时间:。

回旋加速器原理和考点分析

回旋加速器 回旋加速器原理和考点分析 作者:丑佳丽黑龙江省铁力职业教育中心学校 【内容摘要】回旋加速器的原理和意义,并利用原理解决相关问题。增大加速电压或微粒的核质比增大,能使 一个带电粒子获得很大的速度(能量),但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创 造出回旋加速器。回旋加速器的构造:两个D形金属盒,粒子源,半径为R D,大型电磁铁,高频振荡交变电压U.回旋加速器是产生大量高能量的带电粒子的实验设备?交变电压的周期与带电粒子做匀速圆周运动的周期相等。 高频交流电源的周期与带电粒子在D形盒中运动的周期相同是加速条件。回旋加速器的优点是体积小,缺点是粒子的能量不会很高。高频考点:回旋加速器中的D形金属盒,它的作用是静电屏蔽。带电粒子从电场中获得能量。做题过程中注意应用公式推导和运算。 【关键词】带电粒子加速回旋加速器 一、如何能使带电粒子在较小的范围内实现多级加速 1如何使一个带电的微粒获得速度(能量) 由动能定理W E K qU 1mv2v 2qU 2.如何使一个带电粒子获得很大的速度(能量) 拓展:如:①增大加速电压;②使微粒的核质比增大,等等。 3.带电粒子一定,即q/m 一定,要使带电粒子获得的能量增大,可采取什么方法 4.实际所加的电压,能不能使带电粒子达到所需要的能量(不能)怎么办 多级加速::带电粒子增加的动能为 1 2 1 2 E mv mv0qU 2 2 qU i qU? qU n q(U i U2 U3 U n) 分析:方法可行,但所占的空间范围大。能不能在较小的范围内实现多级加速呢因此人们创造出回旋加速器。 回旋加速器的原理和考点 图1 —M 二鱷益蜒列缰

2020届高考回归复习—电学选择之回旋加速器

高考回归复习—电学选择之回旋加速器 1.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B 的匀强磁场与盒面垂直,A 处粒子源产生质量为m 、电荷量为+q 的粒子,在加速电压为U 的加速电场中被加速,所加磁场的磁感应强度、加速电场的频率可调,磁场的磁感应强度最大值为B m 和加速电场频率的最大值f m 。则下列说法正确的是( ) A .粒子获得的最大动能与加速电压无关 B .粒子第n 次和第n +1 C .粒子从静止开始加速到出口处所需的时间为2 π2BR t U = D .若 2πm m qB f m < ,则粒子获得的最大动能为222 2πkm m E mf R = 2.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R 。两盒间的狭缝很小,带电粒子穿过狭缝的时间忽略不计,磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生质量为m 、电荷量为+q 的粒子,在加速器中被加速,加速电压为U 。下列说法正确的是( ) A .交变电场的周期为 m Bq π B .粒子射出加速器的速度大小与电压U 成正比 C .粒子在磁场中运动的时间为 2 2BR U π D .粒子第13.粒子回旋加速器的工作原理如图所示,置于真空中的D 型金属盒的半径为R ,两金属盒间的狭缝很小,

磁感应强度为B的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f,加速器的电压为U,若中心粒子源处产生的质子质量为m,电荷量为+e,在加速器中被加速.不考虑相对论效应,则下列说法正确是() A.质子被加速后的最大速度不能超过2πRf B.加速的质子获得的最大动能随加速电场U增大而增大 C.质子第二次和第一次经过D D.不改变磁感应强度B和交流电的频率f,该加速器也可加速粒子 4.回旋加速器工作原理示意图如图所示.磁感应强度为B的匀强磁场与盒面垂直,两盒间的狭缝很小,粒子穿过的时间可忽略,它们接在电压为U、频率为f的交流电源上,A处粒子源产生的质子在加速器中被加速.质子初速度可忽略,则下列说法正确的是() A.若只增大交流电压U,则质子获得的最大动能增大 B.若只增大交流电压U,则质子在回旋加速器中运行时间会变短 C.质子第n D.不改变磁感应强度B和交流电频率f,该回旋加速器也能用于加速α粒子 5.如图所示,回旋加速器D形盒的半径为R,所加磁场的磁感应强度为B,用来加速质量为m、电荷量为q的质子,质子从下半盒的质子源由静止出发,加速到最大能量E后,由A孔射出。下列正确的是() A.回旋加速器不能无限加速质子 B.增大交变电压U,则质子在加速器中运行时间将变短

回旋加速器与高考物理

回旋加速器与高考物理 河南省信阳高级中学陈庆威 2015.12.08 一、命题分析 无论是2008广东物理卷第4题、2009年江苏物理第14题、2010年山东第25题、2011天津理综物理第12题,还是2015年我们刚经历过的浙江高考物理第25题。回旋加速器这个名字总是熟悉地出现在我们的高考试卷中。 回旋加速器是教材中带电粒子在电磁场中的运动的重要实例,也是近代物理的重要实验装置,是高考考查的重点和热点,高考试题中它可能为选择题,也可能为计算题,一旦出现在计算题中,多半要成为压轴题。这种题的综合性强、难度大、分值高、区分度大,因此也成为我们学习的重点,备考的热点。 二、工作原理 回旋加速器的工作原理如图所示,设离子源中放出的是带正电的粒子,带正电的粒子以一定的初速度v 进入下方D形盒中的匀强磁场做匀速圆周运动,运动 半周后回到窄缝的边缘,这时在A 1、A 1 '间加一向上的电场,粒子将在电场作用下 被加速,速率由v 0变为v 1 ,然后粒子在上方D形盒的匀强磁场中做圆周运动,经 过半个周期后到达窄缝的边缘A 2',这时在A 2 、A 2 ′间加一向下的电场,使粒子又 一次得到加速,速率变为v 2 ,这样使带电粒子每通过窄缝时被加速,又通过盒内磁场的作用使粒子回旋到窄缝,通过反复加速使粒子达到很高的能量。 1、带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,粒子每经过一个周期,被电场加速二次。 2、将带电粒子在狭缝之间的运动首尾连接起来是一个初速度为零的匀加速直线运动。 3、带电粒子每经电场加速一次,回旋半径就增大一次,每次增加的动能为;所有各次半径之比为:; 4、对于同一回旋加速器,其粒子的回旋的最大半径是相同的。 5、由最大半径得:;

回旋加速器的原理

回旋加速器的原理 回旋加速器的工作原理如图所示,设离子源中放出的是带正电的粒子,带正电的粒子以一定的初速度v 0进入下方D 形盒中的匀强磁场做匀速圆周运动,运行半周后回到窄缝的边缘,这时在A 1、A 1′间加一向上的电场,粒子将在电场作用下被加速,速率由v 0变成v 1,然后粒子在上方D 形盒的匀强磁场中做圆周运动,经过半个周期后到达窄缝的边缘A 2′,这时在A 2A 2′间加一向下的电场,使粒子又一次得到加速速率变为v 2,这样使带电粒子每通过窄缝时被加速,又通过盒内磁场的作用使粒子回旋到窄缝,通过反复加速使粒子达到很高的能量. 带电粒子在磁场中运动的半径为R =qB mv ,所以粒子被加速后回旋半径一次比一次增大, 而带电粒子在磁场中运动的周期T =qB m 2,所以粒子在磁场中运动的周期始终保持不变,这 样只要加在两个电极上的高频电源的周期与带电粒子在磁场中运动的周期相同,就可以保证粒子每经过电场边界AA 和A ′A 时正好赶上合适的电场方向而被加速. 由于相对论效应,当粒子速率接近光速时,粒子的质量将显著增加,从而粒子做圆周运动的周期将随粒子速率的增长而增长,如果加在D 形盒两极的交变电场的周期不变的话,粒子由于每次“迟到”一点而不能保证经过窄缝时总被加速,因此,为了使粒子每次穿过窄缝时仍能不断得到加速,必须使交变电场的周期随着粒子加速的过程而同步变化,根据这个原理设计的回旋加速器叫做同步回旋加速器.另外采用多级电场加速的直线型装置不存在这种困难,这种多级加速装置在过去没有条件建造,现在已经建造出来,科学家们称它为直线加速器,长度达几千米到几十千米,如图所示的长约3 km 的斯坦福大学直线加速器.

回旋加速器的五个有关问题

回旋加速器的五个主要特征 [摘要]:讨论回旋加速器的题目一般在已经学习了带电粒子在磁场中的运动规律,因此本文容在分析回旋加速器的构造的基础上,研究方便解决高考题的回旋加速器五个特征,使这类题目不再是难题 [关键字]:回旋加速器、带电粒子、D型盒 一、回旋加速器的工作原理 回旋加速器的工作原理如图所示.放在A0处的粒子源发出一个带正电的粒子,它以某一速率v0垂直进入匀强磁场,在磁场中做匀速圆周运动.经过半个周期,当它沿着半圆弧A0A1到达A1时,在A1A1′处造成一个向上的电场,使这个带电粒子在A1A1′处受到一次电场的加速,速率由v0增加到v1.然后粒子以速率v1在磁场中做匀速圆周运动.我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动.又经过半个周期,当它沿着半圆弧A1′A 2′到达A 2 ′时,在A 2 ′A 2 处造 成一个向下的电场,使粒子又一 次受到电场的加速,速率增加到 v2.如此继续下去,每当粒子运 动到A1A1′、A3A3′等处时都使 它受到向上电场的加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A0A1A1′A2′A2……回旋下去,速率将一步一步地增大.

带电粒子在匀强磁场中做匀速圆周运动的周期T=2πm/qB跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁感应强度来说,这个周期是恒定的.因此,尽管粒子的速率和半径一次比一次增大.运动周期T却始终不变,这样,如果在直线AA、A′A′处造成一个交变电场,使它也以相同的周期T往复变化,那就可以保证粒子每经过直线AA和A′A′时都正好赶上适合的电场方向而被加速.回旋加速器的核心部分是两个D形的金属扁盒,这两个D形盒就像是沿着直径把一个圆形的金属扁盒切成的两 半.两个D形盒之间留一个窄缝,在中心附近 放有粒子源.D形盒装在真空容器中,整个装 置放在巨大电磁铁的两极之间,磁场方向垂直 于D形盒的底面.把两个D形盒分别接在高频电源的两极上,如果高频电源的周期与带电粒子在D形盒中的运动周期相同,带电粒子就可以不断地被加速了.带电粒子在D形盒沿螺线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出. 二、回旋加速器的五个主要特征 1、带电粒子在D型盒中回转周期等于两盒狭缝间高频电场的变化周期,与带电粒子速度无关(磁场保证带电粒子做回旋运动) 2、带电粒子在D形金属盒运动的轨道半径:不等距分布。 设正离子的质量为m,电荷量为q,狭缝间加速电压大小为U,离子从离子源飘出,经电场加速第一次进入左半盒时速度和半径分别为 ,。

高中物理回旋加速器工作原理参考资料

高二物理“回旋加速器”工作原理参考资料2011.12.3 带电粒子在电场中的运动的应用---回旋加速器(重点了解工作原理) 思考:怎样对带电粒子加速,使粒子具有较大的能量? (1)直线加速器 ①加速原理:利用加速电场对带电粒子做正功使带电的粒子动能增加,即qU =ΔE k ②直线加速器的多级加速:书上图3.6—5所示的是多级加速装置的原理图,由动能定理可知,带电粒子经N级的电场加速后增加的动能,ΔE k=q(U1+U2+U3+U4+…U n) ③直线加速器占有的空间范围大,在有限的空间内制造直线加速器受到一定的限制。(2)思考:有没有什么办法可以让带电粒子在加速后又转回来被第二次加速,即反复“转圈圈”式的被加速,而磁场正好能使带电粒子“转圈圈”! 学生活动:自主阅读课本,并阅读“思考与讨论”分析回旋加速器的加速原理 磁场的作用:交变电场以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力的作用下做匀速圆周运动,其周期在q、m、B不变的情况下与速度和轨道半径无关,带电粒子每次进入D形盒都运动相等的时间(半个周期)后平行电场方向进入电场加速。 电场的作用:回旋加速器的的两个D形盒之间的夹缝区域存在周期性变化的并垂直于两个D形盒正对截面的匀强电场,带电粒子经过该区域时被加速。 交变电压的作用:为保证交变电场每次经过夹缝时都被加速,使之能量不断提高,须在在夹缝两侧加上跟带电粒子在D形盒中运动周期相同的交变电压。 带电粒子经加速后的最终能量:(运动半径最大为D形盒的半径R) 由R=mv/qB 有v=qBR/m 所以最终能量为E m=mv2/2 = q2B2R2/2m ,下列说法不正确的是 A.电场用来加速带电粒子,磁场则使带电粒子回旋 B.电场和磁场同时用来加速带电粒子 C.在交流电压一定的条件下,回旋加速器的半径越大,同一带电粒子获得的动能越大 D.同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关

高三物理一轮复习——回旋加速器的原理和分析

高三物理一轮复习——回旋加速器的原理和分析 知识梳理 1.构造:如图4所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源. 图4 2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次. 3.粒子获得的最大动能:由q v m B =m v m 2R 、E km =12m v m 2得E km =q 2B 2R 22m ,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.粒子在磁场中运动的总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加 动能qU ,加速次数n =E km qU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 2 2U . 例2 回旋加速器的工作原理如图5甲所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量 为+q ,加在狭缝间的交变电压如图乙所示,电压的大小为U 0,周期T =2πm qB .一束该种粒子在t =0~T 2 时间内从A 处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够射出的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求: 图5 (1)出射粒子的动能E km ; (2)粒子从飘入狭缝至动能达到E km 所需的总时间t 0; (3)要使飘入狭缝的粒子中有超过99%能射出,d 应满足的条件. 答案 (1)q 2B 2R 2 2m (2)πBR 2+2BRd 2U 0-πm qB

(3)d <πmU 0100qB 2R 解析 (1)出射粒子运动半径为R ,q v B =m v 2R E km =12m v 2=q 2B 2R 22m . (2)粒子被加速n 次达到动能E km ,则E km =nqU 0 粒子在狭缝间做匀加速运动,设n 次经过狭缝的总时间为Δt ,加速度a =qU 0md 粒子由静止做匀加速直线运动nd =12 a ·(Δt )2 由t 0=(n -1)·T 2+Δt ,解得t 0=πBR 2+2BRd 2U 0-πm qB . (3)只有在0~(T 2-Δt )时间内飘入的粒子才能每次均被加速,则所占的比例为η=T 2-Δt T 2 ×100% 由于η>99%,解得d <πmU 0100qB 2R . 变式2 (2019·福建龙岩市教学质量检查)回旋加速器是加速带电粒子的装置,如图6所示.其核心部件是分别与高频交流电源两极相连接的两个D 形金属盒(D 1、D 2),两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,D 形盒的半径为R .质量为m 、电荷量为q 的质子从D 1盒的质子源(A 点)由静止释放,加速到最大动能E km 后经粒子出口处射出.若忽略质子在电场中的加速时间,且不考虑相对论效应,则下列说法不正确... 的是( ) 图6 A .质子加速后的最大动能E km 与交变电压U 大小无关 B .质子在加速器中的运行时间与交变电压U 大小无关 C .回旋加速器所加交变电压的周期为πR 2m E km D .D 2盒内质子的轨道半径由小到大之比为1∶3∶5∶… 答案 B

最新高中物理速度选择器和回旋加速器专项训练100(附答案)

最新高中物理速度选择器和回旋加速器专项训练100(附答案) 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3 ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求:

回旋加速器计算

23.在高能物理研究中,粒子加速器起着重要作用,而早期的加速器只能使带电粒子在高压电场中加速 一次,因而粒子所能达到的能量受到高压技术的限制。1930年,Earnest O. Lawrence 提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。图12甲为Earnest O. Lawrence 设计的回旋加速器的示意图。它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条狭缝;两个D 型盒处在匀强磁场中并接有高频交变电压。图12乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速;为保证粒子每次经过狭缝都被加速,应设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,最后到达D 型盒的边缘,获得最大速度后被束流提取装置提取出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小恒为U ,磁场的磁感应强度为B ,D 型盒的半径为R ,狭缝之间的距离为d 。设正 离子从离子源出发时的初速度为零。 ⑴试计算上述正离子从离子源出发被第一次加速后进入下半盒中运动的轨道半径; ⑵尽管粒子在狭缝中每次加速的时间很短但也不可忽略。试计算上述正离子在某次加速过程当中从离开离子源到被第n 次加速结束时所经历的时间; ⑶不考虑相对论效应,试分析要提高某一离子被半径为R 的回旋加速器加速后的最大动能可采用的措施。 23.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速 问题。现在回旋加速器被广泛应用于科学研究和医学设备中。某型号的回旋加速器的工作原理如图甲所示,图为俯视图乙。回旋加速器的核心部分为D 形盒,D 形盒装在真空容器中,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与D 形盒盒面垂直。两盒间狭缝很小,带电粒子穿过的时间可以忽略不计。D 形盒半径为R ,磁场的磁感应强度为B 。设质子从粒子源A 处射入加速电场的初速度不计。质子质量为m 、电荷量为+q 。加速器接一定频率的高频交流电源,其电压为U 。加速过程中不考虑相对论效应和重力作用。 ⑴求质子第1次经过狭缝被加速后进入D 形盒运动轨 道的半径r 1; ⑵求质子从静止开始加速到出口处所需的时间t ; ⑶如果使用这台回旋加速器加速α粒子,需要进行怎 样的改动?请写出必要的分析及推理。 B 接交流电源 甲 S 乙 图12 图甲 高频电源 出口处 R A B D 2D 1 图乙

回旋加速器

第六节 回旋加速器 ●教学过程 [投影]本节课的教学目标: 1.知道回旋加速器的基本构造及工作原理. 2.知道加速器的基本用途. ●学习目标完成过程 一、引入新课 在现代的物理学中,为了进一步研究物质的微观结构,需要能量很高 的带电粒子去轰击原子核,为了使带电粒子获得如此高的能量,就必须设 计一个能给粒子加速的装置——加速器. 二、新课教学 让学生阅读课文,然后回答以下问题: [问题1]用什么方法可把带电粒子加速? [学生答]利用加速电场给带电粒子加速. [板书]由动能定理W =ΔE k qu =22 1mv , v =m qu /2 [问题2]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增 大,可采取什么方法? [学生答]带电粒子一定,即q/m 一定,要使带电粒子获得的能量增 大,可增大加速电场两极板间的电势差. [问题3]实际所加的电压,能不能使带电粒子达到所需的能量?(不 能)怎么办? [学生答]实际所加的电压,不能使带电粒子达到所需要的能量.不能, 可采用高极加速器. [投影片出示高极加速] 带电粒子增加的动能ΔE =2022 121mv mv =qu =qu 1+qu 2+…+qu n =q (u 1+u 2+u 3+ …+u n ) 分析:方法可行,但所占的空间范围大,能不能在较小的范围内实现

高级加速呢?1932年美国物理学家劳伦斯发明的回旋加速器解决了这一问题. [板书]回旋加速器 让学生阅读课文,教师随后就回旋加速器的工作原理进行讲 解. [实物投影右图]教师进行讲解:放在A0处的粒子源发出 一个带正电的粒子,它以某一速率v0垂直进入匀强磁场,在磁场 中做匀速圆周运动,经过半个周期,当它沿着半圆弧A0A1到达 A1时,在A1A1′处造成一个向上的电场,使这个带电粒子在 A1A1′处受到一次电场的加速,速率由v0增加到v1,然后粒子以速率v1在磁场中做匀速圆周运动.我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动,又经过半个周期,当它沿着半圆弧A1′A2′到达A2′时,在A2′A2处造成一个向下的电场,使粒子又一次受到电场的加速,速率增加到v2,如此继续下去,每当粒子运动到A1A′、A3 A3′等处时都使它受到向上电场的加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A0A1A1′A2′A2……回旋下去,速率将一步一步地增大. 带电粒子在匀强磁场中做匀速圆周运动的周期T=2πm/qB跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁感应强度来说,这个周期是恒定的,因此,尽管粒子的速率和半径一次比一次增大,运动周期T却始终不变,这样,如果在直线AA、A′A′处造成一个交变电场,使它以相同的周期T往复变化,那就可以保证粒子每经过直线AA和A′A′时都正好赶上适合的电场方向而被加速. [投影片出示板书] 1.回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用来获得高能粒子的装置. 2.回旋加速器的工作原理. (1)磁场的作用:带电粒子以某一速度垂直磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期和速率与半径无关,使带电粒子每次进入D形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速. (2)电场的作用:回旋加速器的两个D形盒之间的窄缝区域存在周期性变化的并垂直于两D形盒直径的匀强电场,加速就是在这个区域完成的. (3)交变电压:为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个与T=2πm/qB相同的交变电压. [实物投影回旋加速器的D形盒]

相关文档
最新文档