高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析
高考物理速度选择器和回旋加速器技巧(很有用)及练习题含解析

高考物理速度选择器和回旋加速器技巧(很有用)及练习题含解析一、速度选择器和回旋加速器1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值E B ;(2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有00qvB qE =解得302.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径1.0m R d ==根据洛伦兹力提供向心力有2v qvB m R=解得磁感应强度大小3210T B -=⨯(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小sin y v v θ=粒子在电场中沿y 轴方向的加速度大小cos y qEa mθ=设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有y yv t a ∆=t ∆时间内,粒子沿y 轴方向通过的位移大小2y v y t ∆=⋅∆联立解得0.3m y ∆=由于cos y d θ∆<故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离cos 0.2m d d y θ'=-∆=2.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
高中物理速度选择器和回旋加速器解题技巧

高中物理速度选择器和回旋加速器解题技巧一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯ 【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qEqvB解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2222k qUh mU E d B d=+【解析】 【详解】 (1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+3.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
高考物理速度选择器和回旋加速器技巧(很有用)及练习题

高考物理速度选择器和回旋加速器技巧(很有用)及练习题一、速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 3L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M点飞出磁场,由几何关系:AM=2 22L R⎛⎫- ⎪⎝⎭=32L所以粒子离开的位置在AB连线上距离A点32L处;(2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan12LLα==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan3AMOAβ==解得:60β︒=所以偏转角之比:34αβ=。
2.PQ和 MN分别是完全正对的金属板,接入电动势为E的电源,如图所示,板间电场可看作匀强电场,MN之间距离为d,其间存在着磁感应强度为B,方向垂直纸面向里的匀强磁场。
紧挨着P板有一能产生正电荷的粒子源S,Q 板中间有孔J,SJK在一条直线上且与MN 平行。
产生的粒子初速度不计,粒子重力不计,发现粒子能沿着SJK 路径从孔 K射出,求粒子的比荷qm。
【答案】222EB d 【解析】 【分析】粒子在PQ 板间是匀加速直线运动,根据动能定理列式;进入MN 板间是匀速直线运动,电场力和洛伦兹力平衡,根据平衡条件列式;最后联立求解即可. 【详解】PQ 板间加速粒子,穿过J 孔是速度为v 根据动能定理,有:212qE mv =沿着SJK 路径从K 孔穿出,粒子受电场力和洛伦兹力平衡:qEqvB d= 解得:222q E m B d = 【点睛】本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.3.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。
高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m v B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
高考物理速度选择器和回旋加速器解题技巧及经典题型及练习题(2)

高考物理速度选择器和回旋加速器解题技巧及经典题型及练习题(2)一、速度选择器和回旋加速器1.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r='解得:2021v v += 故010212122v v v v -+≤≤=2.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (23)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2v =(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:5 4r L =由233v qv B m r= 得:354qBLv m =若粒子从板左边缘飞出,则:4L r =由244v qv B mr=得:44qBLv m=3.如图为质谱仪的原理图。
高考物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高考物理速度选择器和回旋加速器技巧(很有用)及练习题及解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C 的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at == 粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m3.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=o故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =o联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB==由几何知识可得022cos 452mv AC R R qB===o在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.4.如图所示,两平行金属板水平放置,间距为d ,两极板接在电压可调的电源上。
高中物理速度选择器和回旋加速器练习题及答案及解析
(1)电子通过小孔 O 时的速度大小 v; (2)板间匀强磁场的磁感应强度的大小 B 和方向。
【答案】(1) 2eU (2) 1 2mU 方向垂直纸面向里
m
Le
【解析】
【详解】
(1)电子通过加速电场的过程中,由动能定理有: eU 1 mv2 2
解得: v 2eU m
(2)两板间电场的电场强度大小为: E 2U L
处在垂直于纸面向里、磁感应强度大小为 B 的匀强磁场中,M 和 M 是固定在金属盒狭缝
边缘的两平行极板,其上有正对的两个小孔,给极板充电后,上板带正电且两板间电压为
U;质量为 m、带电量为 q 的正离子从 M 板小孔由静止开始加速,经 M 板小孔进入磁场
区域,离子经磁场偏转后又回到 M 板小孔继续加速,再偏转,)电场强度 E
U d
;(2) v0
U Bd
;(3) Ek
qUh d
mU 2 2B2d 2
【解析】
【详解】
(1)电场强度 E U d
(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有: qE qv0B
解得 v0
E B
U Bd
(3)粒子从
N
点射出,由动能定理得:
qE
h
Ek
3.如图所示,M、N 为水平放置的两块平行金属板,板间距为 L,两板间存在相互垂直的
匀强电场和匀强磁场,电势差为UMN U0 ,磁感应强度大小为 B0 .一个带正电的粒子从
两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与 ab 垂直的方向由 d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界 ab 及 ac 在同一竖直平面
(2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示
高中物理速度选择器和回旋加速器技巧(很有用)及练习题
高中物理速度选择器和回旋加速器技巧(很有用)及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
高中物理速度选择器和回旋加速器解题技巧及练习题及解析
高中物理速度选择器和回旋加速器解题技巧及练习题及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121mv B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯在电场中的偏移量210.1m2y at == 粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m3.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
速度选择器和回旋加速器练习题含答案及解析
(1)粒子在第二象限做类平抛运动,设初速度为v,
L=v1t
联立解得 ,则经过y轴上 的位置;
(2)
v2=at
可得
qv1B=qE
解得
(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,如图;
解得
最低点y坐标为
此时速度最大为vm=2v1+v1
解得
8.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E的匀强电场。金属板右下方以MN为上边界,PQ为下边界,MP为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d,MN与下极板等高,MP与金属板右端在同一竖直线。一个电荷量为q、质量为m的正离子以初速度在两板间沿平行于金属板的虚线射入金属板间。不计粒子重力。
带电粒子在P1和P2间运动,根据电场力与洛伦兹力平衡可得: 解得: ;
(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力: ;
已知 ,解得:
7.如图,在整个直角坐标系xoy区域存在方向沿y轴负方向的匀强电场,场强大小为E;在x>0区域还存在方向垂直于xoy平面向内的匀强磁场。一质量为m、电荷量为q的带正电粒子从x轴上x=-L的A点射出,速度方向与x轴正方向成45°,粒子刚好能垂直经过y轴,并且在第一象限恰能做直线运动,不计粒子重力
联立以上各式解得,离子在电场E中运动到A点所需时间:
(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:
解得:
由几何知识可得
在电场中,x方向上离子做匀速直线运动,则
因此离子第一次离开第四象限磁场区域的位置C与坐标原点的距离为:
【点睛】
本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)质子被加速后获得的最大动能Ek和交变电压的频率f;
(3)若两D形盒狭缝之间距离为d,且d<<R.计算质子在电场中运动的总时间t1与在磁场中运动总时间t2,并由此说明质子穿过电场时间可以忽略不计的原因.
【答案】(1) , (2) , (3) , ;
加速度
偏转角为 ,如图2所示
则
偏离距离为
=0.05m
离开电场后离子做匀速直线运动,总的偏离距离
=.25m
所以a、b间的距离
ab=y+y'=0.53m
3.如图所示,在直角坐标系xOy平面内有一个电场强度大小为E、方向沿-y方向的匀强电场,同时在以坐标原点O为圆心、半径为R的圆形区域内,有垂直于xOy平面的匀强磁场,该圆周与x轴的交点分别为P点和Q点,M点和N点也是圆周上的两点,OM和ON的连线与+x方向的夹角均为θ=60°。现让一个α粒子从P点沿+x方向以初速度v0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。
(1)离子速度v的大小;
(2)离子的比荷q/m。
【答案】 ;
【解析】
【详解】
(1)离子在平行金属板之间做匀速直线运动:
得:
(2)在圆形磁场区域,离子做匀速圆周运动,由牛顿第二定律得:
由几何关系得:r=R
离子的比荷为:
7.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为两个D形盒,分别为D1、D2.D形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与D形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D形盒的半径为R,磁场的磁感应强度为B.设质子从粒子源A处进入加速电场的初速度不计.质子质量为m、电荷量为+q.加速器接入一定频率的高频交变电源,加速电压为U.加速过程中不考虑相对论效应和重力作用.求:
x= R=vt
y= R= × t2
又
qE=Bqv0
联立解得
v= = v0
4.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求:
【解析】
(1)设质子第1此经过狭缝被加速后的速度为v1: 解得
解得:
(2)当粒子在磁场中运动半径非常接近D型盒的半径A时,粒子的动能最大,设速度为vm,则
解得
回旋加速器正常工作时高频交变电压的频率等于粒子回旋的频率,则设粒子在磁场中运动的周期为T,则:
则
(3)设质子从静止开始加速到粒子离开加速了n圈,粒子在出口处的速度为v,根据动能定理可得:
(1)两平行板间的电势差U;
(2)粒子在圆形磁场区域中运动的时间t;
(3)圆形磁场区域的半径R.
【答案】(1)U=Bv0d;(2) ;(3)R=
【解析】
【分析】
(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.
(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间.
(4)实际使用中,磁感应强度B会出现波动,若在t= 时粒子第一次被加速,要实现连续n次加速,求B可波动的最大范围。
【答案】(1) ;(2)2:1;(3) ;第一次圆周运动的圆心在A点的左边,最后一次圆周运动与左边相切,所以出口在A点的左边;(4) ,n=2、3……
【解析】
【分析】
根据回旋加速器原理,粒子在电场中加速,在磁场中偏转,根据轨道半径与运动周期可求运动动能及运动时间,若磁场出现波动,求出磁感强度的最大值和最小值,从而确定磁感强度的范围。
(1)磁场B1的大小和方向
(2)现有大量的上述粒子进入加速器A,但加速电压不稳定,在 到 范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C,则打在照相底片D上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1) ,垂直纸面向里;(2) , ,
可得
粒子在夹缝中加速时,有: ,第n次通过夹缝所用的时间满足: 将粒子每次通过夹缝所用时间累加,则有
而粒子在磁场中运动的时间为(每圈周期相同)
可解得 ,因为d<<R,则t1<<t2
8.回旋加速器的工作原理如图甲所示,置于高真空中的D形金属盒半径为R,两盒间距很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B0的匀强磁场与盒面垂直。在下极板的圆心A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压u随时间的变化关系如图乙所示 。加速过程中不考虑相对论效应和变化电场对磁场分布的影响。
高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析
一、速度选择器和回旋加速器
1.某一具有速度选择器的质谱仪原理如图所示,A为粒子加速器,加速电压为U1;B为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U2,距离为d;C为偏转分离器,磁感应强度为B2,方向垂直纸面向里。今有一质量为m、电荷量为e的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D上。求:
【详解】
(1)圆周运动的最大半径约为R
离子离开加速器时获得的动能
(2)设加速n次
运动时间之比
(3)设第一、二次圆周运动的半径为r1和r2
可得
第一次圆周运动的圆心在A点的左边,最后一次圆周运动与左边相切,所以出口在A点的左边。
(4)设磁感应强度偏小时为B1,圆周运动的周期为T1
解得
设磁感应强度偏大时为B2,圆周运动的周期为T2
(3))由几何关系求半径R.
【详解】
(1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= ,解得两平行板间的电势差:U=Bv0d
(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:
Bv0q=m
同时有T=
粒子在圆形磁场区域中运动的时间t= T
解得t=
(3)由几何关系可知:r =R
(1)粒子开始从静止被加速,估算该离子离开加速器时获得的动能Ek;
(2)调节交流电的电压,先后两次的电压比为1:2,则粒子在加速器中的运动时间之比为多少?
(3)带电粒子在磁场中做圆周运动的圆心并不是金属盒的圆心O,而且在不断的变动。设第一次加速后做圆周运动的圆心O1到O的距离为x1,第二次加速后做圆周运动的圆心O2到O的距离为x2,这二个距离平均值约为最后从加速器射出时圆周运动的圆心位置x,求x的值,并说明出口处为什么在A的左边;
解得圆形磁场区域的半径R=
5.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B2的匀强磁场,磁场B2方向与纸面垂直,结果分别打在a、b两点,若打在a、b两点的粒子质量分别为 和 .求:
(1)不考虑加速过程中的相对论效应和重力的影响。
①求粒子可获得的最大动能Ekm;
②若粒子第1次进入D1盒在其中的轨道半径为r1,粒子第2次进入D1盒在其中的轨道半径为r2,求r1与r2之比;
③求粒子在电场中加速的总时间t1与粒子在D形盒中回旋的总时间t2的比值,并由此分析:计算粒子在回旋加速器中运动的时间时,t1与t2哪个可以忽略?(假设粒子在电场中的加速次数等于在磁场中回旋半周的次数);
解得
因此
,n=2、3……
9.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D1和D2,磁感应强度为B,金属盒的半径为R,两盒之间有一狭缝,其间距为d,且R≫d,两盒间电压为U。A处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被加速后进入D1盒中,经半个圆周之后再次到达两盒间的狭缝。通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量。已知带电粒子的质量为m、电荷量为+q。
解得离子流的速度为
=2×107m/s
(2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有
解得
=0.4m
离子离开磁场区边界时,偏转角为 ,根据几何关系有
解得
在磁场中的运动如图1所示
偏离距离
=0.054m
离开磁场后离子做匀速直线运动,总的偏离距离为
=0.28m
若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间
2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L=0.20m的正方形,其电场强度为 V/m,磁感应强度 T,磁场方向水平且垂直纸面向里,当一束质荷比为 kg/C的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。(计算结果保留两位有效数字)
(1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?
【解析】
【分析】
【详解】
(1)在加速电场中
在速度选择器B中
得
根据左手定则可知方向垂直纸面向里;
(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为
最大值为
打在D上的宽度为
若要使不同速度的粒子都有机会通过速度选择器,则对速度为v的粒子有