高中物理速度选择器和回旋加速器解题技巧讲解及练习题
高中物理速度选择器和回旋加速器解题技巧讲解及练习题

⾼中物理速度选择器和回旋加速器解题技巧讲解及练习题⾼中物理速度选择器和回旋加速器解题技巧讲解及练习题⼀、速度选择器和回旋加速器1.如图,空间存在匀强电场和匀强磁场,电场⽅向为y 轴正⽅向,磁场⽅向垂直于xy 平⾯(纸⾯)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的⼀样。
⼀带正电的粒⼦质量为m 、电荷量为q 从P (x =0,y =h )点以⼀定的速度平⾏于x 轴正向⼊射。
这时若只有磁场,粒⼦将做半径为R 0的圆周运动;若同时存在电场和磁场,粒⼦恰好做直线运动.求:(1)若只有磁场,粒⼦做圆周运动的半径R 0⼤⼩;(2)若同时存在电场和磁场,粒⼦的速度0v ⼤⼩;(3)现在,只加电场,当粒⼦从P 点运动到x =R 0平⾯(图中虚线所⽰)时,⽴即撤除电场同时加上磁场,粒⼦继续运动,其轨迹与x 轴交于M 点。
(不计重⼒)。
粒⼦到达x =R 0平⾯时速度v ⼤⼩以及粒⼦到x 轴的距离;(4)M 点的横坐标x M 。
【答案】(1)0mv qB (2)E B (302v ,02R h +(4)22000724M x R R R h h =++-【解析】【详解】(1)若只有磁场,粒⼦做圆周运动有:200qB m R =v v解得粒⼦做圆周运动的半径00m R qBν=(2)若同时存在电场和磁场,粒⼦恰好做直线运动,则有:0qE qB =v 解得粒⼦的速度0E v B=(3)只有电场时,粒⼦做类平抛,有:00y qE ma R v a t v t=== 解得:0y v v =所以粒⼦速度⼤⼩为:22002y v v v v =+=粒⼦与x 轴的距离为:20122R H h at h =+=+ (4)撤电场加上磁场后,有:2v qBv m R=解得:02R R = 粒⼦运动轨迹如图所⽰:圆⼼C 位于与速度v ⽅向垂直的直线上,该直线与x 轴和y 轴的夹⾓均为4π,由⼏何关系得C 点坐标为:02C x R =,02C R y H R h =-=-过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==2C R CD y h ==-解得:22220074DM CM CD R R h h =-=+-M 点横坐标为:22000724M x R R R h h =+-2.如图所⽰的装置,左半部为速度选择器,右半部为匀强的偏转磁场.⼀束同位素离⼦(质量为m ,电荷量为+q )流从狭缝S 1射⼊速度选择器,速度⼤⼩为v 0的离⼦能够沿直线通过速度选择器并从狭缝S 2射出,⽴即沿⽔平⽅向进⼊偏转磁场,最后打在照相底⽚D 上的A 点处.已知A 点与狭缝S 23L ,照相底⽚D 与狭缝S 1、S 2的连线平⾏且距离为L ,忽略重⼒的影响.则(1)设速度选择器内部存在的匀强电场场强⼤⼩为E 0,匀强磁场磁感应强度⼤⼩为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的⼤⼩和⽅向;(3)若将右半部的偏转磁场换成⽅向竖直向下的匀强电场,要求同位素离⼦仍然打到A 点处,求离⼦分别在磁场中和在电场中从狭缝S 2运动到A 点处所⽤时间之⽐t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场⽅向垂直纸⾯向外(3)1223=∶t t π【解析】【详解】(1)能从速度选择器射出的离⼦满⾜qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离⼦进⼊匀强偏转磁场后做匀速圆周运动,由⼏何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场⽅向垂直纸⾯向外(3)磁场中,离⼦运动周期2RT v π=运动时间101263L t T v π==电场中,离⼦运动时间203=L tv 则磁场中和在电场中时间之⽐1223=∶t t π3.如图所⽰,两平⾏⾦属板⽔平放置,间距为d ,两极板接在电压可调的电源上。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析

高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m vB qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析

高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析

高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qE qvB =解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
高考物理高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理高考物理速度选择器和回旋加速器解题技巧讲解及练习题一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin =2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
高考物理速度选择器和回旋加速器解题技巧分析及练习题

高考物理速度选择器和回旋加速器解题技巧分析及练习题一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121mv B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v ≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:20mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r='解得:20212v v += 故010212122v v v v ≤≤=3.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .【答案】(1)U=Bv 0d ;(2)m qBθ;(3)R=0tan2mv qBθ【解析】 【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv 0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv 0q=m 20v r同时有T=2rv π 粒子在圆形磁场区域中运动的时间t=2θπT 解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan 2mv qBθ4.PQ 和 MN 分别是完全正对的金属板,接入电动势为E 的电源,如图所示,板间电场可看作匀强电场,MN 之间距离为d ,其间存在着磁感应强度为B ,方向垂直纸面向里的匀强磁场。
高中物理速度选择器和回旋加速器技巧(很有用)及练习题

高中物理速度选择器和回旋加速器技巧(很有用)及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析

高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 3L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M 点飞出磁场,由几何关系:AM 222L R ⎛⎫- ⎪⎝⎭=32L 所以粒子离开的位置在AB 连线上距离A 点32L 处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan 12LL α==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan 3AMOAβ== 解得:60β︒= 所以偏转角之比:34αβ=。
2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理速度选择器和回旋加速器解题技巧讲解及练习题一、速度选择器和回旋加速器1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。
(不计重力)。
粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。
【答案】(1)0mv qB (2)E B (302v ,02R h +(4)22000724M x R R R h h =++-【解析】 【详解】(1)若只有磁场,粒子做圆周运动有:200qB m R =v v解得粒子做圆周运动的半径00m R qBν=(2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B=(3)只有电场时,粒子做类平抛,有:00y qE ma R v a t v t=== 解得:0y v v =所以粒子速度大小为:22002y v v v v =+=粒子与x 轴的距离为:20122R H h at h =+=+ (4)撤电场加上磁场后,有:2v qBv m R=解得:02R R = 粒子运动轨迹如图所示:圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,由几何关系得C 点坐标为:02C x R =,02C R y H R h =-=-过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==2C R CD y h ==-解得:22220074DM CM CD R R h h =-=+-M 点横坐标为:22000724M x R R R h h =+-2.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 23L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1223=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=L tv 则磁场中和在电场中时间之比1223=∶t t π3.如图所示,两平行金属板水平放置,间距为d ,两极板接在电压可调的电源上。
两板之间存在着方向垂直纸面向里的匀强磁场,磁感应强度的大小为B 。
金属板右侧有一边界宽度为d 的无限长匀强磁场区域,磁感应强度的大小为B 、方向垂直纸面向里,磁场边界与水平方向的夹角为60°。
平行金属板中间有一粒子发射源,可以沿水平方向发射出电性不同的两种带电粒子,改变电源电压,当电源电压为U 时,粒子恰好能沿直线飞出平行金属板,粒子离开平行金属板后进入有界磁场后分成两束,经磁场偏转后恰好同时从两边界离开磁场,而且从磁场右边界离开的粒子的运动方向恰好与磁场边界垂直,粒子之间的相互作用不计,粒子的重力不计,试求: (1)带电粒子从发射源发出时的速度; (2)两种粒子的比荷11q m 和22qm分别是多少; (3)带正电粒子在磁场中做圆周运动的轨道半径。
【答案】(1)U dB (2)222v d B 222Ud B (3)2d 【解析】 【详解】(1)根据题意,带电粒子在平行金属板间做直线运动时,所受电场力与洛伦兹力大小相等,由平衡条件可得qUd =qvB 解得:v =U dB(2)根据题意可知,带正电粒子进入磁场后沿逆时针方向运动,带负电粒子进入磁场后沿顺时针方向运动,作出粒子在磁场中的运动轨迹如图所示,带负电粒子在刚进入磁场时速度沿水平方向,离开磁场时速度方向垂直磁场边界,根据图中几何关系可知,带负电粒子在磁场中做圆周运动的偏转角为θ1=30°=6π 带负电粒子在磁场中做圆周运动的轨道半径为:r 1=sin 30d︒=2d 带负电粒子在磁场中运动时洛伦兹力提供向心力,有:q 1vB =211m v r联立解得:11q m =222v d B 根据带正电粒子的运动轨迹及几何关系可知,带正电粒子在磁场中的偏转角为:θ2=120°=23π根据带电粒子在磁场中做圆周运动的周期公式:T =2mqBπ 可得带负电粒子在磁场中运动的时间为:t 1=111m q Bθ带正电粒子在磁场中运动的时间为:t 2=222m q Bθ 根据题意可知:t 1=t 2联立以上各式,可得22q m =114q m =222U d B(3)带正电粒子在磁场中做圆周运动的轨道半径为:r 2=22m vq B解得:r 2=2d4.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON的连线与+x方向的夹角均为θ=60°。
现让一个α粒子从P点沿+x方向以初速度v0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。
(1)求匀强磁场的磁感应强度的大小和方向;(2)若只是把匀强电场撤去,α粒子仍从P点以同样的速度射入,从M点离开圆形区域,求α粒子的比荷qm;(3)若把匀强磁场撤去,α粒子的比荷qm不变,α粒子仍从P点沿+x方向射入,从N点离开圆形区域,求α粒子在P点的速度大小。
【答案】(1)Ev,方向垂直纸面向里(2)3BR(3)3v0【解析】【详解】(1)由题可知电场力与洛伦兹力平衡,即qE=Bqv0解得B=Ev由左手定则可知磁感应强度的方向垂直纸面向里。
(2)粒子在磁场中的运动轨迹如图所示,设带电粒子在磁场中的轨迹半径为r,根据洛伦兹力充当向心力得Bqv0=m2vr由几何关系可知r3,联立得qm3BR(3)粒子从P 到N 做类平抛运动,根据几何关系可得x =32R =vt y=3R =12×qE m t 2又qE =Bqv 0联立解得v =3203Bqv R m=32v 05.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?【答案】(1)v =00U B L (2)01102B LB E U = 【解析】 【详解】(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ① E 0 =U L②解得:v =0U B L③ (2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨ tan30º=ad xS y+ ⑩ y v at = ⑾tan30º =yvv ⑿ 得:E 1=232admv qS ⒀ 所以:01102B L B E U = ⒁6.如图中左边有一对平行金属板,两板相距为d ,电压为U ,两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里。
图中右边有一半径为R 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。
一正离子沿平行于金属板面、从A 点垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径CD 方向射入磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏向角为θ=90°,不计重力。
求:(1)离子速度v 的大小; (2)离子的比荷q/m 。
【答案】0Uv B d = ;0q U m BB Rd=【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动:00B qv qE =0U E d =得:0Uv B d=(2)在圆形磁场区域,离子做匀速圆周运动,由牛顿第二定律得:2v Bqv m r=由几何关系得:r=R离子的比荷为:0q U m BB Rd=7.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U =2×104V ,静止质子经电场加速后,进入D 形盒,其最大轨道半径R =1m ,磁场的磁感应强度B =0.5T ,质子的质量为1.67×10-27kg ,电量为1.6×10-19C ,问: (1)质子最初进入D 形盒的动能多大? (2)质子经回旋加速器最后得到的动能多大? (3)交流电源的频率是多少?【答案】(1)153.210J -⨯; (2)121.910J -⨯; (3)67.610Hz ⨯. 【解析】 【分析】 【详解】(1)粒子在第一次进入电场中被加速,则质子最初进入D 形盒的动能411195210 1.610J 3.210J k E Uq -==⨯=⨯⨯⨯-(2)根据2v qvB m R=得粒子出D 形盒时的速度为m qBRv m=则粒子出D 形盒时的动能为22219222212271 1.610051J 1.910J (22211).670kmm q B R E mv m ---⨯⨯⨯====⨯⨯⨯. (3) 粒子在磁场中运行周期为2mT qBπ=因一直处于加速状态,则粒子在磁场中运动的周期与交流电源的周期相同,即为2mT qBπ=那么交变电源的频率为196271.6100.5Hz 7.610Hz 22 3.14 1.6710qB f m π--⨯⨯===⨯⨯⨯⨯8.在高能物理研究中,粒子加速器起着重要作用,而早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。