北师大版八年级下期末数学试卷含答案解析 (6)

合集下载

[北师大版]八年级下册数学《期末测试题》含答案解析

[北师大版]八年级下册数学《期末测试题》含答案解析

2019-2020学年度第二学期期末测试八年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题(本部分共12小题,每小题3分,满分36分,每小题给出四个选项,其中只有一项是正确的)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.不等式215x -≤的解集在数轴上表示为( ) A.B.C.D.3.下列从左到右的变形,是分解因式的是( ) A. 2242(2)a a a a +=+ B. 22(1)y x xy x x-=-C. 2(3)(3)9a a a +-=-D. 25(2)(3)1x x x x +-=-++4.一个多边形的内角和与外角和相等,则这个多边形的边数为( ) A. 8 B. 6C. 5D. 45.若分式2ab a b +中,a b 都扩大到原来的3倍,则分式2aba b+的值是( ) A. 扩大到原来3倍 B. 缩小3倍 C. 是原来的13D. 不变6.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且BD =2CD ,BC =6cm ,则点D 到AB 距离为( )A. 4cmB. 3cmC. 2cmD. 1cm7.如图,将一个含有45o 角的直角三角板的直角顶点放在一张宽为2cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30o 角,则三角板最长的长是( )A. 2cmB. 4cmC. 22cm D. 42cm8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A. 1个B. 2个C. 3个D. 4个9.如图,在△ABC 中,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若∠BAD =45°,则∠B 的度数为( )A. 75°B. 65°C. 55°D. 45°10.下列语句:①每一个外角都等于60o 的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为( ) A. 1B. 2C. 3D. 411.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )A 13310=+B. 25916=+C. 491831=+D. 642836=+12.如图,等边△ABC 边长为6,点O 是三边垂直平分线的交点,∠FOG =120°,∠FOG 的两边OF ,OG 分别交AB ,BC 与点D ,E ,∠FOG 绕点O 顺时针旋转时,下列四个结论正确的是( )①OD =OE ;②ODE BDE S S ∆∆=;③2738ODBES =;④△BDE 的周长最小值为9, A. 1个B. 2个C. 3个D. 4个二、填空题(本题共4小题,每小题3分,满分12分)13.分解因式:255x -=__________.14.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.15.若分式方程2322x mx x+=--有增根,则m 等于__________. 16.在△ABC 中,AB =10,CA =8,BC =6,∠BAC 的平分线与∠BCA 的平分线交于点I ,且DI ∥BC 交AB 于点D ,则DI 的长为____.三、解答题:17.解不等式组:22112x x x x ≤+⎧⎪⎨-<+⎪⎩,并把不等式组的解集在数轴上表示出来.18.解分式方程:2303(3)x x x x --=++ 19.先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥正整数解.20.如图,平行四边形ABCD 的边OA 在x 轴上,将平行四边形沿对角线AC 对折,AO 的对应线段为AD ,且点D ,C ,O 在同一条直线上,AD 与BC 交于点E .(1)求证:△ABC ≌△CDA .(2)若直线AB 的函数表达式为6y x =-,求三角线ACE 的面积.21.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料. (1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?22.如图,在平面直角坐标系中,网格图由边长为1的小正方形所构成,Rt △ABC 的顶点分别是A (-1,3),B (-3,-1),C (-3,3).(1)请在图1中作出△ABC 关于点(-1,0)成中心对称△'''A B C ,并分别写出A ,C 对应点的坐标'A ;'C(2)设线段AB 所在直线的函数表达式为y kx b =+,试写出不等式2kx b +>的解集是 ; (3)点M 和点N 分别是直线AB 和y 轴上的动点,若以'A ,'C ,M ,N 为顶点的四边形是平行四边形,求满足条件的M点坐标.23.如图1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C对应点分别是D、E.AC与BD相交于点O.(1)将射线BD绕B点顺时针旋转,且与DC,DE分别相交于F,G,CH∥BG交DE于H,当DF=CF时,求DG的长;(2)如图2,将直线BD绕点O逆时针旋转,与线段AD,BC分别相交于点Q,P.设OQ=x,四边形ABPQ 的周长为y,求y与x之间的函数关系式,并求y的最小值.(3)在(2)中PQ的旋转过程中,△AOQ是否构成等腰三角形?若能构成等腰三角形,求出此时PQ的长?若不能,请说明理由.答案与解析一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.x-≤的解集在数轴上表示为()2.不等式215A. B. C. D.【答案】A【解析】【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解不等式得:x⩽3,所以在数轴上表示为故选A.【点睛】本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.3.下列从左到右的变形,是分解因式的是( ) A. 2242(2)a a a a +=+ B. 22(1)y x xy x x-=-C. 2(3)(3)9a a a +-=-D. 25(2)(3)1x x x x +-=-++【答案】A 【解析】 【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解. 【详解】2242(2)a a a a +=+是把一个多项式化为几个整式的积的形式,所以A 正确;22(1)yx xy x x-=-中含有分式,所以B 错误;2(3)(3)9a a a +-=-不是把一个多项式化为几个整式的积的形式,所以C 错误; 25(2)(3)1x x x x +-=-++不是把一个多项式化为几个整式的积的形式,所以D 错误.【点睛】本题考查分解因式的定义,解题的关键是掌握分解因式的定义.4.一个多边形的内角和与外角和相等,则这个多边形的边数为( )A. 8B. 6C. 5D. 4【答案】D 【解析】 【分析】利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n ,根据题意 (n-2)•180°=360°, 解得n=4.故选:D .【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.若分式2ab a b +中,a b 都扩大到原来的3倍,则分式2aba b+的值是( ) A. 扩大到原来3倍 B. 缩小3倍 C. 是原来的13D. 不变【答案】A 【解析】 【分析】把分式中的分子,分母中的 ,a b 都同时变成原来的3倍,就是用 3a, 3b 分别代替式子中的a , b,看得到的式子与原式子的关系. 【详解】将分式2ab a b+中,a b 都扩大到原来的3倍,得到1833ab a b +=6ab a b +,则6ab a b +是2aba b +的3倍.故答案为A.【点睛】本题考查分式的性质,解题的关键是掌握分式的性质.6.如图,在三角形ABC 中,90C =o ∠,AD 平分BAC ∠交BC 于点D ,且2BD CD =,6BC cm =,则点D 到AB的距离为( )A. 4cmB. 3cmC. 2cmD. 1cm【答案】C 【解析】 【分析】如图,在△ABC 中,∠C=90∘,AD 平分∠BAC 交BC 于点D ,且BD=2CD ,BC=9cm ,则点D 到AB 的距离.【详解】如图,过点D作DE⊥AB于E,∵BD:DC=2:1,BC=6,∴DC=112×6=2,∵AD平分∠BAC,∠C=90∘,∴DE=DC=2.故选:C.【点睛】本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.7.如图,将一个含有45o角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30o角,则三角板最长的长是()A. 2cmB. 4cmC. 22cmD. 42cm【答案】D【解析】【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板, ∴AB=AC=4,∴BC 2=AB 2+AC 2=42+42=32, ∴BC= 故选:D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①②由①得x <m ; 由②得x >2;∵m 的取值范围是4<m <5, ∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个.故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.9.如图,在ABC ∆中,B Ð=55°,30C ∠=o ,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65oB. 75oC. 55oD. 45o【答案】A【解析】【分析】根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【详解】在△ABC中,∵∠B=55°,∠C=30°,∴∠BAC=180°−∠B−∠C=95°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC−∠DAC=65°,故选:A.【点睛】此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.10.下列语句:①每一个外角都等于60o的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确; ④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.11.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )A. 13310=+B. 25916=+C. 491831=+D. 642836=+【答案】D【解析】【分析】 三角形数=1+2+3+……+n ,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.【详解】A.中3和10是三角形数,但是不相邻;B.中16、9均是正方形数,不是三角形数;C.中18不是三角形数;D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D 正确;故选D.【点睛】此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.12.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,120FOG ∠=o ,FOG ∠的两边,OF OG 与,AB BC 分别相交于,D E ,FOG ∠绕O 点顺时针旋转时,下列四个结论正确的个数是( )①OD OE =;②ODE BDE S S ∆∆=;③433ODBE S =四边形BDE ∆周长最小值是9.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用SBODV =SCOEV得到四边形ODBE的面积=13S ABCV,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S ODEV=3OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,接下来由△BDE的周长=BC+DE=4+DE=4+3OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】连接OB,OC,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB. OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD 和△COE 中,∠BOD=∠COE ,BO=CO ,∠OBD=∠OCE ,∴△BOD ≌△COE ,∴BD=CE ,OD=OE ,所以①正确;∴S BOD V =S COE V ,∴四边形ODBE 的面积=S OBC V =13 S ABC V =13×42 ,所以③正确; 作OH ⊥DE ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=12OE ,OE ,∴OE ,∴S △ODE=12 ·12· OE 2, 即S ODE V 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S ODE V ≠S BDE V ,所以②错误;∵BD=CE ,∴△BDE 的周长OE ,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时, ∴△BDE 周长的最小值=4+2=6,所以④错误.故选:B. 【点睛】此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.二、填空题13.分解因式:255x -=__________.【答案】5(1)(1)x x -+【解析】【分析】先提出公因式5,再直接利用平方差公式分解因式.平方差公式:a 2 -b 2=(a+b )(a-b ).【详解】255x -=5()21x - =5(1)(1)x x -+故答案为:5(1)(1)x x -+.【点睛】此题考查分解因式,解题关键在于先提出公因式.14.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.【答案】(5,4)【解析】【详解】由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4). 故答案为:(5,4).15.已知关于x 的方程2322x m x x+=--会产生增根,则m =__________. 【答案】4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.【详解】方程两边都乘(x−2),得2x−m=3(x−2),∵原方程有增根,∴最简公分母x−2=0,即增根为x=2,把x=2代入整式方程,得m=4.故答案为:4.【点睛】此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.16.如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN 交AB于点M,交AC于点N,则△AMN的周长为____.【答案】18【解析】【分析】根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.【详解】∵∠ABC和∠ACB的角平分线交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵BC∥MN,∴∠BOM=∠CBO,∠CON=∠BCO,∴∠BOM=∠ABO,∠CON=∠ACO,∴OM=BM,ON=CN,∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.故答案为:18.【点睛】此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.三、解答题17.解不等式组:()-324 211 52x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.【答案】−7<x⩽1,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x−3(x−2)⩾4,得:x⩽1,解不等式52112x x-+<,得:x>−7,则不等式组的解集为−7<x⩽1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.18.解分式方程:233(3)xx x x--=++【答案】原方程无解.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:2(3)0x x--=30x+=3x=-经检验3x=-是原方程的增根∴原方程无解【点睛】此题考查解分式方程,解题关键在于先去分母.19.先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥的正整数解. 【答案】1.【解析】【分析】将原式被除式括号中两项通分并利用同分母分式的减法法则计算,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,再由关于x 的不等式求出解集得到x 的范围,在范围中找出正整数解得到x 的值,将x 的值代入化简后的式子中计算,即可得到原式的值.【详解】解:原式=()2211()111x x x x x ---÷--- =()22112x x x x --⨯-- 12x =- 30x -≤的正整数解为1,2,3x =但1,2x x ≠≠所以3x = ∴原式的值112x =- 【点睛】此题考查一元一次不等式的整数解,分式的化简求值,解题关键在于掌握运算法则.20.如图,平行四边形ABCD 的边OA 在x 轴上,将平行四边形沿对角线AC 对折,AO 的对应线段为AD ,且点D ,C ,O 在同一条直线上,AD 与BC 交于点E .(1)求证:△ABC ≌△CDA .(2)若直线AB 的函数表达式为6y x =-,求三角线ACE 的面积.【答案】(1)证明见详解;(2)92 【解析】【分析】(1)利用平行四边形的性质及折叠的性质,可得出CD=AB ,∠DCA=∠BAC ,结合AC=CA 可证出△ABC ≌△CDA (SAS );(2)由点D ,C ,O 在同一直线上可得出∠DCA=∠OCA=90°,利用一次函数图象上点的坐标特征可得出点A 的坐标及OA 的长度,由OC ∥AB 可得出直线OC 的解析式为y=x ,进而可得出∠COA=45°,结合∠OCA=90°可得出△AOC 为等腰直角三角形,利用等腰直角三角形的性质可得出OC 、AC 的长,结合(1)的结论可得出四边形ABDC 为正方形,再利用正方形的面积公式结合S △ACE =14S 正方形ABDC 可求出△ACE 的面积.【详解】(1)证明:∵四边形ABCO 为平行四边形,∴AB=CO ,AB ∥OC ,∴∠BAC=∠OCA .由折叠可知:CD=CO ,∠DCA=∠OCA ,∴CD=AB ,∠DCA=∠BAC .在△ABC 和△CDA 中, AB CD BAC DCA AC CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDA (SAS ).(2)解:∵∠DCA=∠OCA ,点D ,C ,O 同一直线上,∴∠DCA=∠OCA=90°.当y=0时,x-6=0,解得:x=6,∴点A 的坐标为(6,0),OA=6.∵OC ∥AB ,∴直线OC 的解析式为y=x ,∴∠COA=45°,∴△AOC 为等腰直角三角形,∴AC=OC=32∵AB ∥CD ,AB=CD=AC ,∠DCA=90°,∴四边形ABDC 为正方形,2119442ACE ABCD S S AC ∆==⋅=正方形 【点睛】本题考查了平行四边形的性质、折叠的性质、全等三角形的判定、等腰直角三角形、一次函数图象上点的坐标特征以及正方形的面积,解题的关键是:(1)利用全等三角形的判定定理SAS 证出△ABC ≌△CDA ;(2)利用一次函数图象上点的坐标特征及等腰直角三角形的性质,求出正方形边长AC 的长.21.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?【答案】(1)甲框每个2.4米,乙框每个2米;(2)最多可购买甲种边框100个.【解析】【分析】(1)设每个乙种边框所用材料x米,则制作甲盒用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)设生产甲边框y个,则乙边框生产640 2.42y-个,再根据“要求制作乙种边框的数量不少于甲种边框数量的2倍”求出y的取值范围,即可解答.【详解】解(1)设每个乙种边框所用材料x米则121211.2x x-= 2x=经检验:2x=是原方程的解,1.2x=2.4, 答:甲框每个2.4米,乙框每个2米.(2)设生产甲边框y个,则乙边框生产640 2.42y-个,则640 2.422yy-≥100y≤所以最多可购买甲种边框100个.【点睛】此题考查分式方程的应用,一元一次不等式的应用,解题关键在于列出方程.22.由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)请你判断△AA1A2与△CC1C2的相似比;若不相似,请直接写出△AA1A2的面积.【答案】(1)见解析;(2)见解析;(3)4.【解析】【分析】(1)利用关于y 轴对称点的性质得出对应点位置求出即可;(2)利用关于原点对称点的性质得出对应点坐标进而求出即可;(3)利用相似三角形的判定方法得出即可,再利用三角形面积求法得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)∵112112CC C C AA A A , ∴△AA 1A 2与△CC 1C 2不相似,S 12AA A △ =12×2×4=4. 【点睛】此题考查作图-旋转变换,作图-轴对称变换,相似三角形的判定,解题关键在于掌握作图法则.23.如图1,在△ABC 中,AB=BC=5,AC=6,△ECD 是△ABC 沿BC 方向平移得到的,连接AE 、BE ,且AC 和BE 相交于点O.(1)求证:四边形ABCE 是菱形;(2)如图2,P 是线段BC 上一动点(不与B. C 重合),连接PO 并延长交线段AE 于点Q ,过Q 作QR ⊥BD 交BD 于R.①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P、Q、R为顶点的三角形与以点B. C. O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.【答案】(1)见解析;(2)①24,②75;【解析】【分析】(1)利用平移的性质以及菱形的判定得出即可;(2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.【详解】(1)证明:∵△ABC沿BC方向平移得到△ECD,∴EC=AB,AE=BC,∵AB=BC,∴EC=AB=BC=AE,∴四边形ABCE是菱形;(2)①四边形PQED的面积是定值,理由如下:过E作EF⊥BD交BD于F,则∠EFB=90°,∵四边形ABCE是菱形,∴AE∥BC,OB=OE,OA=OC,OC⊥OB,∵AC=6,∴OC=3,∵BC=5,∴OB=4,sin ∠OBC=3=5OC BC , ∴BE=8, ∴EF=BE ⋅sin ∠OBC=8×324=55, ∵AE ∥BC ,∴∠AEO=∠CBO ,四边形PQED 是梯形,在△QOE 和△POB 中AEO CBO OE OBQOE POB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△QOE ≌△POB ,∴QE=BP ,∴S PQED 梯形 =12 (QE+PD)×EF=12 (BP+DP)×EF=12×BD×EF=12×2BC×EF=BC×EF=5×245 =24; ②△PQR 与△CBO 可能相似,∵∠PRQ=∠COB=90°,∠QPR>∠CBO ,∴当∠QPR=∠BCO 时,△PQR ∽△CBO ,此时有OP=OC=3.过O 作OG ⊥BC 交BC 于G.∵∠OCB=∠OCB ,∠OGC=∠BOC ,∴△OGC ∽△BOC ,∴CG:CO=CO:BC ,即CG:3=3:5,∴CG=95, ∴BP=BC−PC=BC−2CG=5−2×95=75 . 【点睛】此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。

北师大版八年级下期末数学试题6套(含答案)

北师大版八年级下期末数学试题6套(含答案)

CBEDA CB E ACF B北师大版八下学期期末考试题1一、选择题(5³3=15分)1、不等到式032≥-x 的解集是( ) A 、23≥x B 、x >23 C 、32<x D 、32<x 2、如图,线段AB:BC=1:2,那么AC:BC 等于( )A 、1:3B 、2:3C 、3:1D 、3:2 3、如图,ΔABC 中,DE ∥BC,如果AD=1,DB=2,那么BCDE的值为( ) A 、32 B 、41 C 、31 D 、214、若229y mxy x ++是一个完全平方式,则=m ( )A、6 B、12 C、6± D、12±5、调查某班级的 的对数学老师的喜欢程度,下列最具有代表性的样本是( ) A 、调查单数学号的学生 B 、调查所有的班级干部 C 、调查全体女生 D 、调查数学兴趣小组的学生 二、填空题(8³3=24分)6、对于分式392+-x x ,当x ________时,分式有意义, 当x ________ 时,分式的值为0.7、不等式722≤-x 的正整数解分别是_________.8、已知53=y x ,则yyx -2=______.9、如图,在ΔABC 中,EF ∥BC,AE =2BE,则ΔAEF 与梯形BCFE 的面积比_______. 10、分解因式:=-+-)(4)(22x y n y x m ___________________________.11、下列调查中,____适宜使用抽样调查方式, _____ 适宜使用普查方式.(只填相应的序号) ①张伯想了解他承包的鱼塘中的鱼生长情况;②了解全国患非典性肺炎的人数;③评价八年级十班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道. 12、把命题“对顶角相等”改写成:如果_________________________________________,那么_____________________________________________。

北师大版八年级(下)期末数学试卷三套含解析答案

北师大版八年级(下)期末数学试卷三套含解析答案

八年级(下)期末数学试卷三套含解析答案八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1. 如果a b >,下列各式中不正确的是( )A. 33a b ->-B. 22a b ->-C. 22a b >D. 22a b -<- 2. 下列四个图形中,既是轴对称又是中心对称的图形是( )A. 1个B. 2个C. 3个D. 4个 3. 不等式组2251x x >-⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B.C.D.4. 在△ABC 中,∠A、∠B、∠C 所对的边分别是a 、b 、c ,在下列关系中,不属于直角三角形的是( )A. b 2=a 2﹣c 2B. a :b :c=3:4:5C. ∠A ﹣∠B=∠CD. ∠A :∠B :∠C=3:4:55. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 若一个多边形的内角和与外角和总共是900°,则此多边形是( )A. 四边形B. 五边形C. 六边形D. 七边形7. 如图,ABC ∆中,D 、E 分别是BC 、AC 中点,BF 平分ABC ∠,交DE 于点F ,若6BC =,则DF 的长是( )A. 3B. 2C. 52D. 48. 下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是( )A. 48B. 63C. 80D. 999. 如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒, ①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;④四边形ACEB 的面积是16.则以上结论正确的是( )A. ①②③B. ①②④C. ①③④D. ②④10. 如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行.直线:3l y x =-沿x 轴负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A.52 B. 42 C. 32 D. 22二、填空题(共6小题,每小题3分,满分18分)11. 因式分解:()224a b b --=______.12. 已知:如图,平行四边形ABCD 中,BE 平分ABC ∠交AD 于E ,CF 平分BCD ∠交AD 于F ,若3AB =,5BC =,则EF =___.13. 若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 14. 设8的整数部分为a ,小数部分为b ,则2b a b +的值等于________. 15. 如图,正方形ABCD 的边长为8,点E 是BC 上的一点,连接AE 并延长交射线DC 于点F ,将ABE ∆沿直线AE 翻折,点B 落在点N 处,AN 的延长线交DC 于点M ,当2AB CF =时,则NM 的长为__.16. 如图,小明作出了边长为2的第1个正△111A B C ,算出了正△111A B C 的面积.然后分别取△111A B C 的三边中点2A 、2B 、2C ,作出了第2个正△222A B C ,算出了正△222A B C 的面积;用同样的方法,作出了第3个正△333A B C ,算出了正△333A B C 的面积⋯⋯,由此可得,第2个正△222A B C 的面积是__,第n 个正△n n n A B C 的面积是__.三、解答题(共9小题,满分72分)17. (1)解不等式634 {121 3x xxx+++>-.(2)解方程2112339x xx x x+-=+--.18. 先化简,再求值:2224111?[(1)()]442xx x x+--÷--,其中3x=-.19. 如图,ABC∆为等边三角形,AE CD=,AD、BE相交于点P,BQ AD⊥于点Q,3PQ=,1PE=.(1)求证:AD BE=;(2)求AD的长.20. 如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;(2)再把△A1B1C1绕点C1顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.21. 如图,直线1l 的解析式为2y x =-+,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点C 的坐标及直线2l 的解析式;(2)求△ABC 的面积.22. 如图,在正方ABCD 中,E 是AB 边上任一点,BG ⊥CE ,垂足为O ,交AC 于点F ,交AD 于点G . (1)证明:BE =AG ;(2)E 位于什么位置时,∠AEF =∠CEB ?说明理由.23. 小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店对甲种服装以每件优惠a (0<a <20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?24. 阅读下列材料解决问题两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.(1)下列说法错误的是A.123和51互为调和数”B.345和513互为“调和数C.2018和8120互为“调和数”D.两位数xy和yx互为“调和数”(2)若A、B是两个不等的两位数,A=xy,B=mn,A和B互为“调和数”,且A与B之和是B与A 之差的3倍,求满足条件的两位数A.25. 已知ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.()1如图1,求证:AFB≌ADC;()2请判断图1中四边形BCEF的形状,并说明理由;()3若D点在BC边的延长线上,如图2,其它条件不变,请问()2中结论还成立吗?如果成立,请说明理由.北师大版八年级数学下册期末数学试题一、选择题(共10小题,每小题3分,满分30分)1. 如果a b >,下列各式中不正确的是( )A. 33a b ->-B. 22a b ->-C. 22a b >D. 22a b -<-【答案】B【解析】【分析】根据不等式两边加上(或减去)同一个数,不等号方向不变对A 进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B 、D 进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C 进行判断.【详解】A 、a b >,则33a b ->-,所以A 选项的结论正确; B 、a b >,则1122a b -<-,所以B 选项的结论错误; C 、a b >,则22a b >,所以C 选项的结论正确;D 、a b >,则22a b -<-,所以D 选项的结论正确.故选B .【点睛】本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变. 2. 下列四个图形中,既是轴对称又是中心对称的图形是( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】 根据轴对称图形与中心对称图形的概念进行判断即可.【详解】既是轴对称又是中心对称的图形是第一个和第三个;是轴对称不是中心对称的图形是第二个和第四个;故选B .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3. 不等式组2251xx>-⎧⎨-≤⎩的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】【分析】先求出不等式②的解集,然后根据:同大取大,同小取小,大小小大取中间,大大小小无解确定出不等式组的解集即可.【详解】2251xx>-⎧⎨-≤⎩①②,解②得,x≤3,∴不等式组的解集是-2<x≤3,在数轴上表示为:故选C. 【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.4. 在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,在下列关系中,不属于直角三角形的是()A. b2=a2﹣c2B. a:b:c=3:4:5C. ∠A﹣∠B=∠CD. ∠A:∠B:∠C=3:4:5【答案】D【解析】【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,三角形内角和为180°进行分析即可.【详解】A选项:∵b2=a2-c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;B选项:∵32+42=52,∴是直角三角形,故此选项不合题意;C选项:∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D选项:∠A:∠B:∠C=3:4:5,∴∠C=180°×512=75°,∴不是直角三角形,故此选项符合题意;故选D.【点睛】主要考查了勾股定理逆定理,以及三角形内角和定理,关键是掌握如果三角形的三边长a,b,c 满足a2+b2=c2,那么这个三角形就是直角三角形.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是()A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2【答案】A【解析】试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE ≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE ≌△CDF,所以C正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE ≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 若一个多边形的内角和与外角和总共是900°,则此多边形是( )A. 四边形B. 五边形C. 六边形D. 七边形 【答案】B【解析】【分析】本题需先根据已知条件,再根据多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数【详解】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选B .【点睛】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.7. 如图,ABC ∆中,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若6BC =,则DF 的长是( )A. 3B. 2C. 52D. 4【答案】A【解析】【分析】 利用中位线定理,得到DE ∥AB ,根据平行线的性质,可得∠EDC=∠ABC ,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB ,进而求出DF 的长.【详解】在ABC ∆中,D 、E 分别是BC 、AC 的中点,//DE AB ∴,EDC ABC DFB ABF ∴∠=∠∠=∠,, BF 平分ABC ∠,ABF FBD ∴∠=∠.DBF BFD ∴∠=∠.2EDC FBD ∴∠=∠.在BDF ∆中,EDC FBD BFD ∠=∠+∠,DBF DFB ∴∠=∠, 116322FD BD BC ∴===⨯=. 故选A .【点睛】本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8. 下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是( )A. 48B. 63C. 80D. 99【答案】C【解析】【分析】 解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.9. 如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒, ①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;④四边形ACEB 的面积是16.则以上结论正确的是( )A. ①②③B. ①②④C. ①③④D. ②④【答案】A【解析】【分析】 证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,3AB 长可得四边形ACEB 的周长是13△ACB 和△CBE 的面积和可得四边形ACEB 的面积.【详解】①90ACB ∠=︒,DE BC ⊥,90ACD CDE ∴∠=∠=︒,//AC DE ∴,//CE AD ,∴四边形ACED 是平行四边形,故①正确;②D 是BC 的中点,DE BC ⊥,EC EB ∴=,BCE ∴∆是等腰三角形,故②正确;③2AC =,30ADC ∠=︒,4AD ∴=,23CD =, 四边形ACED 是平行四边形, 4CE AD ∴==,CE EB =,4EB ∴=,23DB =,43CB ∴=,22213AB AC BC ∴=+=,∴四边形ACEB 的周长是10213+故③正确;④四边形ACEB 的面积:112434328322⨯⨯+⨯⨯=,故④错误, 故选A .【点睛】此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB 长.10. 如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行.直线:3l y x =-沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A. 52B. 42C. 32D. 22【答案】A【解析】【分析】 根据题意可分析出当t=2时,l 经过点A ,从而求出OA 的长,l 经过点C 时,t=12,从而可求出a ,由a 的值可求出AD 的长,再根据等腰直角三角形的性质可求出BD 的长,即b 的值.【详解】解:连接BD ,如图所示:直线y =x ﹣3中,令y =0,得x =3;令x =0,得y =﹣3,即直线y =x ﹣3与坐标轴围成的△OEF 为等腰直角三角形,∴直线l 与直线BD 平行,即直线l 沿x 轴的负方向平移时,同时经过B ,D 两点,由图2可得,t =2时,直线l 经过点A ,∴AO =3﹣2×1=1, ∴A (1,0),由图2可得,t =12时,直线l 经过点C ,∴当t =1222-+2=7时,直线l 经过B ,D 两点, ∴AD =(7﹣2)×1=5, ∴在等腰Rt △ABD 中,BD =52即当a =7时,b =52故选A .【点睛】一次函数与勾股定理在实际生活中的应用是本题的考点,根据题意求出AD 的长是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11. 因式分解:()224a b b --=______.【答案】()()3a b a b -+【解析】【分析】利用平方差公式进行因式分解.【详解】解:()()()()()224223a b b a b b a b b a b a b --=-+--=+-.故答案是:()()3a b a b -+.【点睛】本题考查因式分解,解题的关键是掌握因式分解的方法.12. 已知:如图,平行四边形ABCD 中,BE 平分ABC ∠交AD 于E ,CF 平分BCD ∠交AD 于F ,若3AB =,5BC =,则EF =___.【答案】1【解析】【分析】先证明AB=AE=3,DC=DF=3,再根据EF=AE+DF-AD 即可计算. 【详解】四边形ABCD 是平行四边形,3AB CD ∴==,5BC AD ==,//AD BC , BE 平分ABC ∠交AD 于E ,CF 平分BCD ∠交AD 于F ,ABF CBE AEB ∴∠=∠=∠,BCF DCF CFD ∠=∠=∠,3AB AE ∴==,3DC DF ==,3351EF AE DF AD ∴=+-=+-=.故答案为1.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.13. 若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 【答案】1a ≥-且4a ≠【解析】分式方程去分母得:2(2x -a )=x -2,去括号移项合并得:3x =2a -2, 解得:223a x -=, ∵分式方程的解为非负数,∴ 2203a -≥且 22203a --≠, 解得:a ≥1 且a ≠4 .14. 8a ,小数部分为b ,则2b a b+的值等于________. 【答案】2【解析】【分析】根据题意先求出a 和b ,然后代入化简求值即可.【详解】解:∵2<8<3, ∴a =2,b =8﹣2,∴(28224242228222b a b ⨯--===-++-.故答案为2﹣2.【点睛】二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a 和b 的值是解题的关键.15. 如图,正方形ABCD 的边长为8,点E 是BC 上的一点,连接AE 并延长交射线DC 于点F ,将ABE ∆沿直线AE 翻折,点B 落在点N 处,AN 的延长线交DC 于点M ,当2AB CF =时,则NM 的长为__.【答案】23【解析】【分析】 根据翻折变换的性质可得AN=AB ,∠BAE=∠NAE ,再根据两直线平行,内错角相等可得∠BAE=∠F ,从而得到∠NAE=∠F ,根据等角对等边可得AM=FM ,设CM=x ,表示出DM 、AM ,然后利用勾股定理列方程求出x 的值,从而得到AM 的值,最后根据NM=AM-AN 计算即可得解.【详解】ABE ∆沿直线AE 翻折,点B 落在点N 处,8AN AB ∴==,BAE NAE ∠=∠,正方形对边//AB CD ,BAE F ∴∠=∠,NAE F ∴∠=∠,AM FM ∴=,设CM x =,28AB CF ==,4CF ∴=,8DM x ∴=-,4AM FM x ==+,在Rt ADM ∆中,由勾股定理得,222AM AD DM =+,即()()222488x x +=+-, 解得243x =, 所以,2244833AM =+=, 所以,228833NM AM AN =-=-=. 故答案为23 【点睛】本题考查了翻折变换的性质,正方形的性质,勾股定理,翻折前后对应线段相等,对应角相等,此类题目,关键在于利用勾股定理列出方程.16. 如图,小明作出了边长为2的第1个正△111A B C ,算出了正△111A B C 的面积.然后分别取△111A B C 的三边中点2A 、2B 、2C ,作出了第2个正△222A B C ,算出了正△222A B C 的面积;用同样的方法,作出了第3个正△333A B C ,算出了正△333A B C 的面积⋯⋯,由此可得,第2个正△222A B C 的面积是__,第n 个正△n n n A B C 的面积是__.【答案】 (1).3, (2). 3 【解析】【分析】 根据等边三角形的性质求出正△A 1B 1C 1的面积,根据三角形中位线定理得到221122112211111,,222A B A B A C AC B C B C ===,根据相似三角形的性质计算即可. 【详解】正△111A B C 的边长2=,∴正△111A B C 的面积132232=⨯⨯=,点2A 、2B 、2C 分别为△111A B C 的三边中点,221112A B A B ∴=,221112A C AC =,221112B C B C =, ∴△222A B C ∽△111A B C ,相似比为12, ∴△222A B C 与△111A B C 的面积比为14, ∴正△222A B C 的面积为34, ⋯则第n 个正△n n n A B C 的面积为134n -,33. 【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.三、解答题(共9小题,满分72分)17. (1)解不等式634{1213x x x x +++>-. (2)解方程2112339x x x x x +-=+--. 【答案】97x =【解析】【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)6341213x x x x ++⎧⎪⎨+>-⎪⎩①②, 由①得:1x ,由②得:4x <,则不等式组的解集为14x <;(2)去分母得:2234312x x x x ----=-, 解得:97x =, 经检验97x =是分式方程的解. 【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18. 先化简,再求值:2224111?[(1)()]442x x x x+--÷--,其中3x =-. 【答案】12x x ++,2. 【解析】【分析】根据分式的乘除法和减法可以化简题目中的式子,然后将x=-3代入化简后的式子即可解答本题. 【详解】2224111?1442x x x x ⎡⎤⎛⎫+⎛⎫--÷-⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎣⎦, ()()224421?2242x x x x x x x ⎛⎫+--=-÷ ⎪+-⎝⎭, ()()()22221?·2242x x x x x x -=-+--, 112x =-+, 212x x +-=+, 12x x +=+, 当3x =-时,原式31232-+==-+ 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19. 如图,ABC ∆为等边三角形,AE CD =,AD 、BE 相交于点P ,BQ AD ⊥于点Q ,3PQ =,1PE =.(1)求证:AD BE =;(2)求AD 的长.【答案】(1)见解析;(2)7.【解析】【分析】(1)根据等边三角形的三条边都相等可得AB=CA ,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE 和△CAD 全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE ,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ ,再根据AD=BE=BP+PE 代入数据进行计算即可得解.【详解】(1)证明:ABC ∆为等边三角形,AB CA BC ∴==,60BAE ACD ∠=∠=︒;在ABE ∆和CAD ∆中,60AB CA BAE ACD AE CD =⎧⎪∠=∠=︒⎨⎪=⎩,()ABE CAD SAS ∴∆≅∆,AD BE ∴=;(2)ABE CAD ∆≅∆,CAD ABE ∴∠=∠,60BPQ ABE BAD BAD CAD BAE ∴∠=∠+∠=∠+∠=∠=︒;BQ AD ⊥,90AQB ∴∠=︒,906030PBQ ∴∠=︒-︒=︒,3PQ =,∴在Rt BPQ ∆中,26BP PQ ==,又1PE =,617AD BE BP PE ∴==+=+=.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ 是解题的关键.20. 如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC 的顶点均在格点上.(不写作法)(1)以原点O 为对称中心,画出△ABC 关于原点O 对称的△A 1B 1C 1,并写出B 1的坐标;(2)再把△A 1B 1C 1绕点C 1 顺时针旋转90°,得到△A 2B 2C 1,请你画出△A 2B 2C 1,并写出B 2的坐标.【答案】(1)B 1的坐标(﹣5,4);(2)B 2的坐标(﹣1,2).【解析】【分析】(1)作出各点关于原点的对称点,再顺次连接,并写出B1的坐标即可;(2)根据图形旋转的性质画出△A2B2C2,并写出B2的坐标即可.【详解】(1)如图,△A 1B 1C 1即为所求,由图可知B 1的坐标(﹣5,4);(2)如图,△A 2B 2C 2即为所求,由图可知B 2的坐标(﹣1,2).【点睛】考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.21. 如图,直线1l 的解析式为2y x =-+,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点C 的坐标及直线2l 的解析式;(2)求△ABC 的面积.【答案】(1)25y x =+;(2)274. 【解析】【分析】 (1)首先利用待定系数法求出C 点坐标,然后再根据D 、C 两点坐标求出直线l 2的解析式;(2)首先根据两个函数解析式计算出A 、B 两点坐标,然后再利用三角形的面积公式计算出△ABC 的面积即可.【详解】(1)∵直线1l : 2y x =-+经过点C (﹣1,m ), ∴m =1+2=3,∴C (﹣1,3),设直线2l 的解析式为 y kx b =+,∵经过点D (0,5),C (﹣1,3),∴53b k b =⎧⎨=-+⎩, 解得:25k b =⎧⎨=⎩∴直线2l 的解析式为25y x =+;(2)当y =0时,2x +5=0, 解得52x =-,则A(52 -,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),∴1527(2)3224ABCS∆=⨯+⨯=.【点睛】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.22. 如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.(1)证明:BE=AG;(2)E位于什么位置时,∠AEF=∠CEB?说明理由.【答案】(1)见解析;(2)当点E位于线段AB中点时,∠AEF=∠CEB ,理由见解析【解析】【分析】(1) 根据正方形的性质利用ASA判定△GAB≌△EBC,根据全等三角形的对应边相等可得到AG=BE;(2) 利用SAS判定△GAF≌△EAF,从而得到∠AGF=∠AEF,由△GAB≌△EBC可得到∠AGF=∠CEB,则∠AEF=∠CEB.【详解】(1)证明:∵四边形ABCD是正方形∴∠ABC=∠BAD=90°,∴∠1+∠3=90°,∵BG⊥CE,∴∠BOC=90°∴∠2+∠3=90°,∴∠1=∠2,在△GAB和△EBC中,∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,∴△GAB≌△EBC (ASA) ,∴AG=BE;(2)解:当点E位于线段AB中点时,∠AEF=∠CEB ,理由如下:若当点E位于线段AB中点时,则AE=BE,由(1)可知,AG=BE,∴AG=AE,∵四边形ABCD是正方形,∴∠GAF=∠EAF=45°,又∵AF=AF,∴△GAF≌△EAF (SAS),∴∠AGF=∠AEF,由(1)知,△GAB≌△EBC,∴∠AGF=∠CEB,CEB.∴∠AEF=∠【点睛】考查了全等三角形的判定,正方形的性质等知识点,利用全等三角形来得出线段相等是这类题的常用方法.23. 小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【答案】(1)75件(2)当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件【解析】【分析】(1)根据题意设购进甲种服装x件,可知购进甲需80x元,则乙为60(100-x)元,再根据二者之和不超过7500元,可列不等式,求解集可得结果;(2)根据要求设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,因此甲的利润为(120-80-a)元,乙的利润为(90-60-a)元,因此可得w=(10-a)x+3000,然后分情况讨论设计方案,①当0<a<10时,由一次函数的性质可判断当x=65时,利润最大;②当a=10时,w=3000,二者一样;③当10<a<20时,根据一次函数的性质可判断,当x=75时,利润最大.【详解】解:(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500解得:x≤75答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75W=(40-a)x+30(100-x)=(10-a)x+3000方案1:当0<a<10时,10-a>0,w随x的增大而增大所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:一元一次不等式,一次函数的应用24. 阅读下列材料解决问题两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.(1)下列说法错误的是A.123和51互为调和数”B.345和513互为“调和数C.2018和8120互为“调和数”D.两位数xy和yx互为“调和数”(2)若A、B是两个不等的两位数,A=xy,B=mn,A和B互为“调和数”,且A与B之和是B与A 之差的3倍,求满足条件的两位数A.【答案】(1)B(2)18【解析】【分析】(1)根据题意,两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,即可作答(2)先用“调和数”,得出x+y=m+n ,再利用A 与B 之和是B 与A 之差的3倍,得出10m+n=20x+2y ,即可得出m =199x y + ,最后利用1≤x≤9,0≤y≤9,计论即可以得出结论 【详解】(1)根据调和数的定义,通过计算各位数之和,易知B 选项错误故答案选B(2)∵A =xy ,B =mn ,A 、B 互为“调和数”∴x+y =m+n ①∵A 与B 之和是B 与A 之差的3倍 ∴3()xy mn mn xy +=- ∴2mn xy =∴10m+n =20x+2y ②由①②得,m=199x y + ∵m 为两位数的十位数字∴1≤m≤9∴1≤199x y +≤9, ∴9≤19x+y≤81,且19x+y 是9的倍数∴19x+y =18或27或36或45或54或63或72或81 则8119y x -=或2719y x -=或3619y x -=或4519y x -=或5419y x -=或6319y x -=或2719y x -=或8119y x -= ∵x ,y 分别为A 的 十位和个位,∴1≤x≤9,0≤y≤9 ∴计算可得,仅当2719y x -=时满足,此时x =1,y =8,故A 为18 故满足A 的值为18【点睛】本题考查了整除的问题,新定义解不等式,分类讨论的数学思想,判断出19x+y=18或27或36或45或54或63或72或81是解决(2)的关键25. 已知ABC 是等边三角形,D 是BC 边上的一个动点(点D 不与B ,C 重合)ADF 是以AD 为边的等边三角形,过点F 作BC 的平行线交射线AC 于点E ,连接BF .()1如图1,求证:AFB ≌ADC ;()2请判断图1中四边形BCEF 的形状,并说明理由;()3若D 点在BC 边的延长线上,如图2,其它条件不变,请问()2中结论还成立吗?如果成立,请说明理由.【答案】(1)见解析;(2) 四边形BCEF 是平行四边形,理由见解析;(3) 成立,理由见解析.【解析】【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB ≌△ADC ;(2)四边形BCEF 是平行四边形,因为△AFB ≌△ADC ,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC ,则可得到FB ∥AC ,又BC ∥EF ,所以四边形BCEF 是平行四边形;(3)易证AF=AD ,AB=AC ,∠FAD=∠BAC=60°,可得∠FAB=∠DAC ,即可证明△AFB ≌△ADC ;根据△AFB ≌△ADC 可得∠ABF=∠ADC ,进而求得∠AFB=∠EAF ,求得BF ∥AE ,又BC ∥EF ,从而证得四边形BCEF 是平行四边形.【详解】()1ABC 和ADF 都是等边三角形,AF AD ∴=,AB AC =,FAD BAC 60∠∠==,又FAB FAD BAD ∠∠∠=-,DAC BAC BAD ∠∠∠=-,FAB DAC ∠∠∴=,在AFB 和ADC 中,AF AD BAF CAD AB AC =⎧⎪∠=∠⎨⎪=⎩,AFB ∴≌()ADC SAS ;()2由①得AFB ≌ADC ,ABF C 60∠∠∴==,又BAC C 60∠∠==,ABF BAC ∠∠∴=,FB//AC ∴,又BC //EF ,∴四边形BCEF 是平行四边形;()3成立,理由如下: ABC 和ADF 都是等边三角形,AF AD ∴=,AB AC =,FAD BAC 60∠∠==,又FAB BAC FAE ∠∠∠=-,DAC FAD FAE ∠∠∠=-,FAB DAC ∠∠∴=,在AFB 和ADC 中,AF AD BAF CAD AB AC =⎧⎪∠=∠⎨⎪=⎩,AFB ∴≌()ADC SAS ;AFB ADC ∠∠∴=,又ADC DAC 60∠∠+=,EAF DAC 60∠∠+=,ADC EAF ∠∠∴=,AFB EAF ∠∠∴=,BF//AE ∴,又BC //EF ,∴四边形BCEF 是平行四边形.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,平行四边形的判定等,熟练掌握相关的性质与定理是解题的关键.北师大版八年级(下)期末数学试题一、选择题(本大题共10小题,每小题3分,共30分)1. 如图所示的四个图案是我国几家国有银行的图标,其中图标属于中心对称的有( )A. 1个B. 2个C. 3个D. 4个 2. 下列从左到右的变形中,是因式分解的是( )A. m 2-9=(x -3)B. m 2-m +1=m(m -1)+1C. m 2+2m =m(m +2)D. (m +1)2=m 2+2m +1 3. 如图,数轴上表示一个不等式的解集是( )A. 2x ≥-B. 2x -≤C. 2x >-D. 2x <- 4. 将点()2,1A -向左平移3个单位长度,在向上平移4个单位长度得到点B ,则点B 的坐标是( )A. ()5,3B. ()5,5-C. ()1,5--D. ()1,3- 5. 若分式||1(2)(1)x x x --+的值为0,则x 等于( ) A. ﹣l B. ﹣1或2C. ﹣1或1D. 1 6. 若一个正n 边形的每个内角为144°,则n 等于( )A. 10B. 8C. 7D. 57. 如图,已知平行四边形ABCD ,P ,R 分别是BC ,CD 边上的点,E ,F 分别是PA ,PR 的中点,若点P 在BC 边上从B 向C 移动,点R 不动,那么下列结论成立的是( ) A. EF BP =B. 线段EF 的长度逐渐变小C. 线段EF 的长度保持不变D. 线段EF 的长度逐渐变大8. 定义新运算“⊕”如下:当a b >时,a b ab b ⊕=+;当a b <时,a b ab b ⊕=-,若()320x ⊕+>,。

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。

北师大版八年级(下)期末数学试卷(含解析)

北师大版八年级(下)期末数学试卷(含解析)

八年级第二学期期末数学试卷一、选择题(共10小题,每小题3分,共30分).1.(3分)使分式有意义的x的取值范围是()A.x≠0B.x≠﹣1C.x≠1D.x≠22.(3分)2019年12月以来,湖北省武汉市发现多起病毒性肺炎病例.世界卫生组织将造成此次疫情的新型冠状病毒命名为“COVID﹣19”这种病毒传播速度快、潜伏期长,其直径约为100nm(1nm=10﹣9m),将100nm 用科学记数法可表示为()A.1×10﹣9m B.1×10﹣7m C.1×109m D.1×1011m3.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:该店主决定本周进货时,增加了一些码的衬衫,影响该店主决策的统计量是()尺码3940414243平均每天销售数量(件)1012201212A.众数B.方差C.平均数D.中位数4.(3分)下列各式正确的是()A.B.C.D.5.(3分)已知点A的坐标为(﹣1,2),点A关于x轴的对称点的坐标为()A.(1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣1,﹣2)6.(3分)在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是()A.B.C.D.7.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB8.(3分)如图,矩形ABCD的长BC=20cm,宽AB=15cm,∠ABC的平分线BE交AD于点E,则AE、ED的长分别为()A.15cm和5cm B.10cm和5cm C.9cm和6cm D.8cm和7cm9.(3分)四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形10.(3分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连结AG,CF,下列结论:①△ABG≌△AFG;②BG=CG;③S△AGE=18;④∠GAE =45°,其中正确的是()A.①②③B.②③④C.③④①D.①②④二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:20200+()﹣1=.12.(3分)已知点(﹣4,y1),(﹣1,y2)在反比例函数y=﹣的图象上,则y1、y2的大小关系是.13.(3分)已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他成绩的平均数及方差如表所示.请你根据上表中的数据选一人参加比赛,最适合的人选是.甲乙平均数(环)9.59.5方差0.0180.03816.(3分)如图,在边长为4的正方形ABCD中,点E为AD的中点,P为对角线BD上的一个动点,则AP+EP 的最小值的是.三、解答题(解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.本大题共8个题,共72分)17.(14分)(1)计算:;(2)先化简,再求值:,其中m=2020;(3)解方程:.18.(8分)如图,已知一次函数y1=﹣x+b的图象交x轴于点A(3,0),与一次函数y2=x+1的图象交于点B.(1)求一次函数y1=﹣x+b的表达式;(2)当x取哪些值时,0<y1<y2?19.(8分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如表:1月2月3月4月5月月份销售额人员甲99875乙109688丙1110559(1)根据上表中的数据,将表补充完整:统计量平均数(万元)众数(万元)中位数(万元)数值人员甲7.68乙88丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.(8分)心理学家研究发现,一般情况下,在一节40分钟的课中,学生的注意力随教师讲课时间的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间y(分)的变化规律如图所示,其中AB、BC分别为线段,CD为双曲线的一部分.(1)写出线段AB和双曲线CD的函数关系式(不要求指出自变量取值范围):线段AB:y1=;双曲线CD:y2=;(2)开始上课后第5分钟时的注意力水平为y1,第30分钟时的注意力水平为y2,则y1、y2的大小关系是;(3)在一节课中,学生大约最长可以连续保持分钟(精确到1分钟),使得注意力维持在32以上.21.(8分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.求用智能分拣设备后每人每小时可分拣的快件量.22.(8分)如图,在平行四边形ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AB=6,∠ABC=60°,求BF的长.23.(6分)阅读下面的解题过程:已知求的值.解:由知x≠0∴即=3∴∴该题的解法叫做“倒数法”,请利用“倒数法”解下面的题目.已知:,求的值.24.(12分)综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE 为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.参考答案一、选择题(每小题给出的四个选项中,只有一个是符合题目要求的,请选出并在答题卡上将该选项涂黑.本大题共10个小题,每小题3分,共30分)1.(3分)使分式有意义的x的取值范围是()A.x≠0B.x≠﹣1C.x≠1D.x≠2解:∵使分式有意义,∴x﹣2≠0,解得:x≠2.故选:D.2.(3分)2019年12月以来,湖北省武汉市发现多起病毒性肺炎病例.世界卫生组织将造成此次疫情的新型冠状病毒命名为“COVID﹣19”这种病毒传播速度快、潜伏期长,其直径约为100nm(1nm=10﹣9m),将100nm 用科学记数法可表示为()A.1×10﹣9m B.1×10﹣7m C.1×109m D.1×1011m解:100×10﹣9m=1×10﹣7m.故选:B.3.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:该店主决定本周进货时,增加了一些码的衬衫,影响该店主决策的统计量是()尺码3940414243平均每天销售数量(件)1012201212A.众数B.方差C.平均数D.中位数解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.4.(3分)下列各式正确的是()A.B.C.D.解:∵b≠0,==,∴选项A不符合题意;∵≠,∴选项B不符合题意;∵≠,∴选项C不符合题意;∵a=0时,=不成立,∴选项D不符合题意.故选:A.5.(3分)已知点A的坐标为(﹣1,2),点A关于x轴的对称点的坐标为()A.(1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣1,﹣2)解:∵点A的坐标为(﹣1,2),∴点A关于x轴的对称点的坐标为(﹣1,﹣2),故选:D.6.(3分)在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是()A.B.C.D.解:在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是,故选:B.7.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB解:∵四边形ABCD是平行四边形,∴OA=OC;故选:C.8.(3分)如图,矩形ABCD的长BC=20cm,宽AB=15cm,∠ABC的平分线BE交AD于点E,则AE、ED的长分别为()A.15cm和5cm B.10cm和5cm C.9cm和6cm D.8cm和7cm解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=20cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∴∠AEB=∠ABE,∴AB=AE=15cm,∴DE=AD﹣AE=5cm,故选:A.9.(3分)四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形【解答】证明:如图所示:∵分别过A、B、C、D作对角线的平行线,∴AC∥MN∥EF,EN∥BD∥MF,∵对角线AC=BD,AC⊥BD,∴∠NAO=∠AOD=∠N=90°,EN=NM=FM=EF,∴四边形EFMN是正方形.故选:A.10.(3分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连结AG,CF,下列结论:①△ABG≌△AFG;②BG=CG;③S△AGE=18;④∠GAE =45°,其中正确的是()A.①②③B.②③④C.③④①D.①②④解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ADC=∠DCB=∠ABC=90°,∵AB=6=CD,CD=3DE,∴DE=2,EC=4,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠DAE=∠FAE,∴AB=AF,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴BG=FG,∠BAG=∠FAG,∵EG2=EC2+CG2,∴(2+BG)2=16+(6﹣BG)2,∴BG=3,∴CG=BC﹣BG=3=BG,故②正确;∵EG=BG+EF=5,∴S△AGE=×GE×AF=×5×6=15,故③错误;∵∠BAG=∠FAG,∠DAE=∠FAE,∴∠GAE=∠FAG+∠FAE=(∠BAF+∠DAF)=×∠BAD=45°,故④正确;故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:20200+()﹣1=4.解:原式=1+3=4,故答案为:4.12.(3分)已知点(﹣4,y1),(﹣1,y2)在反比例函数y=﹣的图象上,则y1、y2的大小关系是y1<y2.解:∵点(﹣4,y1),(﹣1,y2)在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=3,∴y1<y2.故答案为y1<y2.13.(3分)已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是24.解:∵菱形ABCD的对角线AC,BD的长分别为6和8,∴S菱形ABCD=AC•BD=×6×8=24,故答案为:24.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为3.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.(3分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他成绩的平均数及方差如表所示.请你根据上表中的数据选一人参加比赛,最适合的人选是甲.甲乙平均数(环)9.59.5方差0.0180.038解:因为甲乙的平均数相同,而甲的方差比乙的方差小,所以甲的成绩比较稳定,应该选甲参加比赛.故答案为甲.16.(3分)如图,在边长为4的正方形ABCD中,点E为AD的中点,P为对角线BD上的一个动点,则AP+EP 的最小值的是2.解:如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP(SAS),∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,∵四边形ABCD是正方形,∴AD=CD=AB=4,∠ADC=90°,∵E是AD的中点,∴ED=2,由勾股定理得:CE===,故答案为:2.三、解答题(解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.本大题共8个题,共72分)17.(14分)(1)计算:;(2)先化简,再求值:,其中m=2020;(3)解方程:.解:(1)======;(2)===,当m=2020时,原式===;(3)方程两边同乘以(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得,x=1,检验:当x=1时,(x+1)(x﹣1)=0,故原分式方程无解.18.(8分)如图,已知一次函数y1=﹣x+b的图象交x轴于点A(3,0),与一次函数y2=x+1的图象交于点B.(1)求一次函数y1=﹣x+b的表达式;(2)当x取哪些值时,0<y1<y2?解:(1)将点A(3,0)代入y1=﹣x+b,得0=﹣3+b,解得b=3,所以一次函数y1=﹣x+b的表达式为y1=﹣x+3;(2)当﹣x+3=x+1时,解得,即点B 的横坐标为,观察图象可知,当时,0<y1<y2.19.(8分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如表:1月2月3月4月5月月份销售额人员甲99875乙109688丙1110559(1)根据上表中的数据,将表补充完整:平均数(万元)众数(万元)中位数(万元)统计量数值人员甲7.698乙8.288丙859(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.解:(1)由题意可得,甲的众数是9,乙的平均数是:=8.2,丙的中位数是:9,故答案为:9,8.2,9;(2)我赞同乙的说法,理由:由表格可知,乙的平均数最高,可知乙的总体业绩最好,故乙的销售业绩好.20.(8分)心理学家研究发现,一般情况下,在一节40分钟的课中,学生的注意力随教师讲课时间的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间y(分)的变化规律如图所示,其中AB、BC分别为线段,CD为双曲线的一部分.(1)写出线段AB和双曲线CD的函数关系式(不要求指出自变量取值范围):线段AB:y1=2x+20;双曲线CD:y2=;(2)开始上课后第5分钟时的注意力水平为y1,第30分钟时的注意力水平为y2,则y1、y2的大小关系是y1<y2;(3)在一节课中,学生大约最长可以连续保持25分钟(精确到1分钟),使得注意力维持在32以上.解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴AB解析式为:y1=2x+20(0≤x≤10).设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴曲线CD的解析式为:y2=(x≥25);(2)当x1=5时,y1=2×5+20=30,当x2=30时,y2=,∴y1、y2的大小关系是y1<y2;(3)令y1=32,∴32=2x+20,∴x1=6,令y2=32,∴32=,∴x2≈31,∵31﹣6=25,∴学生大约最长可以连续保持25分钟(精确到1分钟),使得注意力维持在32以上.故答案为:2x+20;;y1<y2;25.21.(8分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.求用智能分拣设备后每人每小时可分拣的快件量.解:设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,依题意,得:,解得:x=84,经检验,x=84是原方程的解,且符合题意,∴25×84=2100(件),答:用智能分拣设备后每人每小时可分拣的快件量为2100件.22.(8分)如图,在平行四边形ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AB=6,∠ABC=60°,求BF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点,∴BE=BC,AF=AD,∴BE=AF.∴四边形ABEF是平行四边形.∵BC=2AB,∴AB=BE,∴平行四边形ABEF是菱形.(2)解:由(1)得:四边形ABEF是菱形,∴BF=2OB,AE=2OA,AE⊥BF,∴∠AOB=90°,∵AB=BE,∠ABC=60°,∴△ABE是等边三角形,∴AE=AB=6,∴OA=3,∴OB===3,∴BF=2OB=6.23.(6分)阅读下面的解题过程:已知求的值.解:由知x≠0∴即=3∴∴该题的解法叫做“倒数法”,请利用“倒数法”解下面的题目.已知:,求的值.解:法1:由=,得到=6,即x+=3,∴=x2﹣1+=(x+)2﹣3=9﹣3=6,则原式=;法2:由=,得到=,即x+=3,则原式====.24.(12分)综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE 为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是6.【解答】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.。

北师大版数学八年级下册期末复习(六) 平行四边形

北师大版数学八年级下册期末复习(六) 平行四边形

期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。

北师大八年级下期末数学试卷含答案解析

八年级(下)期末数学试卷(解析版)一、选择题(本题共10小题,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B. C.D.2.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤23.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+24.分式﹣可变形为()A.﹣B.C.﹣D.5.如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣36.如图,△ABC中,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.57.如果一个多边形的每一个内角都是108°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形8.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC9.解关于x的方程+1=(其中m为常数)产生增根,则常数m的值等于()A.﹣2 B.2 C.1 D.﹣110.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A.x<﹣1 B.x>﹣1 C.x>2 D.x<2二、填空题11.因式分解:x2﹣7x=.12.不等式9﹣3x>0的非负整数解的和是.13.当x=时,分式的值等于零.14.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.三、解答下列各题(本题满分54分.15题每小题18分,16题6分,17题6分,18题6分,19题8分,20题10分)15.(18分)(1)因式分解:2a3﹣8a2+8a(2)解不等式组:并将解集在数轴上表示出来.(3)解分式方程:.16.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.17.(6分)先化简,后求值:,其中x=﹣5.18.(6分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.19.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?20.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.附加题一.填空题21.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.22.若不等式组恰有两个整数解,则a的取值范是.23.若关于x的方程+=2的解为正数,则m的取值范围是.24.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,则△AMN的最小周长为.25.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)二.解答题(共8分)26.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?三、(本题共1小题,共10分)27.(10分)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO 和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC 上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)四、(本题共1小题,共12分)28.(12分)如图(1),在Rt△AOB中,∠A=90°,∠AOB=60°,OB=2,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO向终点O运动,运动时间为t秒,同时动点Q从点C出发沿线段CO及直线ON运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)当点P与点Q的速度都是每秒1个单位长度的速度运动时,设△CPQ的面积为S,求S与t的函数关系式;(3)当点P运动到OC上时,在直线OB上有一点D,当PD+BP最小时,在直线OB上有一点E,若以B、P、Q、E为顶点的四边形为平行四边形,设点P、Q的运动路程分别为a、b,求a与b满足的数量关系.-学年四川省成都市金堂县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.2.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤2【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式组解集的方法进行解答即可.【解答】解:由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.【点评】本题考查了在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2【考点】提公因式法与公式法的综合运用.【分析】A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.【解答】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.分式﹣可变形为()A.﹣B.C.﹣D.【考点】分式的基本性质.【分析】根据分式的基本性质,即可解答.【解答】解:,故选:B.【点评】本题考查了分式的基本性质,解决本题的关键是熟记分式的基本性质.5.如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣3【考点】分式有意义的条件.【分析】根据分式有意义的条件可得x+3≠0,再解即可.【解答】解:由题意得:x+3≠0,解得:x≠3,故选:D.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.6.如图,△ABC中,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.5【考点】三角形中位线定理.【分析】根据三角形的中位线的概念可知DE是△ABC的中位线,根据中位线的性质解答即可.【解答】解:∵AD=BD,AE=EC,∴DE=BC=3,故选:B.【点评】本题考查的是三角形的中位线的概念和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7.如果一个多边形的每一个内角都是108°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每一个内角都等于108°,根据内角与相邻的外角互补,因而每个外角是72度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出多边形的边数.【解答】解:180﹣108=72,多边形的边数是:360÷72=5.则这个多边形是五边形.故选:B.【点评】考查了多边形内角与外角,已知多边形的内角求边数,可以根据多边形的内角与外角的关系来解决.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.9.解关于x的方程+1=(其中m为常数)产生增根,则常数m的值等于()A.﹣2 B.2 C.1 D.﹣1【考点】分式方程的增根.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣6+x﹣5=m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入整式方程得:m=﹣1,故选D【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A.x<﹣1 B.x>﹣1 C.x>2 D.x<2【考点】一次函数与一元一次不等式.【分析】根据函数图象可知直线l1:y=k1x+b与直线l2:y=k2x的交点是(﹣1,2),从而可以求得不等式k2x<k1x+b的解集.【解答】解:由图象可得,k2x<k1x+b的解集为x>﹣1,故选B.【点评】本题考查了一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.二、填空题11.因式分解:x2﹣7x=x(x﹣7).【考点】因式分解-提公因式法.【分析】原式提取公因式即可得到结果.【解答】解:原式=x(x﹣7),故答案为:x(x﹣7)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.不等式9﹣3x>0的非负整数解的和是3.【考点】一元一次不等式的整数解.【分析】根据不等式的性质求出不等式的解集,找出不等式的非负整数解相加即可.【解答】解:9﹣3x>0,﹣3x>﹣9,x<3,所以不等式9﹣3x>0的非负整数解有0,1,2,即0+1+2=3.故答案为:3.【点评】本题主要考查对解一元一次不等式,不等式的性质,一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式的非负整数解是解此题的关键.13.当x=﹣2时,分式的值等于零.【考点】分式的值为零的条件.【分析】分式值为零的条件有两个:分子等于零,且分母不等于零,据此列式计算.【解答】解:∵分式的值等于零,∴,∴,∴x=﹣2.故答案为:﹣2【点评】本题主要考查了分式的值为零的条件,“分母不为零”这个条件不能少,否则分式无意义.14.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.三、解答下列各题(本题满分54分.15题每小题18分,16题6分,17题6分,18题6分,19题8分,20题10分)15.(18分)(2016春•金堂县期末)(1)因式分解:2a3﹣8a2+8a(2)解不等式组:并将解集在数轴上表示出来.(3)解分式方程:.【考点】解分式方程;提公因式法与公式法的综合运用;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2a(a2﹣4a+4)=2a(a﹣2)2;(2),由①得:x>﹣3,由②得:x≤2,则原不等式组解集为:﹣3<x≤2;(3)去分母得:3x+3+2x2﹣2x=2x2﹣2,解得:x=﹣5,经检验,x=﹣5是原分式方程的根.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.【考点】作图-旋转变换;作图-平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1是所求的三角形.(2)如图所示:△A2B2C1为所求作的三角形.【点评】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.17.先化简,后求值:,其中x=﹣5.【考点】分式的化简求值.【分析】先计算括号里的,再把分子分母分解因式,然后约分即可.【解答】解:===,(5分)当x=﹣5时,原式==.(7分)【点评】注意做这类题一定要先化简再求值.18.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【考点】等边三角形的判定与性质;含30度角的直角三角形.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.19.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.20.(10分)(2016春•商河县期末)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【考点】全等三角形的判定与性质;平行四边形的判定.【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB ≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF ∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADE都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.附加题一.填空题21.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.【点评】本题考查了分式的化简求值,通分后整体代入是解题的关键.22.若不等式组恰有两个整数解,则a的取值范是﹣2<a≤﹣1.【考点】一元一次不等式组的整数解.【分析】此题可先根据一元一次不等式组解出x的取值,根据x是正整数解得出a的取值.【解答】解:,解①得:x≥a,解②得:x<1,则不等式组的解集是:a≤x<1,恰有两个整数解,则整数解是0,﹣1.则﹣2<a≤﹣1.故答案是:﹣2<a≤﹣1.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.若关于x的方程+=2的解为正数,则m的取值范围是m<6且m≠0.【考点】分式方程的解.【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m的不等式,从而求得m的范围.【解答】解:∵关于x的方程+=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣,根据题意得:2﹣>0且2﹣≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.【点评】本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.24.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,则△AMN的最小周长为4.【考点】轴对称-最短路线问题.【分析】根据要使△AMN的周长最小,利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出最短路线,再利用勾股定理,求出即可.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.过A′作EA延长线的垂线,垂足为H,∵AB=BC=2,AE=DE=4,∴AA′=2BA=4,AA″=2AE=8,则Rt△A′HA中,∵∠EAB=120°,∴∠HAA′=60°,∵A′H⊥HA,∴∠AA′H=30°,∴AH=AA′=2,∴A′H==2,A″H=2+8=10,∴A′A″==4.故答案为4.【点评】本题主要考查了平面内最短路线问题求法以及勾股定理的应用,根据轴对称的性质得出M,N的位置是解题关键,注意轴对称的性质和勾股定理的正确运用.25.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=()n.(用含n的式子表示)【考点】等边三角形的性质.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到S n.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴S1=××()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴S2=××()2=()2;依此类推,S n=()n.故答案为:()n.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二.解答题(共8分)26.某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【分析】(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,根据“同样用6m材料制成甲盒的个数比制成乙盒的个数少2个”,列出方程,即可解答;(2)根据所需要材料的总长度l=甲盒材料的总长度+乙盒材料的总长度,列出函数关系式;再根据“甲盒的数量不少于乙盒数量的2倍”求出n的取值范围,根据一次函数的性质,即可解答.【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.【点评】本题考查了一次函数的应用,解决本题的关键是利用一次函数的性质解决实际问题.三、(本题共1小题,共10分)27.(10分)(2013•湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO 和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC 上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)【考点】全等三角形的判定与性质.【分析】(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.【解答】(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=CD.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′【点评】本题考查了全等三角形的性质和判定,等腰直角三角形性质,等腰三角形性质等知识点的综合应用,主要考查学生的推理和计算能力.四、(本题共1小题,共12分)28.(12分)(2016春•金堂县期末)如图(1),在Rt△AOB中,∠A=90°,∠AOB=60°,OB=2,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO向终点O运动,运动时间为t秒,同时动点Q从点C出发沿线段CO及直线ON运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)当点P与点Q的速度都是每秒1个单位长度的速度运动时,设△CPQ的面积为S,求S与t的函数关系式;(3)当点P运动到OC上时,在直线OB上有一点D,当PD+BP最小时,在直线OB上有一点E,若以B、P、Q、E为顶点的四边形为平行四边形,设点P、Q的运动路程分别为a、b,求a与b满足的数量关系.【考点】四边形综合题.【分析】(1)求出∠B,根据直角三角形性质求出OA,求出AB,在△AOC中,根据勾股定理得出关于OC的方程,求出OC即可;(2)有四种情况:①当P在BC上,Q在OC上时,t<2,过P作PH⊥OC于H,求出PH,根据三角形的面积公式求出即可;②当t=2时,P在C点,Q在O点,此时,△CPQ不存在;③当P在OC上,Q在ON上时,过P作PG⊥ON于G,过C作CZ⊥ON 于Z,求出CZ和PG的值,求出△OCQ和△OPQ的面积,相减即可④t=4时,求出即可;(3)过B作BB1⊥OC,垂足为C1,与OA的延长线交于B1,作B1D⊥OB,垂足为D,与OC交于点P,此时BP+PD=B1D(最短),于是得到△OBB1为正三角形,①当点Q在OC上时,由PQ与EB交于点O⇒BPQE不可能为平行四边形,②当点Q在直线ON上时,A.如图(4)以BQ为对角线,B.如下图(5)以BP为对角线,C.如下图(6)以BE为对角线,根据平行四边形的性质得到a+b=5.【解答】(1)解:∵∠A=90°,∠AOB=60°,OB=2,。

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。

新北师大版八年级下数学期末考试试题(有答案解析]-精选.pdf

新北师大版八年级下数学期末考试试卷25、(本小题10分)如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .(1)如图1,当点E 在AB 边的中点位置时:①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是;②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是;③请说明你的上述两个猜想的正确性。

(2)如图2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系。

26、(本小题10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象回答以下问题:①甲、乙两地之间的距离为km ;②图中点B 的实际意义_______________;③求慢车和快车的速度;④求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;ABCD E M图1NFFABCDE M图2A B CDOy/km90012 x/h4参考答案1、选择题1、A ;2、B ;3、C ;4、C ;5、C ;6、A ;7、D ;8、B ;9、B ;10、D .二、填空题11、2;12、20o;13、12 ;14、18;15、-3;16、(9,6),(-1,6),(7,0).19、解:(1)以B 为圆心,适当长为半径画弧,交AB BC ,于M ,N 两点.分别以M N ,为圆心,大于12MN 长为半径画弧.两弧相交于点P .过B P ,作射线BF 交AC 于F .(2)证明:AD BC ∥,DACC ∠∠.又BF 平分ABC ∠,∴∠ABC =2∠FBC ,∵2ABCADG ∠∠,DBFC ∠∠,又ADBC ,ADE CBF △≌△,DEBF .21、证法一:∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,∠A =∠C ,∵AM =CN ,∴△ABM ≌△CDN (SAS )∴BM =DN .∵AD -AM =BC -CN ,即MD =NB ,∴四边形MBND 是平行四边形(两组对边分别相等的四边形是平行四边形)证法二:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AM =CN ,∴AD -AM =BC -CN ,∴MD =NB ,∴四边形MBND 是平行四边形,22、解:(1)△BPD 与△CQP 是全等,理由是:当t =1秒时BP =CQ =3,CP =8-3=5,∵D 为AB 中点,∴BD =12AC =5=CP ,∵AB =AC ,∴∠B =∠C ,在△BDP 和△CPQ 中BD CP B C BPCQ∴△BDP ≌△CPQ (SAS ).(2)解:假设存在时间t 秒,使△BDP 和△CPQ 全等,则BP =2t ,BD =5,CP =8-2t ,CQ =2.5t ,∵△BDP 和△CPQ 全等,∠B =∠C ,∴2825 2.5ttt 或2 2.5582ttt(此方程组无解),解得:t =2,∴存在时刻t =2秒时,△BDP 和△CPQ 全等,此时BP =4,BD =5,CP =8-4=4=BP ,CQ =5=BD ,在△BDP和△CQP中B DC QB CBP CP,∴△BDP≌△CQP(SAS).23、解:(1)依题意得:1(2100800200)1100y x x,2(24001100100)20000120020000y x x,(2)设该月生产甲种塑料m吨,则乙种塑料(700-m)吨,总利润为W元,依题意得:W=1100m+1200(700-m)-20000=-100m+820000.∵400700400mm-解得:300≤m≤400.∵-100<0,∴W随着m的增大而减小,∴当m=300时,W最大=790000(元).此时,700-m=400(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.24、25、(1)①DE=EF ②NE=B③解:∵四边形ABCD AD=AB,∠DAE=∠CBM=900∵点N 、E 分别为AD 、ABDN =12AD ,AE =12AB ∴DN =EB在Rt ANE 中,∠ANE =∠AEN =450DNE =1350∵BF 平分∠CBM FBM =45EBF =135DNE =∠EBF∵∠FBM +∠DEA =900∠ADE +∠DEA =90∴∠FBM =∠ADE∴△DNE ≌△EBFDE =EFNE =BF(2)在AD 上截取AN =AE ,连结NE ,证法同上类似26、(1)3 (2)1,8 ①900km ②当快车或慢车出发4小时两车相遇③慢车速度为)/(7512900h km ,快车速度为)/(150129004900h km ④y=225x-900(4≤x ≤6)。

新北师大版八年级下学期数学期末试题及答案详解

新北师大版八年级下学期期末数学试题一.选择题(共15小题)1.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.关于x的不等式组的解集为x>1,则a的取值围是()A.a>1 B.a<1 C.a≥1 D.a≤13.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为() A.x>0 B.0<x<1 C.1<x<2 D.x>24.如果不等式组恰有3个整数解,则a的取值围是()A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣15.如图,在△ABC中,∠CAB=65°,将△ABC在平面绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为() A.35°B.40°C.50°D.65°6.如图O是正△ABC一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤ D.①②③7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.58.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C.2D.9.如图,把Rt△ABC放在直角坐标系,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形 C.等腰直角三角形D.等腰三角形或直角三角形11.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2 B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)212.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.313.关于x的分式方程=1的解为正数,则字母a的取值围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣114.已知x2﹣3x+1=0,则的值是() A. B.2 C.D.3 15.已知关于x的分式方程+=1的解是非负数,则m的取值围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3二.填空题(共12小题)16.若不等式组有解,则a的取值围是.17.若不等式组的解集是﹣1<x<1,则(a+b)2009= .18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.19.多项式x2+mx+5因式分解得(x+5)(x+n),则m= ,n= .20.若关于x的分式方程﹣1=无解,则m的值.21.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.22.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.23.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.24.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.25.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.26.如图,在▱ABCD中,AB=3,AD=4,∠A BC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC 的延长线相交于点H,则△DEF的面积是.27.如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE =S△ABE;⑥AF=CE这些结论中正确的是.三.解答题(共8小题)28.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?29.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.30.解不等式,并把它们的解集表示在数轴上.31.(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c 的值;32.解分式方程:=﹣.33.先化简:,并从0,﹣1,2中选一个合适的数作为a的值代入求值.34.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?35.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?新北师大版八年级下学期期末考试试题答案一.选择题(共15小题)1.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.2.关于x的不等式组的解集为x>1,则a的取值围是()A.a>1 B.a<1 C.a≥1 D.a≤1【解答】解:因为不等式组的解集为x>1,所以可得a≤1,故选:D.3.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>2【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选:C.4.如果不等式组恰有3个整数解,则a的取值围是()A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1【解答】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选:C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.6.如图,O是正△ABC一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤ D.①②③【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;=S△AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC +S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.8.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C.2D.【解答】解:∵旋转后AC′的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,=EC•AD=,则S△AEC故选:D.9.如图,把Rt△ABC放在直角坐标系,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.8【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得 x=5.即OA′=5.∴CC′=5﹣1=4.∴S=4×4=16 (面积单位).▱BCC′B′即线段BC扫过的面积为16面积单位.故选:C.10.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.11.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)2【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、不合因式分解的定义,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、左边=右边,是因式分解,故本选项正确.故选:D.12.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.3【解答】解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3,当x=﹣2时,m=﹣2+2=0,当m=0时,方程为﹣1=0,此时1=0,即方程无解,∴m=3时,分式方程有增根,故选:D.13.关于x的分式方程=1的解为正数,则字母a的取值围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1【解答】解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1≠﹣1,解得:a>﹣1且a≠﹣2.即字母a的取值围为a>﹣1.故选:B.14.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选:A.15.已知关于x的分式方程+=1的解是非负数,则m的取值围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C.二.填空题(共12小题)16.若不等式组有解,则a的取值围是a>﹣1 .【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值围是a>﹣1.故答案为:a>﹣1.17.若不等式组的解集是﹣1<x<1,则(a+b)2009= ﹣1 .【解答】解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6 .【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.19.多项式x2+mx+5因式分解得(x+5)(x+n),则m= 6 ,n= 1 .【解答】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为:6,1.20.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.21.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 3 .【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.22.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.23.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.24.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是(5,0).【解答】解:∵点C与点E关于x轴对称,E点的坐标是(7,﹣3),∴C的坐标为(7,3),∴CH=3,CE=6,∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC=6,∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D点的坐标是(5,0),故答案为(5,0).25.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20 .【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.26.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC 的延长线相交于点H,则△DEF的面积是.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴△BFE∽△CHE,∴====1,∴EF=EH=,CH=BF=1,∵S△DHF=DH•FH=×(1+3)×2=4,∴S△DEF =S△DHF=2,故答案为:2.27.如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE =S△ABE;⑥AF=CE这些结论中正确的是①②④⑤⑥.【解答】解:连接BD交AC于O,过D作DM⊥AC于M,过B作BN⊥AC于N,∵四边形ABCD是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BE=DF,BE∥DF,∴①正确;②正确;④正确;∵根据已知不能推出AB=DE,∴③错误;∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO和△DMO中∴△BNO≌△DMO(AAS),∴BN=DM,∵S△ADE =×AE×DM,S△ABE=×AE×BN,∴S△ADE =S△ABE,∴⑤正确;∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∴⑥正确;故答案为:①②④⑤⑥.三.解答题(共8小题)28.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.29.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【解答】解:①+②得:3x+y=3m+4,②﹣①得:x+5y=m+4,∵不等式组,∴,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.30.解不等式,并把它们的解集表示在数轴上.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.31.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c 的值;【解答】解:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.32.解分式方程:=﹣.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.33.先化简:,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【解答】解:=×,=×=﹣,当a=0时,原式=1.34.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.35.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?【解答】(1)证明:连接CD交AE于F,∵四边形PCOD是平行四边形,∴CF=DF,OF=PF,∵PE=AO,∴AF=EF,又CF=DF,∴四边形ADEC为平行四边形;(2)解:当点P运动的时间为秒时,OP=,OC=3,则OE=,由勾股定理得,AC==3,CE==,∵四边形ADEC为平行四边形,∴周长为(3+)×2=6+3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)期末数学试卷一、填空题(本项共10题,每题2分,计20分)1.当x等于时,分式无意义.2.国际奥委会于2001年7月13日通过投票确定2008年奥运会举办城市,北京获得总计105张选票中的56张,得票率超过50%,获得奥运会举办权.北京得票的频数是.3.小明某周每天的睡眠时间是(单位:h):8,9,7,9,8,8,7.这组数据的众数是.4.反比例函数的图象在第二、四象限,则k的取值范围是.5.计算:2+﹣=.6.下表是某批足球质量检验获得的数据,请根据此表回答,当抽取的足球数很大时,这批足球优等品的频率会在常数附近摆动.7.方程x2﹣3x=0的解是.8.菱形的边长为5,一条对角线长为8,则其面积为.9.已知:,则m=.10.如图,将边长为的正方形ABCD绕点A逆时针方向旋转45°至AB′C′D′,若CD和B′C′相交于点E,则CE=.二、选择题(本项共8题,每题3分,计24分)11.下列调查适合用普查的是()A.长江中现有鱼的种类B.某品牌灯泡的使用寿命C.全校学生最喜爱的体育项目 D.一批食品中防腐剂的含量12.下列计算正确的是( )A .B .C .D .13.某商店6月份的利润是25000元,要使8月份的利润至少达到36000元,则平均每月利润增长的百分率不低于( )A .10%B .20%C .44%D .120%14.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .对角线相等C .对角线互相垂直D .对角线平分对角15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A . =B . =C . =D . =16.一组数据:2,3,2x ,4,2,x+1的中位数是3,则x 的值是( )A .1B .2C .3D .17.在矩形ABCD 中,点E 在CD 上,且BE 平分∠AEC ,若∠DAE=30°,BE=2,则AD=( )A .B .2C .1D .18.在平面直角坐标系中,函数y=与y=x+k 的图象不可能是下列图形中的( )A .B .C.D.三、解答题(本项共8题,计56分)19.已知=2,求的值.20.解方程:=1.21.已知,如图,点A,B,C分别在△EFD的各边上,且AB∥DE,BC∥EF,CA∥FD,求证:A,B,C分别是△EFD各边的中点.22.已知反比例函数的图象与一次函数y=x﹣1的图象的一个交点的横坐标是2.(1)求k的值;(2)根据反比例函数的图象,指出当x<2时,y的取值范围.23.经跟踪调查,小明平均每天用于学习、睡眠、参加班级或文体活动、其它的时间如下:(1)画条形统计图表示表中的信息;(2)画扇形统计图表示表中的信息.24.已知关于x的一元二次方程x2﹣2x+m+2=0有两个不等的实数根x1和x2(1)求m的取值范围并证明x1x2=m+2;(2)若|x1﹣x2|=2,求m的值.25.计算并观察下列式子,探索它们的规律,并解决问题.=.=.=.…(1)试用正整数n表示这个规律,并加以证明;(2)求的值.26.已知:如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别是AB,AC,BC的中点,点H 在AB上,且∠EHF=90°,求证:CH⊥AB.2014-2015学年江苏省盐城市东台市八年级(下)期末数学试卷参考答案与试题解析一、填空题(本项共10题,每题2分,计20分)1.当x等于时,分式无意义.【考点】分式有意义的条件.【分析】根据分式无意义的条件可得2x﹣3=0,再解即可.【解答】解:由题意得:2x﹣3=0,解得:x=,故答案为:.【点评】此题主要考查了分式有意义的条件,关键是掌握分式无意义的条件是分母等于零.2.国际奥委会于2001年7月13日通过投票确定2008年奥运会举办城市,北京获得总计105张选票中的56张,得票率超过50%,获得奥运会举办权.北京得票的频数是56.【考点】频数与频率.【分析】根据频数的概念:频数是指每个对象出现的次数,求解.【解答】解:由题意得,频数为56.故答案为:56.【点评】本题考查了频数和频率,解答本题的关键掌握频数为每个对象出现的次数.3.小明某周每天的睡眠时间是(单位:h):8,9,7,9,8,8,7.这组数据的众数是8.【考点】众数.【分析】众数是一组数据中出现次数最多的数,根据定义就可以求解.【解答】解:在这一组数据中8是出现次数最多的,故众数是8.故答案为:8.【点评】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数.4.反比例函数的图象在第二、四象限,则k的取值范围是k>2.【考点】反比例函数的性质.【分析】根据图象在第二、四象限,利用反比例函数的性质可以确定2﹣k的符号,即可解答.【解答】解:∵反比例函数的图象在第二、四象限,∴2﹣k<0,∴k>2.故答案为:k>2.【点评】此题主要考查了反比例函数的性质,熟练记忆(1)当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.5.计算:2+﹣=0.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后进行二次根式的加减运算.【解答】解:原式=2+2﹣4=0.故答案为:0.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及二次根式的加减运算法则.6.下表是某批足球质量检验获得的数据,请根据此表回答,当抽取的足球数很大时,这批足球优等品的频率会在常数0.95附近摆动.【考点】频数与频率.【分析】根据频率=进行计算即可.【解答】解:频数=≈0.95.即这批足球优等品的频率会在常数0.95附近摆动.故答案为:0.95.【点评】本题考查了频数与频率的关系,解答本题的关键是掌握频率=频数÷数据总数.7.方程x2﹣3x=0的解是1=0,x2=3.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】x2﹣3x有公因式x可以提取,故用因式分解法解较简便.【解答】解:原式为x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.∴方程x2﹣3x=0的解是x1=0,x2=3.【点评】本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法.8.菱形的边长为5,一条对角线长为8,则其面积为24.【考点】菱形的性质.【分析】菱形的对角线互相垂直平分,四边相等,可求出另一条对角线的长,菱形的面积等于对角线乘积的一半.【解答】解::∵菱形的边长为5,一条对角线长为8,∴另一条对角线的长为:2=6,面积为6×8=24,故答案为:24.【点评】本题考查菱形的性质,属于基础题,关键是掌握菱形的四边相等,对角线互相垂直平分,以及菱形面积等于对角线乘积的一半等知识点.9.已知:,则m=﹣5.【考点】分式的加减法.【专题】计算题.【分析】已知等式右边通分并利用同分母分式的减法法则计算,即可确定出m的值.【解答】解:=2+=,可得2x﹣3=2x+2+m,解得:m=﹣5,故答案为:﹣5【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.如图,将边长为的正方形ABCD绕点A逆时针方向旋转45°至AB′C′D′,若CD和B′C′相交于点E,则CE=2.【考点】旋转的性质.【专题】计算题.【分析】根据正方形的性质得AC=(2+)=2+2,∠ACD=∠BAC=45°,再利用旋转的性质得∠BAB′=45°,AB′=AB=2+,∠AB′C′=∠B=90°,于是可判断点B′在AC上,所以CB′=AC﹣AB′=,然后利用△ECB′为等腰直角三角形易得CE=CB′=2.【解答】解:∵四边形ABCD为正方形,∴AC=(2+)=2+2,∠ACD=∠BAC=45°,∵正方形ABCD绕点A逆时针方向旋转45°至正方形AB′C′D′,∴∠BAB′=45°,AB′=AB=2+,∠AB′C′=∠B=90°,∴点B′在AC上,∴CB′=AC﹣AB′=2+2﹣2﹣=,∵∠ECB′=45°,∴△ECB′为等腰直角三角形,∴CE=CB′=×=2.故答案为2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.二、选择题(本项共8题,每题3分,计24分)11.下列调查适合用普查的是()A.长江中现有鱼的种类B.某品牌灯泡的使用寿命C.全校学生最喜爱的体育项目 D.一批食品中防腐剂的含量【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、长江中现有鱼的种类,无法普查,故A错误;B、某品牌灯泡的使用寿命,调查具有破坏性,适合抽样调查,故B错误;C、全校学生最喜爱的体育项目,适合普查,故C正确;D、一批食品中防腐剂的含量,调查具有破坏性,适合抽样调查,故D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.下列计算正确的是()A.B.C.D.【考点】分式的乘除法;分式的加减法;二次根式的性质与化简.【专题】计算题.【分析】A、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;B、原式利用除法法则变形,计算得到结果,即可做出判断;C、原式不能化简,错误;D、原式利用二次根式的性质及绝对值的代数意义化简得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式=•=,错误;C、原式为最简结果,错误;D、原式=|﹣|=.故选D.【点评】此题考查了分式的乘除法,分式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解本题的关键.13.某商店6月份的利润是25000元,要使8月份的利润至少达到36000元,则平均每月利润增长的百分率不低于()A.10% B.20% C.44% D.120%【考点】一元一次不等式的应用.【分析】如果设平均每月增长的百分率是x,那么7月份的利润是2500(1+x)元,8月份的利润是2500(1+x)2元,而此时利润至少达到36000元,据此列出不等式并解答.【解答】解:设平均每月增长的百分率是x,依题意,得25000(1+x)2≥36000,解得x≥0.2,或x≤﹣2.2(不合题意,舍去).即:平均每月增长的百分率不低于20%.故选:B.【点评】题考查的是平均增长率问题.解决这类问题所用的等量关系一般是:增长前的量×(1+平均增长率)增长的次数=增长后的量.14.正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线平分对角【考点】正方形的性质;菱形的性质.【分析】根据正方形的性质:正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;菱形的性质:菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角;即可求得答案.【解答】解:正方形的性质有:对角线互相平分垂直且相等,而且平分一组对角;菱形的性质有:四条边都相等,对角线互相垂直平分.故正方形具有而菱形不一定具有的性质是:对角线相等.故选B.【点评】此题主要考查了正方形与菱形的性质.比较简单,解题的关键是熟记正方形与菱形的性质定理.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.16.一组数据:2,3,2x,4,2,x+1的中位数是3,则x的值是()A.1 B.2 C.3 D.【考点】中位数.【分析】根据中位数为3,把这组数据按照从小到大的顺序排列,然后求出x的值.【解答】解:∵中位数为3,∴这组数据按照从小到大的顺序排列为:2,2,3,2x,x+1,4,或2,2,3,x+1,2x,4,当2x=3时,x=1.5,则x+1=2.5,不合题意,当x+1=3时,x=2,则2x=4,符合题意.故x=2.故选B.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.在矩形ABCD中,点E在CD上,且BE平分∠AEC,若∠DAE=30°,BE=2,则AD=()A.B.2 C.1 D.【考点】矩形的性质.【分析】由矩形的性质得出AD=BC,∠D=∠C=90°,求出∠AEC,得出∠CBE,求出CE,由勾股定理求出BC即可.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠D=∠C=90°,∵∠DE=30°,∴∠AED=90°﹣30°=60°,∴∠AEC=180°﹣60°=120°,∵BE平分∠AEC,∴∠BEC=∠AEC=60°,∴∠CBE=90°﹣60°=30°,∴CE=BE=1,∴AD=BC===;故选:A.【点评】本题考查了矩形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.在平面直角坐标系中,函数y=与y=x+k的图象不可能是下列图形中的()A. B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据反比例函数图象判定k的符号,由k的符号判定直线所经过的象限.【解答】解:A、反比例函数y=的图象经过第二、四象限,则k<0.则直线y=x+k与y轴交于负半轴,故本选项错误;B、反比例函数y=的图象经过第一、三象限,则k>0.则直线y=x+k与y轴交于正半轴,故本选项错误;C、反比例函数y=的图象经过第二、四象限,则k<0..则直线y=x+k与y轴交于负半轴,故本选项错误;D、反比例函数y=的图象经过第一、三象限,则k>0.则直线y=x+k与y轴交于正半轴,故本选项正确;故选:D.【点评】本题考查了反比例函数与一次函数的图象.掌握函数图象与系数的关系是解题的关键.三、解答题(本项共8题,计56分)19.已知=2,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把=2化为b=2a,代入进行计算即可.【解答】解:原式=,∵=2,∴b=2a,∴原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.解方程:=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程去分母得:﹣(x﹣1)2+3=1﹣x2,解得:x=﹣,经检验x=﹣是原方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知,如图,点A,B,C分别在△EFD的各边上,且AB∥DE,BC∥EF,CA∥FD,求证:A,B,C分别是△EFD各边的中点.【考点】平行线分线段成比例.【专题】证明题.【分析】如图,证明四边形AFBC,四边形ABDC,四边形ABCE为平行四边形,运用平行四边形的性质即可解决问题.【解答】证明:如图,∵AB∥DE,BC∥EF,CA∥FD,∴四边形AFBC,四边形ABDC,四边形ABCE为平行四边形,∴BF=CA,BD=AC,∴BF=BD;同理可证:AF=AE,CD=CE,∴A,B,C分别是△EFD各边的中点.【点评】该题主要考查了平行四边形的判定及其性质的应用问题;牢固掌握平行四边形的判定及其性质是解题的关键.22.已知反比例函数的图象与一次函数y=x﹣1的图象的一个交点的横坐标是2.(1)求k的值;(2)根据反比例函数的图象,指出当x<2时,y的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k 的值.(2)利用反比例函数的解析式求出x=2的点,利用图图象求得答案.【解答】解:(1)在y=x﹣1中,令x=2,解得y=1,则交点坐标是:(2,1),代入得:k=2.(2)∵当x=2时,y=1,如图:∴当x<2时,y的取值范围是y>1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.23.经跟踪调查,小明平均每天用于学习、睡眠、参加班级或文体活动、其它的时间如下:(1)画条形统计图表示表中的信息;(2)画扇形统计图表示表中的信息.【考点】条形统计图;扇形统计图.【分析】(1)根据各项的数据,可得条形统计图;(2)根据各项占总的百分比,可得扇形统计图.【解答】解:(1)条形统计图如图1,(2)扇形统计图如图.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知关于x的一元二次方程x2﹣2x+m+2=0有两个不等的实数根x1和x2(1)求m的取值范围并证明x1x2=m+2;(2)若|x1﹣x2|=2,求m的值.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据判别式的意义得到△=(﹣2)2﹣4(m+2)=﹣4m﹣4>0解得m<﹣1,再利用求根公式解方程,然后计算x1x2;(2)先根据根与系数的关系得x1+x2=2,x1x2=m+2,再把|x1﹣x2|=2两边平方得到(x1﹣x2)2=4,接着利用完全平方公式变形得到(x1+x2)2﹣4x1x2=4,所以4﹣4(m+2)=4,然后解关于m的方程即可.【解答】解:(1)∵关于x的一元二次方程x2﹣2x+m+2=0有两个不等的实数根x1和x2,所以△=(﹣2)2﹣4(m+2)=﹣4m﹣4>0解得m<﹣1,根据求根公式,∴;(2)根据根与系数的关系得x1+x2=2,x1x2=m+2,∵|x1﹣x2|=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,∴4﹣4(m+2)=4,解得m=﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.25.计算并观察下列式子,探索它们的规律,并解决问题.=2.=2.=2.…(1)试用正整数n表示这个规律,并加以证明;(2)求的值.【考点】分母有理化.【专题】规律型.【分析】(1)已知等式计算得到结果,归纳总结得到一般性规律,写出即可;(2)原式利用得出的规律变形,计算即可得到结果.【解答】解:(+)(﹣)=2;(+)(﹣)=2;(+)(﹣)=2,故答案为:2;2;2;(1)以此类推,(+)(﹣)=2;(2)原式=(﹣1+﹣+﹣+…+﹣)=(﹣1)=5.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.26.已知:如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别是AB,AC,BC的中点,点H 在AB上,且∠EHF=90°,求证:CH⊥AB.【考点】矩形的判定与性质;直角三角形斜边上的中线.【专题】证明题.【分析】根据矩形的判定与性质,可得OD=OC=OE=OF,根据直角三角形的性质,可得OH=EF=OE=OF,根据等腰三角形的判定,可得∠CHO=∠OCH,∠OHD=∠ODH,根据三角形的内角和定理,可得答案.【解答】证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE∥BC,DF∥CE,∴四边形CEDF是平行四边形.∵∠ACB=90°,∴四边形CEDF是矩形,得OD=OC=OE=OF.在Rt△EHF中,OH=EF=OE=OF,∴OH=CD=OC=OD,∴在△CHD中,∠CHO=∠OCH,∠OHD=∠ODH.∵∠CHO+∠OCH+∠OHD+∠ODH=180°,∴∠CHO+∠OHD=90°,即CH⊥AB.【点评】本题考查了矩形的判定与性质,利用了矩形的判定与性质,直角三角形的性质,等腰三角形的判定,三角形的内角和定理.。

相关文档
最新文档