基本不等式练习题(较全)
不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
基本不等式练习题(基础、经典、好用)

基本不等式一、选择题1.若函数f(x)=x+1x-2(x>2)在x=a处取最小值,则a=()A.1+ 2 B.1+ 3 C.3 D.42.下列不等式:①a2+1>2a;②a+bab≤2;③x2+1x2+1≥1,其中正确的个数是()A.0 B.1 C.2 D.33.(2013·潮州模拟)已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.2 2 C.4 D.54.(2012·湖北高考)设a,b,c均大于0,则“abc=1”是“1a+1b+1c≤a+b+c”的()A.充分条件不必要条件B.必要条件不充分条件C.充分必要条件D.既不充分也不必要的条件5.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.92 D.112二、填空题6.(2013·深圳调研)已知a,b∈R,且ab=50,则|a+2b|的最小值是________.7.已知log2a+log2b≥1,则3a+9b的最小值为________.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.三、解答题9.已知x>0,y>0,且2x+8y-xy=0,求:(1)xy的最小值;(2)x+y的最小值.10.已知a>0,b>0,c>0,且a+b+c=1,求证:1a+1b+1c≥9.11. 某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解析及答案一、选择题1.【解析】 ∵x >2,∴x -2>0,∴f (x )=x +1x -2=(x -2)+1x -2+2≥2 (x -2)·1x -2+2=4, 当且仅当x -2=1x -2(x >2),即x =3时等号成立, ∴a =3.【答案】 C2.【解析】 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1. 【答案】 B 3.【解析】 1a +1b +2ab ≥21ab +2ab ≥441ab ·ab =4. 当⎩⎪⎨⎪⎧a =b ,1ab=ab ,即a =b =1时,等号成立, 因此1a +1b +2ab 的最小值为4.【答案】 C4.【解析】 1a +1b +1c =bc +ca +ab abc ,当abc =1时, ∴bc +ca +ab abc≤12[(b +c )+(c +a )+(a +b )] =a +b +c .故abc =1⇒1a +1b +1c≤a +b +c . 反过来,取a =b =1,c =4有1a +1b +1c≤a +b +c ,但abc ≠1, ∴“abc =1”是“1a +1b +1c ≤a +b +c ”的充分不必要条件. 【答案】 A5.【解析】 ∵x +2y +2xy =8,∴y =8-x 2x +2>0, ∴0<x <8,∴x +2y =x +2·8-x 2x +2=(x +1)+9x +1-2≥2 (x +1)·9x +1-2=4, 当且仅当x +1=9x +1时“=”成立,此时x =2,y =1. 【答案】 B二、填空题 6.【解析】 因为|a +2b |=(a +2b )2=a 2+4b 2+4ab ≥8ab =20,当且仅当a 2=4b 2时取等号,所以|a +2b |的最小值是20.【答案】 207.【解析】 由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时“=”号成立). 又∵a +2b ≥22ab ≥4(当且仅当a =2b 时“=”成立),∴3a +9b ≥2×32=18.故当a =2b 时,3a +9b 有最小值18.【答案】 18 8.【解析】 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x +x ≥2400x ·x =40,当且仅当400x =x ,即x =20时等号成立. 故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨.【答案】 20三、解答题9.【解】 ∵x >0,y >0,2x +8y -xy =0,(1)xy =2x +8y ≥216xy ,∴xy ≥8,∴xy ≥64.故xy 的最小值为64.(2)由2x +8y =xy ,得:2y +8x =1,∴x +y =(x +y )·1=(x +y )(2y +8x )=10+2x y +8y x ≥10+8=18.故x +y 的最小值为18.10.【证明】 1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2 b a ·a b +2 c a ·a c +2 c b ·b c=3+2+2+2=9当且仅当a =b =c =13时取等号,∴1a +1b +1c ≥9.11.【解】 (1)设每件定价为x 元,依题意得(8-x -251×0.2)x ≥25×8,整理得x 2-65x +1 000≤0,解得25≤x ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解,∵150x+16x≥2150x·16x=10(当且仅当x=30时,等号成立),∴a≥10.2.∴当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。
基本不等式练习题 含答案

试卷第1页,总1页基本不等式1、若,则的最大值为( )ABC .2D 2、已知)A .5B .4 C .8D .6 3、设x>0 ) A .最大值1 B .最小值1 C .最大值5 D .最小值4、已知 ()D.55、,则的最大值为_______.6、设________. 7、若、为正实数,且,则的最小值为__________.8、设_____. 9、已知正数满足,则的最小值为______.10、某新建居民小区欲建一面积为1600平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽1米,短边人行道宽4米,如图所示。
怎样设计绿地的长和宽,才能使人行道的占地面积最小?并求出最小值。
023x <<(32)x x -2x >5-0,0,2,a b a b >>+=ab 1x >a b 3a b ab ++=ab 0x >,a b 4a b ab +=+a b答案第1页,总1页 参考答案1、【答案】D2、【答案】D3、【答案】A4、【答案】C5、【答案】36、7、【答案】8、9、【答案】9.10、【答案】长.宽.最小面积 试题分析:根据题意求出人行横道的面积表达式,结合基本不等式即可求解.【详解】设矩形绿地的长为米,宽为米,则平方米所以人行横道的面积(即人行道面积等于外围矩形面积减去内部矩形面积) 即当且仅当,即时等号成立 故当绿地的长为,宽为时,才能使人行道的占地面积最小,最小值为【点睛】本题主要考查了利用基本不等式解决实际问题,要注意基本不等式成立的条件,考查了学生分析和解决问题的能力,属于中档题.980m 20m 2336m a b 1600ab =()()821600S a b =++-2816S a b =++28a b =80,20a m b m ==80m 20m 2336m。
基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( )A.3 B.3- C.3- D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C.D. 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .111abc++≥ D .a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C 2 D .11xy ≥8. a ,b 是正数,则2,2a baba b++三个数的大小顺序是 ( )A.22a b ab a b ++ 22a b aba b+≤+C.22ab a b a b ++ D.22ab a ba b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x =+B.4sin sin y x x=+ (0)x π<<C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上.11. 函数y =的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 . 14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的最小值为 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤.15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题二.填空题11.12 12.3600 13. 14.对 三、解答题15 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。
基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( ) A.3 B.332- C.3-23 D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B. 63C. 46D. 183 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .11123abc++≥ D .3a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C .2xy ≥ D .11xy ≥8. a ,b 是正数,则2,,2a babab a b++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b abab a b+≤≤+ C.22ab a b ab a b +≤≤+ D.22ab a bab a b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x =+B.4sin sin y x x=+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上. 11. 函数21y x x =-的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤. 15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值. 18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCABCCC二.填空题 11.12 12.3600 13. 212- 14.对 三、解答题15.ab 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。
基本不等式练习题(较全)

1、若实数x ,y 满足224x y +=,求xy 的最大值
2、若x>0,求9()4f x x x =+
的最小值;
3、若0x <,求1y x x =+
的最大值
4、若x<0,求9()4f x x x =+
的最大值
5、求9()45
f x x x =+
-(x>5)的最小值.
6、若x ,y R +∈,x+y=5,求xy 的最值
7、若x ,y R +∈,2x+y=5,求xy 的最值
8、已知直角三角形的面积为4平方厘米,求该三角形周长的最小值
1、求1 (3)3y x x x =
+>-的最小值.
2、求(5) (05)y x x x =-<<的最大值.
3、求1(14)(0)4y x x x =-<<的最大值。
4、求123 (0)y x x x =
+<的最大值.
5、若2x >,求1252y x x =-+
-的最小值
6、若0x <,求21x x y x ++=
的最大值。
7、求2
y =
的最小值.
8(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。
最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?。
基本不等式训练习题

基本不等式训练习题一、选择题1. 若a > b,则下列不等式中正确的是()A. a b > 0B. a + b > 0C. a² > b²D. 1/a < 1/b2. 已知x > y,则下列不等式中一定成立的是()A. x y > 0B. x² > y²C. 1/x < 1/yD. x + 1 > y + 13. 若a < b < 0,则下列不等式中正确的是()A. a² < b²B. a b > 0C. ab > 0D. 1/a > 1/b二、填空题1. 若a > b,则a b __________ 0。
2. 已知x < y,且x, y均为正数,则1/x __________ 1/y。
3. 若a < b < 0,则a² __________ b²。
三、解答题1. 已知x > y,证明:x + 1 > y + 1。
2. 已知a > b,且a, b均为正数,证明:a² > b²。
3. 若a < b < 0,证明:ab > 0。
4. 已知x, y为实数,且x + y > 0,证明:x² + y² > 0。
5. 已知a, b为正数,且a > b,证明:1/a < 1/b。
四、综合题1. 已知x, y为实数,且x > y,求证:x² y² > 0。
2. 若a, b, c为实数,且a > b > c,证明:a c > b c。
3. 已知a, b为正数,且a > b,求证:a² + b² > 2ab。
4. 若x, y为实数,且x + y > 0,证明:x² + 2xy + y² > 0。
(完整版)基本不等式均值定理练习题

基本不等式(均值定理)练习题 一、选择题 1.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b 恒成立的个数为( ) ①ab ≤1;②a b 2;+≤③a 2+b 2≥2;④a 3+b 3≥3;⑤11 2.a b+≥ (A)1 (B)2 (C)3 (D)42.已知22b 1m a a 2,n 2b 0,a 2-=+>=≠-()()则m 、n 之间的大小关系是( ) (A)m>n (B)m<n (C)m=n (D)不确定3.设a a a 11x 2x m log x,n log ,p log ,221x+===+其中0<a <1,x >0且x ≠1,则下列结论正确的是( ) (A )m <n <p (B)m <p <n (C)n <m <p (D)n <p <m4.已知不等式1a x y)()9x y++≥(对任意正实数x,y 恒成立,则正实数a 的最小值为( ) (A)8 (B)6 (C)4 (D)25.设a>0,b>0,若3是3a 与3b 的等比中项,则11a b+的最小值为( ) (A)8 (B)4 (C)1 (D)146.若a,b,c>0且a(a+b+c)+bc=423-,则2a+b+c 的最小值为( )()()()()A 3 1 B 3 1 C 23 2 D 232-++-7.设x>y>z,n ∈N *,且11n x y y z x z +≥---恒成立,则n 的最大值是( ) (A)2 (B)3 (C)4 (D)5二、填空题1.在4×+9×=60的两个中,分别填入两自然数,使它们的倒数和最小,应分别填上________和________.2.若正数a,b 满足ab=a+b+3,则ab 的取值范围是__________.3.若对任意x>0,2x a x 3x 1≥++恒成立,则a 的取值范围是__________. 4.函数y=log a (x+3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn >0,则12m n+的最小值为_______. 5.若实数满足2=+b a ,则b a 33+的最小值是 .三、解答题 1.若44log log 2x y +=,求11x y +的最小值.并求x,y 的值 2.若+∈R y x ,且12=+y x ,求yx 11+的最小值 3.已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.4.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、若实数x ,y 满足224x y +=,求xy 的最大值
2、若x 〉0,求9()4f x x x =+
的最小值;
3、若0x <,求1y x x =+
的最大值
4、若x<0,求9()4f x x x =+
的最大值
5、求9()45
f x x x =+
-(x 〉5)的最小值。
6、若x ,y R +∈,x+y=5,求xy 的最值
7、若x ,y R +∈,2x+y=5,求xy 的最值
8、已知直角三角形的面积为4平方厘米,求该三角形周长的最小值
1、求1 (3)3y x x x =
+>-的最小值。
2、求(5) (05)y x x x =-<<的最大值.
3、求1(14)(0)4y x x x =-<<的最大值。
4、求123 (0)y x x x =
+<的最大值。
5、若2x >,求1252y x x =-+
-的最小值
6、若0x <,求21x x y x ++=
的最大值。
7、求2
y =
的最小值.
8(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。
最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?。