微机保护实验报告参考模板
微机保护实验报告

微机保护实验报告The Standardization Office was revised on the afternoon of December 13, 2020微机继电保护实验报告项目名称:微机距离保护算法(1)姓名:陈发敏学号:K03134163班级:K0313416实验时间:实验地点:实验楼五楼实验成绩:一、 实验目的1.熟悉MATLAB 桌面和命令窗口;2.通过编写滤波程序、阻抗计算程序以及距离保护动作判据程序,了解微机保护工作原理。
3.定性分析各种算法的优缺点。
二、 实验内容1、用“load ”函数导入短路电流数据和短路电压数据,对其进行滤波处理,要求滤除直流分量和二次谐波分量。
注意观察数据的特征,数据第一列为时间,第二列为A 相值,第三列为B 相值,第三列为C 相值。
观察滤波前后的波形。
2、编写微机保护算法程序,包括短路阻抗算法和动作判据算法(判据为相间距离保护判据),阻抗继电器的动作特性采用方向圆特性。
并利用该程序对步骤1处理后的数据进行计算,观察保护的动作情况。
距离保护的整定值为:Z set =+ 。
三、 实验模型及程序1、 绘制滤波前后的电流、电压波形,并进行对比分析;电流波形滤波前,短路瞬间电流幅值变大,到短路后的稳态呈曲线变化;经过滤波后,短路后的稳态比较平稳。
电压波形滤波前,短路瞬间电压幅值急剧变小;经过滤波后,短路后的稳态比较平稳,且短路后电压波形变化没有电流波形变化大。
4444445555552、 设计编写保护算法程序,绘制阻抗幅值变化的波形,并分析保护的动作情况。
由阻抗幅值变化的波形和保护的动作情况可知:左图的B 相的阻抗值太低,所以致使B 相动作有明显的变化。
附MATLAB 程序如下:%实验3程序 clc; clear;%电压电流数据导入a=load('H:\To be completed\微机保护\jibao3_4\'); %导入电压量 b=load('H:\To be completed\微机保护\jibao3_4\'); %导入电流量 t=a(:,1)'; UA=a(:,2)'; UB=a(:,3)'; UC=a(:,4)'; IA=b(:,2)'; IB=b(:,3)'; IC=b(:,4)'; Ts=t(1,2)-t(1,1); N=Ts; m=size(t); %滤波处理 %%电流滤波 IIA=zeros(1,m(2)); IIB=zeros(1,m(2)); IIC=zeros(1,m(2)); for jj=101:m(2);IIA(jj)=(IA(jj)-IA(jj-100))/2; IIB(jj)=(IB(jj)-IB(jj-100))/2; IIC(jj)=(IC(jj)-IC(jj-100))/2; endsubplot(3,1,1); plot(t,IIA,'r') title('电流滤波') subplot(3,1,2);plot(t,IIB,'g')subplot(3,1,3);plot(t,IIC,'b')figuresubplot(3,1,1);plot(t,IA)title('电流波形')subplot(3,1,2);plot(t,IB)subplot(3,1,3);plot(t,IC)%%电压滤波UUA=zeros(1,m(2));UUB=zeros(1,m(2));UUC=zeros(1,m(2));for jj=101:m(2);UUA(jj)=(UA(jj)-UA(jj-100))/2;UUB(jj)=(UB(jj)-UB(jj-100))/2;UUC(jj)=(UC(jj)-UC(jj-100))/2;endfiguresubplot(3,1,1);plot(t,UUA,'r')title('电压滤波')subplot(3,1,2);plot(t,UUB,'g')subplot(3,1,3);plot(t,UUC,'b')%利用两点乘积算法计算%电压USA=zeros(1,m(2));USB=zeros(1,m(2));USC=zeros(1,m(2));for jj=N/4+1:m(2)USA(jj)=sqrt((UUA(jj)*UUA(jj)+UUA(jj-N/4)*UUA(jj-N/4))/2); USB(jj)=sqrt((UUB(jj)*UUB(jj)+UUB(jj-N/4)*UUB(jj-N/4))/2); USC(jj)=sqrt((UUC(jj)*UUC(jj)+UUC(jj-N/4)*UUC(jj-N/4))/2); end% %电流for jj=N/4+1:m(2)ISA(jj)=sqrt((IIA(jj)*IIA(jj)+IIA(jj-N/4)*IIA(jj-N/4))/2);ISB(jj)=sqrt((IIB(jj)*IIB(jj)+IIB(jj-N/4)*IIB(jj-N/4))/2);ISC(jj)=sqrt((IIC(jj)*IIC(jj)+IIC(jj-N/4)*IIC(jj-N/4))/2);end%定义测量电压和测量电流Um=UUA-UUB;Im=IIA-IIB;Um1=UUB-UUC;Im1=IIB-IIC;Um2=UUC-UUA;Im2=IIC-IIA;% %电阻、电抗、相角差for jj=N/4+1:m(2)R(jj)=(Um(jj)*Im(jj)+Um(jj-N/4)*Im(jj-N/4))/(Im(jj)*Im(jj)+Im(jj-N/4)*Im(jj-N/4));X(jj)=(Um(jj-N/4)*Im(jj)-Um(jj)*Im(jj-N/4))/(Im(jj)*Im(jj)+Im(jj-N/4)*Im(jj-N/4));O(jj)=180/pi*atan((Um(jj-N/4)*Im(jj)-Um(jj)*Im(jj-N/4))/(Um(jj)*Im(jj)+Um(jj-N/4)*Im(jj-N/4)));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%R1(jj)=(Um1(jj)*Im1(jj)+Um1(jj-N/4)*Im1(jj-N/4))/(Im1(jj)*Im1(jj)+Im1(jj-N/4)*Im1(jj-N/4));X1(jj)=(Um1(jj-N/4)*Im1(jj)-Um1(jj)*Im1(jj-N/4))/(Im1(jj)*Im1(jj)+Im1(jj-N/4)*Im1(jj-N/4));O1(jj)=180/pi*atan((Um1(jj-N/4)*Im1(jj)-Um1(jj)*Im1(jj-N/4))/(Um1(jj)*Im1(jj)+Um1(jj-N/4)*Im1(jj-N/4)));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%R2(jj)=(Um2(jj)*Im2(jj)+Um2(jj-N/4)*Im2(jj-N/4))/(Im2(jj)*Im2(jj)+Im2(jj-N/4)*Im2(jj-N/4));X2(jj)=(Um2(jj-N/4)*Im2(jj)-Um2(jj)*Im2(jj-N/4))/(Im2(jj)*Im2(jj)+Im2(jj-N/4)*Im2(jj-N/4));O2(jj)=180/pi*atan((Um2(jj-N/4)*Im2(jj)-Um2(jj)*Im2(jj-N/4))/(Um2(jj)*Im2(jj)+Um2(jj-N/4)*Im2(jj-N/4)));end%******动作判据*******%Zset=+i*;Zm=R+i.*X;Zm1=R1+i.*X1;Zm2=R2+i.*X2;flag=zeros(1,m(2));flag1=zeros(1,m(2));flag2=zeros(1,m(2));for jj=1:m(2)if abs(Zm(jj)*Zset)<=*abs(Zset)flag(jj)=1;endif abs(Zm1(jj)*Zset)<=*abs(Zset)flag1(jj)=1;endif abs(Zm2(jj)*Zset)<=*abs(Zset)flag2(jj)=1;endendfiguresubplot(221)plot(t,flag)title('动作判据')subplot(222)plot(t,flag1)subplot(223)plot(t,flag2)四、实验结果分析微机距离保护与线路参数和线路短路长度密切相关,微机距离保护算法中,给出线路参数及短路线路长度后,计算其短路阻抗根据整定原则确定其整定值。
微机保护实验报告

实验十一微机变压器差动速断//后备保护特性实验一、实验目的1、掌握微机变压器差动速断//后备保护的检验方法。
2、掌握微机保护综合测试仪的使用方法。
3、掌握微机变压器差动速断//后备保护的构成方法。
二、实验项目1、微机变压器差动速断保护的测试。
2、微机变压器后备保护的测试。
三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的5(I-1)、6(I-2)、7(I-3)、12(I-8)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-13)、2(I-14)、3(I-15)、4(I-16)号端子;K1、K2分别接到保护屏端子排对应的33(I-33)、34(I-34)号端子;n1、n2分别接到保护屏端子排对应的72(220VL)和73(220VN)号端子。
3、微机变压器差动速断保护的测试,方法如下:⑴,连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,选择测试主界面,可选择用“装置定检”中的差动测试、“任意测试”中的“连续输出”方式、“常用测试”中的“静态测试”等方式来完成。
(具体参见M2000使用手册)。
这里以选择“任意测试”方式来完成,其主界面如下:⑵、触发方式测试方法:第一步:连接好需要测试项目的电流线、电压线及开关量信号线(不需要的可以不接)(下同);第二步:进入任意测试,选择触发测试方式。
第三步:参数设置。
设置故障前电流电压值;故障前时间、最长故障时间、故障后时间,设置动作开关量通道及动作方式;说明:在下测试过程包括三个状态,第一个状态为故障前状态,出参数设置状态下故障前状态的设定值这个可以自己根据实际设定。
同时需确定故障前状态时间(时间必须大于保护启动时间)、故障态最长故障时间(这个时间必须大于保护整定时间,因为如果保护不动作则以这个时间结束、如果保护动作则动作后这个状态剩余时间不再继续而是自动停止)、故障后时间(用于微机保护打印测试结果),在故障状态输出主界面上设置的值,故障后状态为输出正常态电流值。
微机保护实验报告

微机保护实验报告试验一变压器差动保护试验一、试验目的1.熟悉变压器纵差保护的组成原理及整定值的调整方法。
2.了解差动保护制动特性的特点,加深对微机保护的认识。
3.学习微机型继电保护试验测试仪的测试原理和方法差动保护作为变压器的主保护,配置有波形对称原理的差动保护和差动电流速断保护。
其中,差动电流速断保护能在变压器区严重故障时快速跳开变压器的各侧开关。
二、试验原理电力变压器是电力系统中不可缺少的电力设备。
其故障分为部故障和外部故障两种。
电流差动保护不但能够正确的区分区外故障,而且不需要与其他元件的保护配合,就可以无延时地切除区各种故障,具有独特的特点而被广泛的用作变压器的主保护。
图1所示为三绕组变压器差动保护的原理接线图。
图2为工况下,变压器相关电气量的向量关系图。
这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。
而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。
变压器差动保护软件移相均是移Y型侧,对于∆侧电流的接线,TA二次电流相位不调整。
电流平衡以移相后的Y型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。
若∆侧为△-11接线,软件移相的向量图如图2。
1I、2I分别为变压器一次侧和二次侧的电流,参考方向为母线指向变压器;'1I、'2I分别为相应的电流互感器二次侧电流。
流入差动继电器KD的电流为:''12rI I I=+保护动作的判据为:图1差动保护接线图图2工况向量关系图r set I I ≥设变压器的变比12T U n U =,并且选择电流互感器的变比,使得21TA T TA n n n =,则经推算可得:122T r TA n I I I n +=忽略变压器的损耗,正常运行和区外故障时,一次电流的关系为210T I n I +=。
微机保护实训报告[最新版]
![微机保护实训报告[最新版]](https://img.taocdn.com/s3/m/7f1aa408fd4ffe4733687e21af45b307e871f9d9.png)
微机保护实训报告微机保护实训报告篇一:微机保护实验报告实验七一、实验目的微机线路相间方向距离保护实验1、掌握微机相间方向距离保护特性的检验方法。
2、掌握微机相间方向距离保护一、二、三段定值的检验方法。
3、掌握微机保护综合测试仪的使用方法。
4、熟悉微机型相间方向距离保护的构成方法。
二、实验项目1、微机相间方向距离保护特性实验2、微机相间方向距离保护一、二、三段定值实验三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN 分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。
3、微机相间方向距离保护特性的测试第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护测试主界面。
(参见M2000使用手册)第二步:设置测试方式及各种参数。
将测试方式设置成自动搜索方式,时间参数设置:包括故障前时间、最长故障时间、间隔时间。
固定值:用户可以设置固定电压或电流及其大小。
间隔是每一个脉冲后的停顿时间,在该时间内没有电压电流输出;若不希望在测试过程中有电压失压的情况,可将间隔时间设为 0 。
开关量输出:用户可以定义在故障发生时的开关量输出。
跳闸开关量:每个开关量输入通道以图形方式显示该通道的设定状态,设定状态包括:不选、断开、闭合三种。
您可以用鼠标点击相应开关的图形的中心即可切换开关状态。
在开关图形的右边有两个单选框分别为:与或,这是所有设定的开关量应满足的动作逻辑关系,与为所有设定的开关状态必须同时满足,或为设定的所有开关中某一个满足条件即可。
微机保护实验报告

实验十一微机变压器差动速断特性实验一、实验目的1、掌握微机变压器差动速断的检验方法。
2、掌握微机保护综合测试仪的使用方法。
3、掌握微机变压器差动速断的构成方法。
二、实验项目1、微机变压器差动速断保护的测试。
三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的5(I-1)、6(I-2)、7(I-3)、12(I-8)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-13)、2(I-14)、3(I-15)、4(I-16)号端子;K1、K2分别接到保护屏端子排对应的33(I-33)、34(I-34)号端子;n1、n2分别接到保护屏端子排对应的72(220VL)和73(220VN)号端子。
3、微机变压器差动速断保护的测试,方法如下:⑴,连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,选择测试主界面,可选择用“装置定检”中的差动测试、“任意测试”中的“连续输出”方式、“常用测试”中的“静态测试”等方式来完成。
(具体参见M2000使用手册)。
这里以选择“任意测试”方式来完成,其主界面如下:⑵、触发方式测试方法:第一步:连接好需要测试项目的电流线、电压线及开关量信号线(不需要的可以不接)(下同);第二步:进入任意测试,选择触发测试方式。
第三步:参数设置。
设置故障前电流电压值;故障前时间、最长故障时间、故障后时间,设置动作开关量通道及动作方式;第四步:设置故障态参数。
选择故障类型,设置故障时的各相参数及Vz的输出参数,选择是否需要输出开关量。
第五步:开始测试。
点击测试按钮或者点键盘的F5键。
测试自动完成。
⑶、手动测试方法第一步:接好线,打开测试仪。
选择手动测试,设置参数电流(幅值)、电压(幅值)、频率、相位的变化步长,是否选择联动及设置需要联动相;第二步:设置各相输出的初始值,是否为直流等,Vz.的输出方式;第三步:开始测试。
输电线路电流微机保护实验报告.

实验报告姓名: 班级: 学号:实验二 输电线路电流微机保护实验一、实验目的1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。
2.了解电磁式保护与微机型保护的区别。
二、基本原理1.试验台一次系统原理图试验台一次系统原理图如图3-1所示。
2.电流电压保护基本原理1)三段式电流保护当网络发生短路时,电源与故障点之间的电流会增大。
根据这个特点可以构成电流保护。
电流保护分无时限电流速断保护(简称I 段)、带时限速断保护(简称II 段)和过电流保护(简称III 段)。
下面分别讨论它们的作用原理和整定计算方法。
(1) 无时限电流速断保护(I 段)单侧电源线路上无时限电流速断保护的作用原理可用图3-2来说明。
短路电流的大小I k 和短路点至电源间的总电阻R ∑及短路类型有关。
三相短路和两相短路时,短路电流I k 与R ∑的关系可分别表示如下:lR R E R E I s ss k 0)3(+==∑ 图3-1 电流、电压保护实验一次系统图lR R E I s s k 0)2(*23+=式中, E s ——电源的等值计算相电势;R s —— 归算到保护安装处网络电压的系统等值电阻;R 0—— 线路单位长度的正序电阻;l —— 短路点至保护安装处的距离。
由上两式可以看到,短路点距电源愈远(l 愈长)短路电流L k 愈小;系统运行方式小(R s 愈大的运行方式)I k 亦小。
I k 与l 的关系曲线如图3-2曲线1和2所示。
曲线1为最大运行方式(R s 最小的运行方式)下的I K = f (l )曲线,曲线2为最小运行方式(Rs 最大的运行方式)下的I K = f (l )曲线。
线路AB 和BC 上均装有仅反应电流增大而瞬时动作的电流速断保护,则当线路AB 上发生故障时,希望保护KA 2能瞬时动作,而当线路BC 上故障时,希望保护KA 1能瞬时动作,它们的保护范围最好能达到本路线全长的100%。
但是这种愿望是否能实现,需要作具体分析。
微机差动保护实习报告

一、实习目的通过本次实习,使学生了解微机差动保护的基本原理、装置结构、工作过程和调试方法,掌握微机差动保护的操作技能,提高学生实际操作能力,为今后从事电力系统保护工作打下坚实基础。
二、实习内容1. 微机差动保护基本原理微机差动保护是利用电流互感器(CT)对被保护设备的电流进行检测,通过比较两侧电流的差值来实现对设备内部故障的检测。
当被保护设备发生故障时,两侧电流的差值会超过设定的动作阈值,触发保护装置动作,切断故障电路,保护设备安全。
2. 微机差动保护装置结构微机差动保护装置主要由以下几部分组成:(1)电流互感器(CT):将高压侧电流转换为低压侧电流,便于微机保护装置处理。
(2)微机保护装置:包括模拟输入模块、数字信号处理器(DSP)、通信模块等,负责对电流信号进行处理、分析、判断和动作。
(3)执行机构:包括继电器、断路器等,负责切断故障电路。
3. 微机差动保护工作过程(1)正常运行时,微机保护装置检测到两侧电流的差值小于设定阈值,保护装置不动作。
(2)当被保护设备发生故障时,两侧电流的差值超过设定阈值,微机保护装置启动保护程序,判断故障类型,发出动作信号。
(3)执行机构根据动作信号切断故障电路,保护设备安全。
4. 微机差动保护调试方法(1)检查电流互感器接线是否正确,确保二次回路接地点可靠。
(2)检查微机保护装置各模块是否正常,包括电源、通信、模拟输入等。
(3)设置保护参数,包括动作阈值、时间延时等。
(4)进行模拟试验,验证保护装置的动作性能。
三、实习过程1. 了解微机差动保护的基本原理和装置结构。
2. 观察现场微机差动保护装置,了解其外观和功能。
3. 学习微机差动保护调试方法,包括检查接线、设置参数、模拟试验等。
4. 在指导下,进行微机差动保护装置的调试,包括接线、设置参数、模拟试验等。
5. 分析调试过程中出现的问题,查找原因,解决问题。
四、实习收获1. 深入了解了微机差动保护的基本原理和装置结构。
微机保护实验报告

电气信息学院微机保护实验报告实验内容:实验七:微机线路相间方向距离保护实验实验八:微机接地方向距离保护特性实验实验九:微机零序方向距离保护特性实验实验十:微机线路保护屏整组特性实验专业:电气工程及其自动化班级:姓名:学号:指导教师:阻抗特性搜索五、微机保护与传统模拟保护区别:微机可靠性更高,满足各种运行条件微机更灵活,更能适应现在电力系统的需要微机保护性能比传统模拟保护更高微机保护功能容易获得扩充微机保护维护调试方便,工作量小微机保护利于实现综合自动化微机保护的成本相比传统模拟保护来说更小微机保护基于传统保护的理论基础之上,结合现在较为普遍的计算机技术,实现更多更复杂传统保护所达不到的要求和功能,更加适用于自动化程度越来越高的现代电力系统。
六、实验心得:通过这次微机保护实验及老师的讲解,跟同学们在实验过程中的交流,使我对微机保护、继电保护这两门门课都有了新的认识。
之前觉得这微机保护很抽象,甚至有点无聊。
但是在实验中改变了我一直以来的认识。
自身的动手操作,发现理论跟实际操作部是那么简单的样子,很多适用操作都不会,都得请教实验指导老师,操作过程中也会遇到很多问题,跟同学们交流、跟老师请教后发现微机保护对现代电力系统有着很重要的作用和很高的地位。
在现代化、自动化程度越来越高的电力系统中,传统的继电保护作用在微机保护的配合下,性能越来越好,也越来越重要。
这次的实验使我对真正的微机保护有了新的认识,对它的作用和重要性也有了重新的认识。
虽然这次实验的内容都是很自动化的,操作都是在电脑上进行,与传统意义上的实验有些不同,不过实验的目的已经达到:对理论知识有了新的理解,增强了自己的动手能力,对现代电力系统中最为重要的继电保护模块有了大体上的感知,也指导把使理论知识与实际相结合起来是很重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七微机线路相间方向距离保护实验一、实验目的1、掌握微机相间方向距离保护特性的检验方法。
2、掌握微机相间方向距离保护一、二、三段定值的检验方法。
3、掌握微机保护综合测试仪的使用方法。
4、熟悉微机型相间方向距离保护的构成方法。
二、实验项目1、微机相间方向距离保护特性实验2、微机相间方向距离保护一、二、三段定值实验三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。
3、微机相间方向距离保护特性的测试第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护测试主界面。
(参见M2000使用手册)第二步:设置测试方式及各种参数。
将测试方式设置成自动搜索方式,时间参数设置:包括故障前时间、最长故障时间、间隔时间。
固定值:用户可以设置固定电压或电流及其大小。
间隔时间:是每一个脉冲后的停顿时间,在该时间内没有电压电流输出;若不希望在测试过程中有电压失压的情况,可将间隔时间设为 0 。
开关量输出:用户可以定义在故障发生时的开关量输出。
跳闸开关量:每个开关量输入通道以图形方式显示该通道的设定状态,设定状态包括:不选、断开、闭合三种。
您可以用鼠标点击相应开关的图形的中心即可切换开关状态。
在开关图形的右边有两个单选框分别为:与或,这是所有设定的开关量应满足的动作逻辑关系,与为所有设定的开关状态必须同时满足,或为设定的所有开关中某一个满足条件即可。
故障:设置故障类型。
设置成相间故障类型(如两相短路或三相短路)。
固定值:用户可以设置固定电压或电流及其大小。
扫描半径:相对于扫描原点的扫描圆半径。
精度:有相对精度和绝对精度。
当两点的Z值差小于绝对值或相对值中大者时,则停止在这两点间的搜索。
时间阶梯:每一段之间的最小时间差,小于这个值,就认为在一段内。
K:零序补偿系数的计算公式,前面是实部,后面是虚部。
角度设置:相对于扫描原点的扫描角度的设置。
扫描原点:扫描辐射线的中心点,此点必须位于封闭边界内,否则无法扫描出边界。
初始时间:整个测试开始前的予故障时间,与故障前时间概念不同,只是针对特殊的继电器,用户可以不管。
第三步:开始试验点击主窗体上的开始按钮开始测试。
用户可在状态界面的Z平面页下,看到整个试验过程。
第四步:补充点如用户测试完后,需要补充几个点,可选择单触发的方式。
4、微机相间方向距离保护一、二、三段定值的测试。
方法如下:第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护定检;第二步:设置“定值/测试点”,将保护定值输入界面上对应框内,选择测试点,设置固定电流还是固定电压及其值;说明:定值是指阻抗值(包括电阻电抗),阻抗角为短路阻抗的阻抗角,测试点为输出阻抗为所设置阻抗定值的倍数;固定电流指在各段测试中故障状态电流不会变化而只有电压变化(即在0.95和1.05时电流都为5A,而电压由阻抗与电流通过公式计算确定),固定电压与此相反,电压不变电流变。
第三步:设置参数。
选择故障类型,实验方法,设置零序补偿系数,故障前时间、最长故障时间、和闸角,确定故障后是否失压,选择开关量及动作方式;说明:故障前时间一定大于能启动保护时间。
第四步:开始测试。
点击测试按钮或者点键盘的F5键。
测试自动完成;第五步:保存测试结果。
说明:本测试可以一次做几段保护的各种故障,在选择测试点时选中多项(需要的)就行;但是如果需要故障后不失压(保护不提示“PT断线”)就应该选择故障后不失压;这样就可以一次完成测试。
5、记录实验数据、动作特性边界图。
6、实验结束后应将屏内的所有接线恢复完好,并清理现场,且试验结果均应符合要求。
7、将实验所测得的数据、动作特性图进行分析,并写出实验报告。
实验八微机接地方向距离保护特性实验一、实验目的1、掌握微机接地方向距离保护特性的检验方法。
2、掌握微机接地方向距离保护一、二、三段定值的检验方法。
3、掌握微机保护综合测试仪的使用方法。
4、熟悉微机型接地方向距离保护的构成方法。
二、实验项目1、微机接地方向距离保护特性实验2、微机接地方向距离保护一、二、三段定值实验三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。
3、微机接地方向距离保护特性的测试第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护测试主界面。
(参见M2000使用手册)第二步:设置测试方式及各种参数。
将测试方式设置成自动搜索方式,时间参数设置:包括故障前时间、最长故障时间、间隔时间。
固定值:用户可以设置固定电压或电流及其大小。
间隔时间:是每一个脉冲后的停顿时间,在该时间内没有电压电流输出;若不希望在测试过程中有电压失压的情况,可将间隔时间设为 0 。
开关量输出:用户可以定义在故障发生时的开关量输出。
跳闸开关量:每个开关量输入通道以图形方式显示该通道的设定状态,设定状态包括:不选、断开、闭合三种。
您可以用鼠标点击相应开关的图形的中心即可切换开关状态。
在开关图形的右边有两个单选框分别为:与或,这是所有设定的开关量应满足的动作逻辑关系,与为所有设定的开关状态必须同时满足,或为设定的所有开关中某一个满足条件即可。
故障:设置故障类型。
设置成接地故障类型(如单相接地或两相接地)固定值:用户可以设置固定电压或电流及其大小。
扫描半径:相对于扫描原点的扫描圆半径。
精度:有相对精度和绝对精度。
当两点的Z值差小于绝对值或相对值中大者时,则停止在这两点间的搜索。
时间阶梯:每一段之间的最小时间差,小于这个值,就认为在一段内。
K:零序补偿系数的计算公式,前面是实部,后面是虚部。
角度设置:相对于扫描原点的扫描角度的设置。
扫描原点:扫描辐射线的中心点,此点必须位于封闭边界内,否则无法扫描出边界。
初始时间:整个测试开始前的予故障时间,与故障前时间概念不同,只是针对特殊的继电器,用户可以不管。
第三步:开始试验点击主窗体上的开始按钮开始测试。
用户可在状态界面的Z平面页下,看到整个试验过程。
第四步:补充点如用户测试完后,需要补充几个点,可选择单触发的方式。
4、微机接地方向距离保护一、二、三段定值的测试。
方法如下:第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护定检;(参见M2000使用手册)第二步:设置“定值/测试点”,将保护定值输入界面上对应框内,选择测试点,设置固定电流还是固定电压及其值;说明:定值是指阻抗值(包括电阻电抗),阻抗角为短路阻抗的阻抗角,测试点为输出阻抗为所设置阻抗定值的倍数;固定电流指在各段测试中故障状态电流不会变化而只有电压变化(即在0.95和1.05时电流都为5A,而电压由阻抗与电流通过公式计算确定),固定电压与此相反,电压不变电流变。
第三步:设置参数。
选择故障类型,实验方法,设置零序补偿系数,故障前时间、最长故障时间、和闸角,确定故障后是否失压,选择开关量及动作方式;说明:故障前时间一定大于能启动保护时间。
第四步:开始测试。
点击测试按钮或者点键盘的F5键。
测试自动完成;第五步:保存测试结果。
说明:本测试可以一次做几段保护的各种故障,在选择测试点时选中多项(需要的)就行;但是如果需要故障后不失压(保护不提示“PT断线”)就应该选择故障后不失压;这样就可以一次完成测试。
5、记录实验数据、动作特性边界图。
6、实验结束后应将屏内的所有接线恢复完好,并清理现场,且试验结果均应符合要求。
7、将实验所测得的数据、动作特性图进行分析,并写出实验报告。
实验九微机零序方向电流保护特性实验一、实验目的1、掌握微机零序方向电流保护一、二、三、四段定值的检验方法。
2、掌握微机保护综合测试仪的使用方法。
3、熟悉微机型零序方向电流保护的构成方法。
二、实验项目微机零序方向电流保护一、二、三、四段定值实验三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。
3、微机零序方向电流保护一、二、三、四段定值的测试,方法如下:第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入零序保护定检;(参见M2000使用手册)第二步:设置“定值/测试点”,将保护定值(电流值)输入界面上对应框内,选择测试点(测试点即输出电流为设置定值的倍数);第三步:设置参数。
选择接地类型及试验方式;设置故障前时间、最长故障时间、故障后时间;故障灵敏角、故障电压、合闸角;选择故障后是否失压;如果电流输出值较大,可以选择电流串联;确定开关量输入通道及动作方式;第四步:开始测试。
点击测试按钮或者点键盘的F5键。
测试自动完成;第五步:保存测试结果。
说明:本测试可以一次做几段保护的各种故障,在选择测试点时选中多项(需要的)就行;但是如果需要故障后不失压(保护不提示“PT断线”)就应该选择故障后不失压;这样就可以一次完成测试。
4、记录实验数据、动作特性边界图。
5、实验结束后应将屏内的所有接线恢复完好,并清理现场,且试验结果均应符合要求。
6、将实验所测得的数据、动作特性图进行分析,并写出实验报告。
实验十微机线路保护屏整组试验一、实验目的1、掌握微机线路保护屏整组检验方法。
2、掌握微机保护综合测试仪的使用方法。
3、掌握微机线路保护屏应配置哪些主保护和后备保护。