海盗分金币问题
海盗分金子智力题

海盗分金币:5个海盗抢得100枚金币后,讨论如何进行公正分配。
他们商定的分配原则是:(1)抽签确定各人的分配顺序号码(1,2,3,4,5);(2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将1号扔进大海喂鲨鱼;(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人同意时,才会按照他的提案进行分配,否则也将被扔入大海;(4)依此类推。
这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。
同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?解题思路1:首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。
哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。
因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。
因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。
海盗分金币

如果剩四名海盗时,情况如何?首先,三号海盗肯定反对二号,原因前面已讲,这里不再赘述。所以,二号一定要争取到四号和五号,这样他的方案才会有半数以上的人同意。在三人分配中,四号和五号得到零枚。可现在的问题是金币只有一枚,无法同时满足四号和五号。如果给四号一枚,五号不同意;如果给五号一枚,四号不同意。综合一下,就是四人分配时,二号必定挂掉。有人会说,给四号或五号一枚,五号或四号有可能同意啊。实际上,没有可能,因为他们是Pirates。所以,二号的策略就是千方百计保住一号,这样才能保住自己。
3. 当P为奇数时,有三种情况:
①(P-3)/2<N<(P+1)/2或P=2*N+1,分配(0,1,1,0……1,0,0),注:1,0为一组,重复出现,出现的次数为(P-3)/2。
②(P-1)/2<N<(P+3)/2,分配(0,0,1,*……1,*,*),注:1,*为一组,重复出现,出现的次数为(P-3)/2,将其中一个“*”替换为2,其它替换为“0”。
现在,轮到我们一号海盗做出决定了。如果你是一号,又该如何呢?首先,二号是铁定反对一号了,不用考虑,原因不再赘述。一号只需争取到三号、四号、五号中的两票就超过半数了。三号在四人分配中是一枚金币也拿不到的。那我们就给三号一枚,这就他利益的最大化,他肯定会同意的。四号、五号在四人分配中能得到一枚,那我们给四号、五号其中一人两枚金币就可以了,绝对不能是一枚,两枚才是四号/五号利益的最大化。这样,五名海盗的分配结果是(97,0,1,2,0)或(97,0,1,0,2)。
如果五名海盗来分配两枚金币有什么方案呢?不同于只有一枚金币的时候,二号不再是铁杆,他是否同意要看一号的表现了,而四人分配时二号没有获得金币。那么我们给二号一枚,二号肯定同意。四人分配时三号也没有金币,我们给三号一枚,三号也肯定同意。所以,有两枚金币的时候,分配方案是(0,1,1,0,0)。
【博弈论】海盗分金问题

【博弈论】海盗分⾦问题HDU 1538 A Puzzle for Pirates这是⼀个经典问题,有n个海盗,分m块⾦⼦,其中他们会按⼀定的顺序提出⾃⼰的分配⽅案,如果50%或以上的⼈赞成,则⽅案通过,开始分⾦⼦,如果不通过,则把提出⽅案的扔到海⾥,下⼀个⼈继续。
现在给出n,问第k个海盗(第n个海盗先提⽅案,第1个最后提⽅案)可以分到多少⾦⼦,还是会被扔到海⾥去。
⾸先我们讲⼀下海盗分⾦决策的三个标准:保命,拿更多的⾦⼦,杀⼈,优先级是递减的。
同时分为两个状态稳定状态和不稳定状态:如果当n和m的组合使得最先决策的⼈(编号为n)不会被丢下海, 即游戏会⽴即结束, 就称这个状态时"稳定的". 反之, 问题会退化为n-1和m的组合, 直到达到⼀个稳定状态, 所以称这种状态为"不稳定的".接下来我们从简单的开始分析:如果只有两个⼈的话:那么2号开始提出⽅案,这时候知道不管提什么,他⾃⼰肯定赞成,⼤于等于半数,⽅案通过,那么2号肯定把所有的⾦⼦都给了⾃⼰。
如果只有三个⼈的话:那么3号知道,如果⾃⼰死了,那么2号肯定能把所有⾦⼦拿下,对于1号来说没有半点好处。
那么他就拿出⾦⼦贿赂1号,1号拿到1个⾦⼦,总⽐没有好,肯定赞成3号,剩下的3号拿下。
如果只有四个⼈的话:那么4号知道,如果⾃⼰死了,那么1号拿到1个⾦⼦,2号什么都没有,3号拿下剩下的⾦⼦。
那他就可以拿出部分⾦⼦贿赂2号,2号知道如果4号死了,⾃⼰将什么都没有,他肯定赞成4号。
如此类推下去,如果n<=2*m时候,前⾯与n相同奇偶性的得到1个⾦⼦,剩下的第n个⼈全部拿下。
但是会有⼀个问题便是,如果⾦⼦不够贿赂怎么办:我们将问题具体化:如果有500个海盗,只有100个⾦⼦,那么前⾯200个已经分析过了。
对于201号来说,拿出100个⾦⼦贿赂前⾯的第200号分⾦⼦时拿不到⾦⼦的100个⼈。
⾃⼰不拿⾦⼦,这样刚好有101票保证⾃⼰不死,如果分给之前能拿到⾦⼦的⼈,那么之前拿不到⾦⼦的⼈反正⽆论如何也拿不到⾦⼦,不如把你杀了。
五个海盗如何分100个金币呢?

五个海盗如何分100个金币呢?故事:五个海盗抢到了100个金币,每一颗都一样的大小和价值连城。
他们决定这么分:1.抽签决定自己的号码------ [1、2、3、4、5]2.首先,由1号提出分配方案,然后大家5人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4.以次类推条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己免于下海以及自己获得最多的金币呢?--------------------------------------------------------------------------------此题公认的标准答案是:1号海盗分给3号1枚金币,4号或5号2枚金币,自己则独得97枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。
现来看如下各人的理性分析:首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。
哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。
因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
经典智力问答题:海盗分金币

经典智力问答题:海盗分金币
5个海盗抢得100枚金币后,讨论如何实行公正分配。
他们商定的分配原则是:
(1)抽签确定各人的分配顺序号码(1,2,3,4,5);
(2)由抽到1号签的海盗提出分配方案,然后5人实行表决,如果方案得到超过半数的人同意,就按照他的方案实行分配,否则就将1号扔进大海喂鲨鱼;
(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人实行表决,当且仅当超过半数的人同意时,才会按照他的提案实行分配,否则也将被扔入大海;
(4)依此类推。
这里假设每一个海盗都是绝顶聪明而理性,他们都能够实行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。
同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又能够得到更多的金币呢?
第一题:参考答案
1:96 2:0 3:0 4:2 5:2
首先,当对3的方案表决时,4会支持3,因为否则的话他就要被5反对,从而死。
所以,如果1,2死了,3的方案肯定是100,0,0,并且一定会得到3和4的支持,此时4,5的收入为0,所以1,2能够贿赂4,5而得到支持。
同时3的期望收入为100,他必定会不顾一切地反对1,2。
而如果1死了,2的方案肯定是98,0,1,1,并且一定会通过。
所以1的方案为96,0,0,2,2,并且一定会通过。
其实98,0,0,1,1也能够,并且有可能通过(看4,5的心情和残忍水准而定)。
五个海盗分金币的逻辑题

五个海盗分金币的逻辑题一、引言在这个逻辑题中,我们将探讨五个海盗如何分配一定数量的金币。
这个题目看似简单,但背后涉及到一系列复杂的逻辑和策略问题。
通过分析不同的情况和可能性,我们可以得出一种合理的分配方案。
本文将以从简到繁、由浅入深的方式来讨论这个主题,帮助读者更好地理解。
二、问题描述假设有五个海盗,他们共同掌握了一定数量的金币。
现在,他们需要按照一定规则分配这些金币。
以下是问题的具体描述:1. 这五个海盗按照编号从1到5依次排列。
2. 海盗1是首领,他有权利提出一份分配方案,并自己先投票。
3. 所有海盗包括首领,都会进行投票。
如果多数人同意,分配方案立即生效。
4. 如果有多个方案得到相同的票数,那么首领可以在这些方案中进行选择。
5. 如果分配方案得到了多数人的支持,包括首领自己在内,那么分配方案生效并按照规定的方式执行。
6. 如果分配方案未得到多数人的支持,包括首领自己不支持,那么首领将被扔下海鲨鱼吃掉,然后重新选择一个新的首领,整个过程重复。
问题的关键在于,每个海盗都想尽可能获取更多的金币,但又不能得罪其他海盗,以至于自己失去性命。
在这种情况下,我们来探讨一种合理的分配方案。
三、分配方案的解析1. 最初思考让我们从一种最简单的情况开始思考。
假设只有1枚金币,海盗1应该如何分配给其他4个海盗以及自己?我们可以发现,海盗1自己一定要得到这1枚金币。
因为如果他不得到金币,那么他将被扔下海并重新选择首领。
而其他4个海盗也不愿意让海盗1拿到太多金币,因为这会导致其他人的经济地位下降,再加上他们也有可能成为下一个首领。
在这种情况下,我们得出的结论是:海盗1将获得全部金币。
2. 增加金币数量现在,让我们考虑更多的金币。
假设有10枚金币,海盗1将如何分配?我们可以设想以下几个情况:(1)海盗1将全部金币分给除自己以外的其他海盗。
在这种情况下,其他海盗将会支持分配方案,因为他们会得到更多的金币。
(2)海盗1分给自己1枚金币,并分剩下的9枚金币给其他海盗。
简单的博弈论—海盗分金

简单的博弈论—海盗分金经济学上有个“海盗分金”模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,投票要超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼。
假设前提假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
现实生活中也有类似的“海盗分金”的例子如在企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。
海盗分金问题

海盗分金问题这是一帮亡命之徒 ,在海上抢人钱财 ,夺人性命 ,干的是刀头上舔血的营生。
在我们的印象中 ,他们一般都瞎一只眼 ,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。
他们还有在地下埋宝的好习惯 ,而且总要画上一张藏宝图 ,以方便后人掘取。
不过大家是否知道 ,他们是世界上最民主的团体。
参加海盗的都是桀骜不驯的汉子 ,是不愿听人命令的 ,船上平时一切事都由投票解决。
船长的唯一特权 ,是有自己的一套餐具——可是在他不用时 ,其他海盗是可以借来用的。
船上的唯一惩罚 ,就是被丢到海里去喂鱼。
现在船上有假设干个海盗 ,要分抢来的假设干枚金币。
自然 ,这样的问题他们是由投票来解决的。
投票的规那么如下:先由最凶猛的海盗来提出分配方案 ,然后大家一人一票表决 ,如果有50%或以上的海盗同意这个方案 ,那么就以此方案分配 ,如果少于50%的海盗同意 ,那么这个提出方案的海盗就将被丢到海里去喂鱼 ,然后由剩下的海盗中最凶猛的那个海盗提出方案 ,依此类推。
我们先要对海盗们作一些假设。
1)每个海盗的凶猛性都不同 ,而且所有海盗都知道别人的凶猛性 ,也就是说 ,每个海盗都知道自己和别人在这个提出方案的序列中的位置。
另外 ,每个海盗的数学和逻辑都很好 ,而且很理智。
最后 ,海盗间私底下的交易是不存在的 ,因为海盗除了自己谁都不相信。
2)一枚金币是不能被分割的 ,不可以你半枚我半枚。
3)每个海盗当然不愿意自己被丢到海里去喂鱼 ,这是最重要的。
4)每个海盗当然希望自己能得到尽可能多的金币。
5)每个海盗都是现实主义者 ,如果在一个方案中他得到了1枚金币 ,而下一个方案中 ,他有两种可能 ,一种得到许多金币 ,一种得不到金币 ,他会同意目前这个方案 ,而不会有侥幸心理。
总而言之 ,他们相信二鸟在林 ,不如一鸟在手。
6)最后 ,每个海盗都很喜欢其他海盗被丢到海里去喂鱼。
在不损害自己利益的前提下 ,他会尽可能投票让自己的同伴喂鱼。
现在 ,如果有10个海盗要分100枚金币 ,将会怎样?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有五个海盗,在海上抢来了一百颗钻石,每一颗都价值连城。
五个海盗都很贪婪,他们都希望自己能分得最多的钻石,但同时又都很明智。
于是他们按照抽签的方法,排出一个次序。
首先由抽到一号签的海盗说出一套分钻石的方案,如果5
个人中有50%以上(不含50%)的人同意,那么便依照这个方案执行,否则的话,这个提出方案的人将被扔到海里喂鱼,接下来再由抽到二号签的海盗继续说出一套方案,然后依次类推到第五个。
前提是五个海盗都很聪明。
游戏规则就是这样残酷,现在问题出来了:
如果你是抽到一号签的海盗,你计划提出一套什么样的方案,在保住小命的前提下,分得最多的钻石?
答案:
要回答这个问题,一般人肯定会想到,1号必须先让另外两个人同意,所以,他可以自己得到32颗,而给2号3号各34颗。
但只要仔细想想,就会发现不可能,
2号和3号有积极性让1号死,以便自己得到更多。
所以,1号无奈之下,可能只有自己得0,而给2和3各50颗。
但事实证明,这种做法依然不可行。
为什么呢?
因为我们要先看4号和5号的反应才行。
很显然,如果最后只剩下4和5,这无论4提出怎样的方案,5号都会坚决反对。
即使4号提出自己要0,而把100颗钻石都给5,5也不会答应――因为5号愿意看到4号死掉。
这样,5号最后顺利得到100颗钻石——因此,4的方案绝对无法获得半数以上通过,如果轮到4号分配,4号只有死,只有死!
由此可见,4号绝对不会允许自己来分。
他注定是一个弱者中的弱者,他必须同意3号的任何方案!或者1号2号的合理方案。
可见,如果1号2号死掉了,轮到3号分,3号可以说:我自己100颗,4号5号0颗,同意的请举手!这时候,4号为了不死,只好举手,而5号暴跳如雷地反对,但是没有用。
因为3个人里面有2个人同意啊,通过率66.7%,大于50%!
由此可见,当轮到3号分配的时候,他自己100颗,4和5都是0。
因此,4和5不会允许轮到3来分。
如果2号能够给4和5一些利益,他们是会同意的。
比如2的分配方案是:98,0,1,1,那么,3的反对无效。
4和5都能得到1,比3号来分配的时候只能得到0要好得多,所以他们不得不同意。
由此看来,2号的最大利益是98。
1号要收买2号,是不可能的。
在这种情况下,1号可以给4号和5号每人2颗,自己收买他们。
这样,2号和3号反对是无效的。
因此,1号的一种分配方案是:96,0,0,2,2。
这是不是最佳方案呢?再想一想,1号也可以不给4号和5号各2个,而只需要1个就搞定了3号,因为如果轮到2号来分配,2号是可以不给3号的,3号的得益只有0。
所以,能得到1个,3号也该很满意了。
所以,最后的解应该是:97,0,1,2,0。
好,再倒推。
假设1号提出了97,0,1,0,2的方案,1号自己赞成。
2和4反对。
3∶2,关键就在于3号和5号会不会反对。
假设3号反对,杀掉1号,2号来分配,3自己只能得到0。
显然,3号不划算,他不会反对。
如果5号反对,轮到2号、3号、4号来分配,5号自己最多只能得到1。
所以,3号和5号与其各得到0和1,还不如现在的1和2。
正确的答案应该是:1号分配,依次是:97,0,1,0,2; 或者是:97,0,1,2,0。