用单摆测定重力加速度

合集下载

用单摆测量重力加速度

用单摆测量重力加速度

(6)研究单摆的周期跟摆长的关系.在重力加速度一定时,周期 跟摆长的二次方根成正比.测出不同摆长下,周期跟相应的摆长 的关系,然后以做出L--T图像,利用图像研究比例关系。
秒表的使用和读数: 停表的读数等于内侧分针的读数与外侧秒针的读数之和.
注意:当内侧分针没有超过半格时,外侧秒针读小于
30的数字;
(3)把单摆从平衡位置拉开一个很小的角度(不超过10º),然后 放开小球让它摆动,用停表测量单摆完成30次全振动(或50次) 所用的时间,求出完成一次全振动所需要的时间,这个平均时 间就是单摆的周期.
(4)把测得的周期和摆长的数值代入公式 速度g的值.
,求出重力加
(5)改变摆长,重做几次实验.设计一个表格,把测得的数据和 计算结果填入表格中,计算出每次实验的重力加速度.最后求出 几次实验得到的重力加速度的平均值,即可看作本地区的重力 加速度.
(6)测量单摆的振长时应使摆球处于自然下垂状态,用米尺测量出摆线 的长度,再用游标卡尺测出摆球的直径,然后算出摆长,要准确到毫米 位.
【误差分析】
①本实验系统误差主要来源于单摆模型本身是否符合要求.即:悬点是否固定,是 单摆还是复摆,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动, 以及测量哪段长度作为摆长等等。只要注意了上面这些方面,就可以使系统误差减 小到远小于偶然误差而忽略不计的程度.
【实验器材】
带孔小钢球一个 约1m长的细线一条 铁架台 米尺 停表 游标卡尺.
【实验内容】
1、步骤 (1)取约1m长的细线穿过带孔的小钢球,
并打一个比小孔大一些的结,然后拴在桌边 的支架上,如图所示.
(2)用米尺量出悬线长L′,准确到毫米;用 游标卡尺测摆球直径,算出半径r,也准确 到毫米。则单摆的摆长为L+r.

物理实验之用单摆测定重力加速度

物理实验之用单摆测定重力加速度

用单摆测定重力加速度实验目的用单摆测定当地的重力加速度实验原理当单摆摆角很小(小于50)时,可看作简谐运动,其固有周期为,由公式可得故只要测定摆长l和单摆的周期T,即可算出重力加速度g。

实验器材长约1米的细线、小铁球、铁架台(连铁夹)、米尺、秒表。

实验步骤(1)将细线的一端穿过铁球上的小孔并打结固定好,线的另一端固定在铁架台上,做成一个单摆。

(2)用毫米刻度的米尺测定单摆的摆长l(摆线静挂时从悬挂点到球心的距离)。

(3)让单摆摆动(摆角小于50),测定n(30—50)次全振动的时间t,用公式求出单摆的平均周期T;(4)用公式算出重力加速度g。

实验记录实验结论实验注意1、细线不可伸缩,长度约1m。

小球应选用密度较大的金属球,直径应较小(最好不超过2㎝)。

2、单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。

3、最大摆角小于5º,可用量角器测量,然后通过振幅来掌握。

4、摆球摆动时要在同一个竖直平面内。

5、计算单摆的振动次数时,应以摆球通过最低点时开始计时,以后摆球从同一方向通过最低点时进行计数,且在数零的同时按下秒表,开始计时计数,并且要测多次全振动的总时间,然后除以振动次数,如此反复三次,求得周期的平均值作为单摆的周期。

实验练习(1)在用单摆测重力加速度的实验中,摆线应选用:A.80厘米长的橡皮筋. B.1米左右的细线.C.1米左右的粗绳.D.25厘米左右的细绳.(2)在用单摆测重力加速度的实验中,摆球应选用:A.半径约1厘米的木球. B.半径约1厘米的铝球.C.半径约1厘米的空心钢球. D.半径约1厘米的空心钢球.(3)在“用单摆测重力加速度”的实验中,单摆得摆角必须小于50,其原因是因为:A.单摆的周期与振幅有关,摆角超过50,测出周期大;B.摆角越大,空气阻力越大,影响实验结果;C.因为简谐振动的周期与振幅无关,摆角小些给实验带来很大方便;D.摆角超过50,单摆的振动不在是简谐振动,周期公式失效.(4)利用单摆测重力加速度的实验中,若测得g 只偏小,可能是由于:A.计算摆长时,只考虑悬线长,而未加小球半径;B.测量周期时,将n 次全振动,误记成n+1次全振动;C.计算摆长时,用悬线长加小球直径;D.单摆振动时,振幅较小.(5)为了提高周期的测量精度,下列那种说法是可取的?A.在最大位移处启动秒表和结束记时;B.用秒表测30至50次全振动的时间,计算出平均值;C..用秒表测100次全振动的时间,计算出平均周期;D.在平衡位置启动秒表,并开始记数,当摆球第30次经过平衡位置时制动秒表,若读数为t ,7、 在用单摆测重力加速度的实验中,某同学利用两个单摆测得其周期分别为T 1、T 2,已知两个单摆的摆长之和为L ,则测得当地重力加速的表达式为____________。

单摆测重力加速度数据处理

单摆测重力加速度数据处理

单摆测重力加速度数据处理用单摆测重力加速度实验中,可用公式法和图像法处理实验数据,得到当地的重力加速度大小。

一、用公式法处理实验数据。

根据单摆周期公式T=2π√lg,可得g=4l²lT²,代入实验中测的摆长和周期数值,就可以求出重力加速度。

在实验中,要正确的实验操作测出单摆摆长和周期,求出的重力加速度值才与真实值相等,否则将出现偏差。

如把单摆摆线长当成了摆长,则求出的重力加速度比真实值偏小;如果把单摆的摆线长和小球直径之和当成摆长,则求出的重力加速度比真实值偏大。

二、用图像法处理实验数据。

在用单摆测重力加速度实验中,由单摆周期公式计算T=2π√l g,可得T²=4l²gl,根据“化曲为直”的思想,利用单摆实验中测得的多组数据,采用描点作图法作出T²-l图线。

图线的斜率k=4l²g ,从而得到重力加速度为g=4l²k。

在用单摆测重力加速度实验中,如果把单摆的摆线长当成了摆长,那么单摆的实际摆长为l+d2,由单摆周期公式T=2π√l+d2l,可得T²=4l²g l+2l²dg,用单摆实验中测得的多组数据作出T2²-l图线。

图线不过坐标原点,其横截距绝对值等于摆球半径,图线的斜率仍为k=4l²g ,从而得到重力加速度仍为g=4l²k。

在用单摆测重力加速度实验中,如果把单摆的摆线长和小球直径之和当成了摆长,那么单摆的实际摆长为l-d 2,由单摆周期公式T=2π√l −d 2l ,可得T ²=4l²g l-2l²d g ,用单摆实验中测得的多组数据作出T ²-l 图线。

图线不过坐标原点,其横截距等于摆球半径。

图线的斜率仍为k=4l²g ,从而得到重力加速度仍为g=4l²k。

可见,在用单摆测重力加速度实验中,不管单摆摆长测量偏大还是偏小,根据图像法处理数据,得到的重力加速度值都等于真实值。

单摆测重力加速度

单摆测重力加速度

单摆测重力加速度单摆是物理学中常见的实验装置,用于测量重力加速度。

它由一根固定在一个支架上的细线和一个固定在该细线下端的质点组成。

在实验中,质点先被拉到一侧,之后释放,使其自由摆动,通过测量摆动的周期来计算重力加速度。

单摆的原理可以简单描述为:当质点在摆动过程中,重力将会对其产生一个回复力,使质点努力回归到原位置。

这个回复力可以分解为两个分量,一个平行于细线方向的分力,即摆长方向的分力;另一个垂直于细线方向的分力,即摆圆弧方向的分力。

在等幅小角摆动的情况下,摆长方向的分力可以忽略不计,只需要考虑摆圆弧方向的分力。

测量单摆的周期需要先测量摆长。

摆长是指细线的长度,可以通过放置一个水平器或使用测量工具来测量。

摆长的测量需要准确和精密,因为它对于计算重力加速度非常关键。

一旦摆长测量准确,我们可以通过测量摆动的周期来计算重力加速度。

在实验中,我们需要使用计时器来测量单摆的周期。

对于一个完整的摆动周期,我们可以测量时间的起点和终点,然后计算出时间差。

重复多次测量,并求得平均值来减小误差。

然后,我们可以使用以下公式来计算重力加速度:g=4π²L/T²,其中g代表重力加速度,L代表摆长,T代表周期。

当进行单摆实验时,一定要注意以下几点。

首先,保持实验环境相对稳定,避免外部干扰引起误差。

其次,确保摆长的测量准确性,因为摆长的误差将会对重力加速度的计算产生较大影响。

再次,在测量周期时,要准确记录时间起点和终点,避免记录误差。

通过单摆实验,我们可以得到地球上某一地点的重力加速度的近似值。

然而,值得注意的是,地球的重力加速度并不是一致的,它会随着地球表面的高度、纬度、质量分布等因素而略微变化。

因此,单摆实验只能提供一个大致的数值,而不是准确的数值。

除了通过单摆实验来测量重力加速度,还有其他方法可以进行测量,如自由落体实验、弹簧测力计等。

每一种方法都有其适用的场景和相应的误差范围。

在实际应用中,可以根据具体情况选择最合适的方法。

实验13探究单摆的运动用单摆测定重力加速度

实验13探究单摆的运动用单摆测定重力加速度
4π2 k
【解析】 (1)本次实验中的摆长 l=L+r=(101.00+1.00)cm= 1.0200 m,周期 T=Nt =10510.5 s=2.03 s, 由公式 g=4πT22l可以解得 g=9.76 m/s2; (2)根据公式 g=4πT22l知 g 偏小的原因可能是 l 的测量值偏小或 T 的测量值偏大.A 中 l 的测量值偏大,B 中则是振动摆长大于测 量值,所以测量值偏小,而 C、D 中均是测得的周期偏小,所以 C、D 均会使 g 值偏大.故只有 B 正确.
小于10°
5.(2013·安徽理综,21 Ⅰ)Ⅰ.根据单摆周期公式
T=,2π可以gl通过实验测量
当地的重力加速度.如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做
成了单摆.
(1)用游标卡尺测量小钢球直径,示数如图2所示,读数为_____mm.
18.6
abe
(2)以下是实验过程中的一些做法,其中正确的有________. a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些 b.摆球尽量选择质量大些、体积小些的 c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较 大的角度 d.拉开摆球,使摆线偏离平衡位置不大于5 °,在释放摆球的同时开始计时,当摆球 回到开始位置时停止计时,此时间间隔Δt即为单摆周期T e.拉开摆球,使摆线偏离平衡位置不大于5 °,释放摆球,当摆球振动稳定后,从平 衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T= Δ t/50
(1)用游标为10分度(测量值可准确到0.1 mm)的卡尺测量小球的直径.某次测量的示数
如图所示,读出小球直径d的值为______cm.
1.52
(2)该同学根据实验数据,利用计算机作出t2-l图线如图所示.根据图线拟合得到方程 t2=404.0l+3.5.由此可以得出当地的重力加速度g=________m/s2.(取π2=9.86,结 果保留3位9有.7效6 数字)

用单摆测量重力加速度

用单摆测量重力加速度

2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。

高二物理【实验:用单摆测量重力加速度】

高二物理【实验:用单摆测量重力加速度】
[答案] (1)测摆长时漏掉了摆球半径 (2)9.87
37
3.某同学利用单摆测量重力加速度. (1)(多选)为了使测量误差尽量小,下列说法正确的是( ) A.组装单摆须选用密度和直径都较小的摆球 B.组装单摆须选用轻且不易伸长的细线 C.实验时须使摆球在同一竖直面内摆动 D.摆长一定的情况下,摆的振幅尽量大
6
(4)把此单摆从平衡位置拉开一个角度,并使这个角小于 5°,再 释放小球.当摆球摆动稳定以后,在最低点位置时,用秒表开始计 时,测量单摆全振动 30 次(或 50 次)的时间,然后求出一次全振动的 时间,即单摆的振动周期.
(5)改变摆长,重做几次.
7
(6)根据单摆的周期公式,计算出每次实验的重力加速度;求出 几次实验得到的重力加速度的平均值,即本地区的重力加速度的值.
19
(2)①根据单摆振动的 v-t 图像知,单摆的周期 T=2.0 s. ②根据 T=2π gl 得 T2=4πg2l. 图线的斜率:k=4gπ2=4.04 s2/m, 解得:g≈9.76 m/s2. [答案] (1)①adf ②4πt22n2l (2)①2.0 ②9.76
20
【例 2】 用单摆测定重力加速度的实验装置如图所示.
41
[答案]
(1)BC
4π2ΔL (2)T21-T22
42
4.某同学在一次用单摆测重力加速度的实验中,测量 5 种不同 摆长与单摆的振动周期的对应情况,并将记录的结果描绘在如图所 示的坐标系中.图中各坐标点的标号分别对应实验中 5 种不同摆长 的情况.在处理数据时,该同学实验中的第________数据点应当舍 弃.画出该同学记录的 T2-l 图线.求重力加速度时,他首先求出图 线的斜率 k,则用斜率 k 求重力加速度的表达式为 g=________.

实验13 用单摆测量重力加速度的大小

实验13 用单摆测量重力加速度的大小

实验用单摆测量重力加速度的大小用单摆测量重力加速度的大小。

由单摆的周期公式T=2π lg ,可得出g=4π2T2l,测出单摆的摆长l和振动周期T,就可求出当地的重力加速度g。

带中心孔的小钢球、约1 m长的细线、带有铁夹的铁架台、游标卡尺、毫米刻度尺、停表。

1.测摆长用毫米刻度尺量出摆线长L(精确到毫米),用游标卡尺测出小球直径D,则单摆的摆长l=L+D2。

2.测周期将单摆从平衡位置拉开一个角度(不超过5°),然后释放小球,记下单摆摆动30次或50次全振动的总时间,算出平均每摆动一次全振动的时间,即为单摆的振动周期T。

数据处理的两种方法:方法一:公式法。

根据公式T=2πlg ,g=4π2lT2。

将测得的几组周期T和摆长l分别代入公式g=4π2l T 2中算出多组重力加速度g 的值,再求出g 的平均值,即为当地重力加速度的值。

方法二:图像法。

由单摆的周期公式T =2π l g 可得l =g 4π2T 2,因此以摆长l 为纵轴,以T 2为横轴描点作图,作出的l -T 2图像理论上是一条过原点的直线,如图所示,求出图像的斜率k ,即可求出g 值。

g =4π2k ,k =l T 2=Δl ΔT 2。

1.本实验的系统误差主要来源于单摆模型本身是否符合要求,即:悬点固定,小球质量大、体积小,细线轻质非弹性,振动是在同一竖直平面内的振动,这些要求是否符合。

2.本实验的偶然误差主要来自时间的测量和摆线长度的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计摆球全振动次数。

使用刻度尺测量摆线长度时,要多次测量取平均值以减小误差。

3.利用图像法处理数据具有形象、直观的特点,同时也能减小实验误差。

利用图像法分析处理时要特别注意图像的斜率及截距的物理意义。

1.小球选用密度大的钢球。

2.选用1 m 左右难以伸缩,且尽量轻的细线。

3.悬线顶端不能晃动,需用夹子夹住,保证悬点固定。

4.单摆必须在同一平面内振动,且摆角小于5°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用单摆测定重力加速度实验注意事项及误差分析1、实验原理单摆的偏角很小(小于010)时,其摆动可视为简谐运动,摆动周期为2L T gπ=,由此可得224g L T π=。

从公式可以看出,只要测出单摆的摆长L 和摆动周期T ,即可计算出当地的重力加速度。

实验器材:1、单摆、停表、直尺、游标卡尺、铁架台等。

2、单摆、光电门传感器、直尺、游标卡尺、铁架台等。

注意器材:绳 —— 不可伸长,质量小,尽可能长但小于1m(不然米尺难以量) 球 —— 越小,越重为佳长度测量:L = l 线 + r , r :游标卡尺测,精确到l 线 :米尺测,精确到mm ,估读到 时间测量:秒表,精确到,无须估读2、注意事项⑴实验所用的单摆应符合理论要求,即线要细、轻、不伸长,摆球要体积010。

⑵单摆悬线上端要固定,即用铁夹夹紧,以免摆球摆动时摆线长度不稳定。

⑶摆球摆动时,要使之保持在同一个竖直平面内,不要形成圆锥摆,如图1所示。

若形成的圆锥摆的摆线与竖直方向的夹角为α,则摆动的周期为cos 2L T gαπ=,比相同摆长的单摆周期小,这时测得的重力加速度值比标准值大。

⑷计算单摆振动次数时,以摆通过最低位置时进行计数,且在数“零”的同时按下秒表,开始计数。

这样可以减小实验误差。

⑸为使摆长测量准确,从而减小实验误差,在不使用游标卡尺测量摆球直径的情况下,可用刻度尺按图2量出1L 和2L ,再由121()2L L L +=计算出摆长。

3、误差分析⑴本实验系统误差主要来源于单摆模型本身是否符合要求,即:悬点是否固定,是单摆还是复摆,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等等。

只要注意了上面这些方面,就可以使系统误差减小到远远小于偶然误差而忽略不计的程度。

⑵本实验偶然误差主要来自时间(即单摆周期)的测量上。

因此,要注意测准时间(周期)。

要从摆球通过平衡位置开始计时,并采用倒计时的方法,不能多记振动次数。

为了减小偶然误差,应进行多次测量然后取平均值。

⑶本实验中长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用卡尺测摆球直径也需读到毫米位)。

时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可。

少算r,换言之作的图是T2-R摆线的图故截距在y轴上为正4、实验数据处理方法 ⑴求平均值法在本实验中要改变摆长, 并进行多次测量,以求重力 加速度g 的平均值,如右表。

⑵图象法①图象法之一:2T -L 图象由单摆周期公式可以推出:224g L T π=⋅,因此分别测出一系列摆长L 对应的周期T ,作L -2T 图象,图象应是一条通过原点的直线,求出图线的斜率k ,即可求得g 值,如图3所示。

24g k π=⋅,22L Lk T T ∆==∆。

5、实例分析例1、利用单摆测重力加速度时,为了使实验结果尽可能准确,应选择下列哪一组实验器材?( )A 、乒乓球、丝线、秒表、米尺B 、软木实心球、细绳、闹钟、米尺C 、铅质实心球、粗绳、秒表、米尺D 、铁质实心球、丝线、秒表、米尺解析:单摆是理想化模型,摆球应质量大、体积小,摆线应细,且不可伸长,所以D 选项正确。

例2、针对用单摆测重力加速度的实验,下面各种对实验误差的影响的说法中正确的是( )A 、在摆长和时间的测量中,时间的测量对实验误差影响较大B 、在摆长和时间的测量中,长度的测量对实验误差影响较大C 、将振动次数n 记为(1)n +,测算出的g 值比当地的公认值偏大次数 1 2 3 4 平均值 L T g根据2L T g π=得:224T L gπ=,作出2T -L 图象,求出斜率k ,则24g kπ=。

②图象法之二:L -2T 图象D 、将摆线长当作摆长,未加摆球的半径测算出的g 值比当地的公认值偏大解析:对于单摆测重力加速度的实验,重力加速度的表达式224lg Tπ=,由于与周期是平方关系,它若有误差,在平方后会更大,所以时间的测量影响更大些,A 选项正确;另外,重力加速度值变大,C 选项正确;若当摆长未加小球的半径,将使摆长的测量值变小,g 值变小,D 选项错误。

综上所述,正确答案为AC 选项。

例3、两个同学做“利用单摆测重力加速度”的实验: ⑴甲同学测得g 值变小,其可能原因是( )A 、测摆线长时,摆线拉得过紧B 、摆线未系牢,摆动中松弛了C 、试验中误将49次全振动次数记为50次D 、试验中误将51次全振动次数记为50次⑵乙同学做实验时,一时找不到摆球,就用重锤代替摆球,两次分别用不同的摆长做实验,测摆长时只测摆线长,其长度分别为1l 和2l ,并相应测出其周期为1T 和2T ,要用上述测量的数据正确计算出g 值,那么他计算重力加速度的表达式应为:g = 。

解析:⑴由224lg Tπ=,若g 偏小,则l 测量值比真实值小或T 测量值比真实值大,故BD 选项正确。

⑵设重锤的等效半径为r ,由224l g T π=,得21214()l r g T π+=,22224()l r g T π+=。

由以上两式解得:21222124()l l g T T π-=-。

例4、在利用单摆测定重力加速度的试验中,某同学测出了多组摆长和运动周期,根据实验数据,做出了2T —l 的关系图象如图1所示。

⑵由上述分析可以看出,无论是漏加小球半径还是多加小球半径,在2T —l 图象中图线的斜率是不变的。

由图1可以看出24.004.00.990.01k s -==+,所以重力加速度22244 3.149.874.0g m s k π⨯===。

巩固练习:1、在“用单摆测定重力加速度”的试验中,下列关于误差分析的说法正确的是( AB )A 、测量中的周期产生的误差,对测g 值影响较大B 、测摆长时未加摆球半径,使测g 值偏小C 、重复几次实验,分别求摆长和周期的平均值,这样所得g 值误差就减少了⑴该同学试验中出现的错误可能是( ) ⑵虽然试验中出现了错误,但根据图象中的数据,仍可算出准确的重力加速度,其值为 2m s 。

解析:⑴根据周期公式2lT gπ=得:224T l g π=,从公式上可以看出2T 与l 成正比,如图2中的a 图线;如果漏加小球半径则公式应为:224()T l r gπ=+,如图2中的c 图线;如果多加小球半径则公式应为:224()T l r g π=-,如图2中的b 图线。

通过以D 、试验中形成了水平面内的圆锥摆式运动,测得g 值偏小⑴现有如下测量工具:A 、时钟;B 、秒表;C 、天平;D 、毫米刻度尺。

本实验所需的测量工具有 BD ;⑵如果试验中所得到的2T —l 的关系图象如图4乙所示,那么真正的图象应该是a 、b 、c 中的 a ;⑶由图象可知,小筒的深度h = 30 cm ;当地重力加速度g =2m s 。

4.学过单摆的周期公式以后,物理兴趣小组的同学们对钟摆产生了兴趣,老师建议他们先研究用厚度和质量分布均匀的方木块(如一把米尺)做成的摆(这种摆被称为复摆),如图所示。

让其在竖直平面内做小角度摆动,C 点为重心,板长为L ,周期用T 表示。

甲同学猜想:复摆的周期应该与板的质量有关。

乙同学猜想:复摆的摆长应该是悬点到重心的距离L /2。

丙同学猜想:复摆的摆长应该大于L /2。

理由是:若OC 段看成细线,线栓在C 处,C 点以下部分的重心离O 点的距离显然大于L /2。

为了研究以上猜想是否正确,同学们进行了下面的实验探索:2、在“用单摆测定重力加速度”的试验中,甲同学画的L -2T 图象如图3中a 图线,乙同学画的L -2T 图象如图3中b 图线,图线不过原点的原因是甲 多加了小球半径 ;乙 漏加了小球半径 。

3、将一单摆装置竖直悬挂于某一深度为h (未知)且开口向下的小筒中(单摆的下部分置一个小角度后由静止释放,设单摆摆动过程中悬线不会碰到筒壁,如果本试验的长度测量工具只能测量出筒的下端口到摆球球心之间的距离l ,并通过改变l 而测出对应的摆动周期T ,再以2T 为纵轴、l 为横轴作出函数关系图象,那么就可以通过此图象得出我们想要测量的(1)把两个相同的木板完全重叠在一起,用透明胶(质量不计)粘好,测量其摆动周期,发现与单个木板摆动时的周期相同,重做多次仍有这样的特点。

则证明了甲同学的猜想是_____错误________ 的(选填“正确”或“错误”)。

(2)用T0表示板长为L的复摆看成摆长为L/2单摆的周期计算值(T0=2gL2/π),用T表示板长为L 复摆的实际周期测量值。

计算与测量的数据如下表:由上表可知,复摆的等效摆长大于L/2(选填“大于”、“小于”或“等于”)。

(3)为了进一步定量研究,同学们用描点作图法对数据进行处理,所选坐标如图。

请在坐标纸上作出T-T0图,并根据图象中反映出的规律求出2/LL等=____9/7______(结果保留三位有效数字,其中L等是板长为L时的等效摆长T=2gL等π)。

板长L/cm255080100120150周期计算值T0/s周期测量值T/s。

相关文档
最新文档