光敏二极管特性实验

合集下载

光敏二极管特性实验

光敏二极管特性实验

光敏二极管特性实验一、实验目的通过实验掌握光敏二极管的工作原理及相关特性,了解光敏二极管特性曲线及其测试电路的设计。

二、基本原理1、光敏二极管工作原理(详见红外功率可调光源曲线标定实验)。

2、光敏二极管特性实验原理光敏二极管在应用中一般加反向偏压,使得其产生的光电流只与光照度有关。

图1-9中,当光照为零时,光敏二极管不会产生广生载流子,也没有其他电流流过,整个电路处于截止状态;当有光照时,光敏二极管产生光电流,由于放大器的正负输入端虚短,放大器输出负电压。

再二级放大,然后用跟随器输出。

并且光照越强,输出电压越大。

图1-9光敏二极管特性测试图三、实验仪器1、光电检测与信息处理实验台(一套)2、红外功率可调光源探头3、红外接收探头4、光电信息转换器件参数测试实验板5、万用表6、光学支架7、导线若干四、实验步骤1、按图1-9连接实验线路。

(1)把光电信息转换器件参数测试实验板插在光电检测综合试验台的总线模块PLUG64 - 1、PLUG64 - 2、PLUG64 - 3的任意位置上;(2)由光敏二极管探头的两个输出接线端PIN1、PIN2分别引出导线连接到试验台的总线模块的22 (负极)和24 (正极)接线端;(3)在光电信息转换器件参数测试实验板上的JP2的‘ 1 ' ‘ 2'加上跳帽;JP1的‘1' ‘ 2'加上跳帽;(4)用连接导线将总线模块的40接线端引出,作为光敏二极管电压的输出测试点;(5)连接总线模块上的+ 5V、一5V、AGND和模拟电源的对应接线端子;(6)用万用表检查实验线路保证线路连接准确无误后进入下一步。

2、打开电源,调节线性光源的输入电压值,从而改变光源的输出功率;对应不同的功率值用万用表测试40接线端的光电池的输出电压值。

3、将所测得的结果填入表格七,并在图1-10中绘出功率一电压曲线。

表七功率一电压数据表格Jl\—0.5ii图1-10 功率一电压特性曲线五、思考题光敏二极管在应用时一般加反向偏压,其目的是什么?。

光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 )凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。

光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。

光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。

基于这种效应的光电器件有光电管、光电倍增管等。

另一种现象是电子并不逸出材料表面的,则称为是内光电效应。

光电导效应、光生伏特效应都是属于内光电效应。

好多半导体材料的很多电学特性都因受到光的照射而发生变化。

因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。

通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。

【实验原理】1(光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。

它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。

前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。

杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。

杂质型光电导的长波限比本征型光电导的要长的多。

(2)光生伏特效应:在无光照时,半导体结内部有自建电场。

【精选】实验二光敏二极管特性实验

【精选】实验二光敏二极管特性实验

实验二光敏二极管特性实验一:实验原理:光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。

无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。

当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。

光敏二极管结构见图(6)。

二:实验所需部件:光敏二极管、稳压电源、负载电阻、遮光罩、光源、电压表(自备4 1/2位万用表).、微安表三:实验步骤:按图(7)接线,注意光敏二极管是工作在反向工作电压的。

由于硅光敏二极管的反向工作电流非常小,所以应提高工作电压,可用稳压电源上的+10V。

1、暗电流测试用遮光罩盖住光电器件模板,电路中反向工作电压接±12V,打开电源,微安表显示的电流值即为暗电流,或用4 1/2位万用表200mV档测得负载电阻RL上的压降V暗,则暗电流L暗=V暗/RL。

一般锗光敏二极管的暗电流要大于硅光敏二极管暗电流数十倍。

可在试件插座上更换其他光敏二极管进行测试比较。

2、光电流测试:取走遮光罩,读出微安表上的电流值,或是用4 1/2位万用表200mv档测得RL上的压降V光,光电流L光=V光/RL。

3、灵敏度测试:改变仪器照射光源强度及相对于光敏器件的距离,观察光电流的变化情况。

4、光谱特性测试:不同材料制成的光敏二极管对不同波长的入射光反应灵敏度是不同的。

由图(8)可以看出,硅光敏二极管和锗光敏二极管的响应峰值约在80~100μm,试用附件中的红外发射管、各色发光LED、光源光、激光光源照射光敏二极管,测得光电流并加以比较。

图(8)光敏管的伏安特性曲线图(9)光敏二极管的光谱特性曲线注意事项:本实验中暗电流测试最高反向工作电压受仪器电压条件限制定为±12V (24V),硅光敏二极管暗电流很小,不易测得。

光敏管的应用-----光控电路一:实验目的:了解光敏管在控制电路中的具体应用。

APD光电二极管的特性测试及应用研究1

APD光电二极管的特性测试及应用研究1
由于硅半导体工艺技术业已完善成熟,特别容易与其他微电子器件结合,而且在制作硅基半导体器件时的Si薄膜材料有晶体型,无定型和多孔型等多种形式,应用灵活方便。因此硅基光电探测器对于探测波长为200nm-900nm的波段应用越来越普遍,而且在这个波段Si基光电子探测器的响应度比较高,但是随着波长的增加到1000nm左右的时候器件敏感响应度会很低。
[5]王庆有.光电传感器应用技术[M].北京:机械工业出版社,2007.10.
[6]其他:可网上搜索查找相关中文和外文文献。
3.进度安排
设计(论文)各阶段名称
起止日期
1
查阅文献资料,确定方案,写文献综述
2014.1.18-3.20
2
学习APD光电二极管的工作原理
2014.3.21-3.30
3
理解APD光电二极管的各项参数指标并测试
因此,拓宽硅基光电探测器件的探测波长范围及探测效率,不仅成为一个较为热点的研究领域,引起了各国科研工作者的兴趣,同时也成为光通信领域迫切需要克服的难题,是市场应用所需迫切解决的问题。最近几年人们尝试了各种方法来提高Si基APD的近红外探测效率,其中有增加Si基APD吸收层的厚度从而提高光子在Si中的吸收,然而随着APD体积的增加,不但提高了近红外处的量子效率,同样增加APD器件的暗电流和噪声,也提高了APD的响应时间,所以用这种方法提高APD近红外的敏感率并不是最好的方法。还有一种方法就是在APD器件表面设计一层防反射层,这层防反射层可以使入射光在APD器件的表面发生多次反射,从而增加了透入到器件内部的光子,也不会增加APD器件的体积,但是这种方法对工艺制作流程要求严格,成本较高,虽然能提高器件的整体效果但依然不能将1064nm处的光探测效率提高到理想的程度。
制约硅基APD在近红外方向特别是1064nm波段发展的原因有两个,第一,硅的禁带宽度是1.12eV,从而导致硅对1100nm处光的吸收截止。Si是间接带隙材料,在300K时硅的禁带宽度是1.12eV。因此硅的吸收截止波长是1100nm。从而导致由间接半导体材料制做的APD器件在截止波长附近吸收效率非常低。为了使硅基APD在1064nm处获得较高的量子效率,人们研发出使用其它半导体材料(锗、铟或者砷化镓)制作光电子器件,但是这些材料的光电子器件暗电流和噪声比较高,价格昂贵,而且与硅的晶格不匹配。或者改变硅基APD的结构设计,还可以使用飞秒激光微构造技术,来改变硅在近红外处的光吸收特性。第二,APD制造工艺过程中必须引入尽可能少的缺陷以减少暗电流,从而保证器件具有较高的信噪比。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。

光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。

从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。

从对光的响应来分,有用于紫外光、红外光等种类。

不同种类的光敏二极管,具胡不同的光电特性和检测性能。

例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。

这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。

又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。

因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

光敏电阻伏安特性、光敏二极管光照特性剖析

光敏电阻伏安特性、光敏二极管光照特性剖析

光敏传感器的光电特性研究(FB815型光敏传感器光电特性实验仪)凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。

光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。

光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。

基于这种效应的光电器件有光电管、光电倍增管等。

另一种现象是电子并不逸出材料表面的,则称为是内光电效应。

光电导效应、光生伏特效应都是属于内光电效应。

好多半导体材料的很多电学特性都因受到光的照射而发生变化。

因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。

通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。

【实验原理】1.光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。

它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。

前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。

杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。

杂质型光电导的长波限比本征型光电导的要长的多。

(2)光生伏特效应:在无光照时,半导体PN结内部有自建电场。

当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。

光电传感器系列实验

光电传感器系列实验

东南大学物理实验报告姓名学号指导教师日期报告成绩实验名称光敏传感器的光电特性研究目录实验一光敏电阻特性实验实验二光敏二极管特性实验一、实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线;2、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线;3、了解硅光敏二极管的基本特性,测出它的伏安特性和光照特性曲线;4、了解硅光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。

二、实验原理:光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。

光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。

1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。

电子并不逸出材料表面的则是内光电效应。

光电导效应、光生伏特效应则属于内光电效应。

即半导体材料的许多电学特性都因受到光的照射而发生变化。

光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。

(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。

它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。

前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。

杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。

光敏二三极管实验指导书

光敏二三极管实验指导书

目录光敏二三极管综合实验仪说明............................................. - 1 -实验一光照度测试实验.................................................. - 3 -实验二光敏二极管暗电流测量............................................ - 6 -实验三光敏二极管光电流测量............................................ - 9 -实验四光敏二极管光照特性测试......................................... - 11 -实验五光敏二极管伏安特性测试......................................... - 13 -实验六光敏二极管光谱特性测试......................................... - 16 -实验七光敏二极管灵敏度测量........................................... - 18 -实验八光敏二极管时间特性测试......................................... - 20 -实验九光敏三极管暗电流测量........................................... - 22 -实验十光敏三极管光电流测量........................................... - 25 -实验十一光敏三极管光照特性测试....................................... - 27 -实验十二光敏三极管伏安特性测试....................................... - 29 -实验十三光敏三极管光谱特性测试....................................... - 31 -实验十四光敏三极管灵敏度测量......................................... - 33 -实验十五光敏三极管时间特性测试....................................... - 35 -实验十六光控开关设计实验(二次开发)................................. - 37 -实验十七光电报警设计实验(二次开发)................................. - 39 -实验十八简易光功率计设计实验(二次开发)............................. - 41 -光敏二三极管综合实验仪说明ZY12230B光敏二三极管综合实验仪所有器件和光路结构集成于主机箱中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光敏二极管特性实验 一、实验目的
通过实验掌握光敏二极管的工作原理及相关特性,了解光敏二极管特性曲线及其测试电路的设计。

二、基本原理
1、光敏二极管工作原理(详见红外功率可调光源曲线标定实验)。

2、光敏二极管特性实验原理
光敏二极管在应用中一般加反向偏压,使得其产生的光电流只与光照度有关。

图1-9中,当光照为零时,光敏二极管不会产生广生载流子,也没有其他电流流过,整个电路处于截止状态;当有光照时,光敏二极管产生光电流,由于放大器的正负输入端虚短,放大器输出负电压。

再二级放大,然后用跟随器输出。

并且光照越强,输出电压越大。

R2680
总线模块
光电检测综合试验台的总
线模块
+5V -5V AGND
+12V -12V
222426
40
PIN1
光敏二极管
PIN2
电流流向
A
V
GND VCC
Vin ADJ
R11K
LED
C9013R2680
+5V
0~5V
GND
实验台
R
V
A
AGND
2_+
3+5V
-5V
74
2_+
3+5V
-5V
74
2_+
3+5V
-5V
74
-5V +5V 2224AGND 40
图1-9 光敏二极管特性测试图
三、实验仪器
1、光电检测与信息处理实验台(一套)
2、红外功率可调光源探头
3、红外接收探头
4、光电信息转换器件参数测试实验板
5、万用表
6、光学支架
7、导线若干 四、实验步骤
1、按图1-9连接实验线路。

(1)把光电信息转换器件参数测试实验板插在光电检测综合试验台的总线模块PLUG64-1、PLUG64-2、PLUG64-3的任意位置上;
(2)由光敏二极管探头的两个输出接线端PIN1、PIN2分别引出导线连接到试验台的总线模块的22(负极)和24
(正极)接线端;
(3)在光电信息转换器件参数测试实验板上的JP2的‘1’、‘2’加上跳帽;JP1的‘1’、‘2’加上跳帽;
(4)用连接导线将总线模块的40接线端引出,作为光敏二极管电压的输出测试点;
(5)连接总线模块上的+5V、—5V、AGND和模拟电源的对应接线端子;
(6)用万用表检查实验线路保证线路连接准确无误后进入下一步。

2、打开电源,调节线性光源的输入电压值,从而改变光源的输出功率;对应不同的功率值用万用表测试40接线端的光电池的输出电压值。

3、将所测得的结果填入表格七,并在图1-10中绘出功率―电压曲线。

表七功率―电压数据表格
功率
(uW)
电压
(V)
图1-10 功率―电压特性曲线
五、思考题光敏二极管在应用时一般加反向偏压,其目的是什么?。

相关文档
最新文档