《概率论与数理统计》阶段作业

合集下载

概率论与数理统计(专升本)阶段性作业3

概率论与数理统计(专升本)阶段性作业3

概率论与数理统计(专升本)阶段性作业3单选题1. 设随机变量~,服从参数的指数分布,则 __ _____(4分)(A) :(B) :(C) :(D) :参考答案:A2. 设随机变量~,~,且相关系数,则_______(4分)(A) :(B) :(C) :(D) :参考答案:D3. 和独立,其方差分别为6和3,则 _______(4分)(A) :9(B) :15(C) :21(D) :27参考答案:D4. 设随机变量的方差存在,为常数),则_______(4分)(A) :(B) :(C) :(D) :参考答案:C5. 有一批钢球,质量为10克、15克、20克的钢球分别占55%,20%,25%。

现从中任取一个钢球,质量的期望为_______(4分)(A) :12.1克(B) :13.5克(C) :14.8克(D) :17.6克参考答案:B6. 将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数,则和的相关系数等于_______(4分)(A) :-1(B) :0(C) :(D) :1参考答案:A7. 设是随机变量,,则对任意常数,必有_______ (4分)(A) :(B) :(C) :(D) :参考答案:D8. 设随机变量的分布函数为,则 _______(4分)(A) :(B) :(C) :(D) :参考答案:B9. 设随机变量~,,则~_______(4分)(A) :(B) :(C) :(D) :参考答案:A10. 设随机变量~,且,则其参数满足_______(4分)(A) :(B) :(C) :(D) :参考答案:B11. 设随机变量的方差存在,则_______(4分)(A) :(B) :(C) :(D) :参考答案:D12. 设随机变量,…相互独立,且都服从参数为的指数分布,则_____ __(4分)(A) :(B) :(C) :(D) :参考答案:A13. 如果和满足, 则必有_______(4分)(A) :和不独立(B) :和的相关系数不为零(C) :和独立(D) :和的相关系数为零参考答案:D14. 根据德莫弗-拉普拉斯定理可知_______(4分)(A) : 二项分布是正态分布的极限分布(B) : 正态分布是二项分布的极限分布(C) : 二项分布是指数分布的极限分布(D) : 二项分布与正态分布没有关系参考答案:B15. 的分布函数为,其中为标准正态分布的分布函数,则 _______(4分)(A) :0(B) :0.3(C) :0.7(D) :1参考答案:C填空题16. 设随机变量的概率密度为,则___(1)_ __ ,___(2)___ .(4分)(1).参考答案:1(2).参考答案:1/217. 设服从参数为的泊松分布,则___(3)___ .(4分)(1).参考答案:118. 设服从参数为的泊松分布,且已知,则___(4)___ . (4分)(1).参考答案:119. 若是两个相互独立的随机变量,且则___ (5)___ .(4分)(1).参考答案:14320. 设随机变量的期望存在,则___(6)___ .(4分)(1).参考答案:021. 设随机变量和的相关系数为0.9,若,则与的相关系数为___ (7)___ .(4分)(1).参考答案:十分之九22. 设,,则的期望___(8)___ .(4分) (1).参考答案:1123. 设的期望与方差都存在,且,并且,则___(9)__ _ .(4分)(1).参考答案:024. 已知,的相关系数,则___(10) ___ .(4分)(1).参考答案:1325. 设,,则___(11)___ .(4分)(1).参考答案:35。

概率论与数理统计阶段性作业31

概率论与数理统计阶段性作业31

中国地质大学(武汉)远程与继续教育学院概率论与数理统计 课程作业3(共 4 次作业)学习层次:专升本 涉及章节:第4章1.若随机变量X 的概率分布为求E (X )和D (X )。

2.某射手每次命中目标的概率为0.8,连续射击30次,求击中目标次数X 的期望和方差。

3. 设离散型随机变量X 仅取两个可能的值2121x x x x <,而且和, X 取1x 的概率为0.6, 又已知,24.0)(,4.1)(1==X D X E , 则X 的分布律为( )。

.0.40.6 (D) ,0.40.61 (C) ,0.40.621 (B) ,4.06.010 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b an n A )(4.对于任意两个随机变量()()()X Y E XY E X E Y =、,若,则( )。

() ()()(). () ()()(). () . () .A D XY D X D YB D X Y D X D YC X YD X Y =+=+与独立与不独立5.若随机变量X 的分布律为求E (X )、E (X 2)、E (3X 2+5)。

6.盒中有3个白球和两个黑球,从中任取两球,求取到的白球数X 的期望。

7.设随机变量X 的分布密度为⎩⎨⎧≤>=-.0,,0;0,)(x x Axe x f x (1)求系数A ;(2)求随机变量X 落在区间)1,0(内的概率;(3)求随机变量X 的分布函数;(4)求随机变量X 的数学期望与方差。

8.设随机变量X 的概率密度为:⎪⎩⎪⎨⎧≤≤-<≤-+=其它 ,010 ,101 ,1)(x x x x x f ,求)(),(X D X E 。

9.若随机变量X 服从参数为θ1的指数分布,求E (X )和D (X ).10.设市场对某商品的需求量X (单位:吨)是一个服从[2,4]上的均匀分布的随机变量,每销售一吨商品可赚3万元,但若销售不出去,每吨浪费1万元,问应组织多少货源,才能取得最大收益?参考答案1.若随机变量X 的概率分布为求E (X )和D (X )。

概率论与数理统计阶段性作业21

概率论与数理统计阶段性作业21

中国地质大学(武汉)远程与继续教育学院概率论与数理统计 课程作业2(共 4 次作业) 学习层次:专升本 涉及章节:第2章 --第3章1.一位射手命中目标的概率为0.6,在相同条件下进行5次射击,求击中目标次数X 的分布律。

2.袋中有五个球,编号分别为1,2,3,4,5,从中任取3球,求3个球中最大号码X 的概率分布和分布函数。

3.(1)设随机变量X 的分布律为0,,2,1,0,!}{>===λλ k k a k X P k为常数,试确定常数a 。

(2)设随机变量X 的分布律为N k Nak X P ,,2,1,}{ ===.试确定常数a 。

4.设随机变量X 的分布为)3,2,1,0(,12}{=+==k k ak X P 求 (1) 常数a ;( 2) }2{<X P 。

5.若随机变量X 的概率密度为⎩⎨⎧=0,)(3cx x f .,10其他<<x (1)确定常数c ;(2)求数a 使{}{}P X a P X a >=<; (3)求数b ,使P {X >b }=0.01。

6.若随机变量X 的分布函数为 ()arctan F x A B x =+,-∞<x <+∞,试确定常数A 和B ,并求出X 的概率密度函数。

7.一个箱子里装有12只开关,其中2只是次品,现随机地抽取两次,每次只取一只,考虑两种试验:(1)有放回抽样;(2)不放回抽样,以X、Y分别表示第1次和第2次取出的次品数,试分别就(1)、(2)两种情况,写出X和Y 的联合分布律。

8.某学生求出关于二维随机变量X、Y的联合分布律如下表所示:试分析该学生的计算结果是否正确。

9.一整数X随机地在1,2,3三个整数中取一个值,另一个整数Y随机地在1~X中取一个值,试求X、Y的联合分布律。

10.(1)求第7题中随机变量(X,Y)的边缘分布律(2)求第9题中随机变量(X,Y)的边缘分布律。

中国地质大学(武汉)远程与继续教育学院参考答案1.一位射手命中目标的概率为0.6,在相同条件下进行5次射击,求击中目标次数X 的分布律。

概率论与数理统计阶段练习2参考答案

概率论与数理统计阶段练习2参考答案

概率论与数理统计阶段练习2参考答案《概率论与数理统计》阶段练习2参考答案1、一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.2、设随机变量X 的概率分布为:0,,2,1,0,!}{>===λλ k k a K X P k.试确定常数a .解依据概率分布的性质:,1}{0}{==≥=∑kk X P k X P 欲使上述函数为概率分布应有,0≥a,1!0==∑∞=k kae K a λλ 从中解得.λ-=e a注: 这里用到了常见的幂级数展开式.!0∑∞==k kK e λλ3、X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F)2()1(x x x <≤时,,/1}{)(n x X P x F =≤= )3()2(x x x <≤时,,/2}{)(n x X P x F =≤= ……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤= )(n x x ≥时,1}{)(=≤=x X P x F故 )(x F<=≥<),,m a x (,1),,2,1(),,m i n (,/),,m i n (,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当4、设随机变量X 的概率分布为4/12/14/1421i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<="" {}.32≤≤x="">5、设随机变量X 的密度函数为≤≤--=其它,011,12)(2x x x f π求其分布函数)(x F . 解∞-=≤=xdt t f x X P x F )(}{)(当,1-<="" f="" p="" 当,11≤≤-x="">--∞--+=xdt t dt x F 121120)(π21arcsin 112++-=x x xππ当,1>x ,1)(=x F 故>≤≤-++--<=.1,111,21 arcsin 111,0)(2x x x x x x x F ππ6、设随机变量X 具有概率密度≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f}.2/71{)3();()2(;)1(≤<="" 解="">+∞∞-=,1)(dx x f 得,122433=??-+dx x kxdx 解得,6/1=k 于是X 的概率密度为., 043,2230,6)(≤≤-<≤=其它x x x xx f(2) X 的分布函数为)(x F≥<≤??? ??-+<≤<=??4,143,22630,60,03030x x dt t dt tx dt t x x x .4,143,4/2330,12/0,022??≥<≤-+-<≤<=x x x x x x x (3) ?=≤<2/71)(}2/71{dx x f X P ?-+=2/73312261dx x xdx 2/73231242121-+=x x x ,4841= 或)1()2/7(}2/71{F F X P -=≤<.48/41=7、设某项竞赛成绩N X ~(65, 100),若按参赛人数的10%发奖,问获奖分数线应定为多少?解设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=??-Φ-=x即,9.010650=??-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78分.8、在电源电压不超过200伏,在200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2. 假设电源电压X 服从正态分布N (220,252),试求:(1) 该电子元件损坏的概率α;(2) 该电子元件损坏时,电源电压在200~240伏的概率β.解引入事件=1A {电压不超过200 伏},=2A {电压不超过200~240 伏},=3A {电压超过240伏};=B {电子元件损坏}.由条件知),25,220(~2N X 因此-≤-=≤=2522020025220}200{)(1X P X P A P ;212.0)8.0(1)8.0(=Φ-=-Φ=}240200{)(2≤≤=X P A P ?≤-≤-=8.0252208.0X P .576.01)8.0(2=-Φ= }240{1}240{)(3≤-=>=X P X P A P .212.0)8.0(1=Φ-=(1) 由题设条件,,1.0)|(1=A B P ,001.0)|(2=A B P 2.0)|(3=A B P于是由全概率公式, 有.0642.0)|()()(31===∑=i iiA B P A P B P α(2) 由贝叶斯公式, 有.009.0)()|()()|(222≈==B P A B P A P B A P β9、已知某台机器生产的螺栓长度X (单位:厘米)服从参数,05.10=μ06.0=σ的正态分布. 规定螺栓长度在12.005.10±内为合格品, 试求螺栓为合格品的概率.解根据假设),06.0,05.10(~2N X记,12.005.10-=a ,12.005.10+=b 则}{b X a ≤≤表示螺栓为合格品. 于是}{b X a P ≤≤??-Φ-??? ??-Φ=σμσμa b )2()2(-Φ-Φ=)]2(1[)2(Φ--Φ=1)2(2-Φ=19772.02-?=.9544.0=即螺栓为合格品的概率等于0.9544. 10.已知)5.0,8(~2N X ,求(1) );7(),9(F F (2) }105.7{≤≤X P ;(3) };1|8{|≤-X P(4) }.5.0|9{|<-X P11.某种型号电池的寿命X 近似服从正态分布),(2σμN , 已知其寿命在250小时以上的概率和寿命不超过350小时的概率均为92.36%, 为使其寿命在x -μ和x +μ之间的概率不小于0.9, x 至少为多少?12、设)1,0(~N X , 求2X Y =的密度函数. 解记Y 的分布函数为),(x F Y 则}.{}{)(2x X P x Y P x F Y ≤=≤=显然, 当0<="" 时,;0}{)(2="≤=x">当0≥x 时, }{)(2x X P x F Y ≤=.1)(2}{-Φ=<<-=x x X x P从而2X Y =的分布函数为??<≥-Φ=0,00,1)(2)(x x x x F Y于是其密度函数为<≥='=0,00),(1)()(x x x x x F x f Y Y ?.0,00,212/??<≥=-x x e x x π注: 以上述函数为密度函数的随机变量称为服从)1(2χ分布, 它是一类更广泛的分布)(2n χ在1=n 时的特例. 关于)(2n χ分布的细节将在第五章中给出.13、设随机变量X 服从参数为λ的指数分布, 求 }2,m in{X Y = 的分布函数.解根据已知结果, X 的分布函数≤>-=-0,00,1)(x x e x F x X λ Y 的分布函数}}2,{m in{}{)(y X P y Y P y F Y ≤=≤=}}2,{m in{1y X P >-=}.2,{1y y X P >>-=当2-= 当2≥y 时,.1)(=y F Y代入X 的分布函数中可得.2,120,10,0)(??≥<<-≤=-y y e y y F y Y λ注:在本例中, 虽然X 是连续型随机变量, 但Y 不是连续型随机变量, 也不是离散型随机变量, Y 的分布在2=y 处间断.14、设随机变量X 在)1,0(上服从均匀分布, 求X Y ln 2-=的概率密度. 解在区间 (0,1) 上, 函数,0ln -=x y 02<-='xy 于是y 在区间),0(+∞上单调下降, 有反函数2/)(y e y h x -==从而 ??<<=---其它,010,)()()(2/2/2/y y y X Y e dye d ef y f 已知X 在在(0,1)上服从均匀分布,<<=其它,010,1)(x x f X 代入)(y f Y 的表达式中, 得>=-其它, 00,21)(2/y e y f y X即Y 服从参数为1/2的指数分布.15. 设X 的分布列为10/310/110/110/15/12/52101i p X -试求: (1) 2X 的分布律; (2) 2X 的分布律.16. 设随机变量X 的概率密度为<<=.,0,0,/2)(2其它ππx x x f 求X Y sin =的概率密度.。

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业《概率论与数理统计》第1阶段在线作业在《概率论与数理统计》的第1阶段在线作业中,我学习了概率论和数理统计的基本概念和方法。

本阶段的学习内容主要涵盖了随机变量、概率分布、多维随机变量、正态分布以及抽样分布等知识点。

在学习随机变量的部分,我了解了随机变量的概念和分类。

随机变量是概率论的核心概念之一,它是一个取值不确定的变量。

根据随机变量的取值情况,可以将其分为离散随机变量和连续随机变量两类。

离散随机变量的取值为可数个,而连续随机变量的取值为某个区间内的任意实数值。

概率分布是描述随机变量取值的规律性的数学函数。

在学习概率分布时,我了解了离散随机变量的概率质量函数(PMF)和连续随机变量的概率密度函数(PDF)。

离散随机变量的PMF可以通过对每个取值的概率进行求和得到,而连续随机变量的PDF则需要进行积分运算。

多维随机变量是指两个或多个随机变量构成的向量。

在学习多维随机变量时,我认识了联合概率密度函数和联合概率质量函数的概念,并掌握了如何计算多维随机变量的边缘概率密度函数和边缘概率质量函数。

正态分布是概率论中最重要的分布之一。

在学习正态分布时,我了解了其数学特征和性质,并学会了如何进行正态分布的标准化处理。

正态分布在实际中具有广泛的应用,尤其在统计推断中扮演着重要的角色。

抽样分布是指从总体中抽取多个样本,计算样本统计量,并研究这些统计量的分布情况。

在学习抽样分布时,我了解了样本均值的抽样分布,以及中心极限定理的概念和推导过程。

中心极限定理表明,当样本容量足够大时,样本均值的分布趋近于正态分布。

通过完成在线作业,我对概率论与数理统计的基本概念和方法有了更深入的了解。

这些知识和技能对于进行数据分析和统计推断非常重要,也为今后在相关领域的学习和研究打下了坚实的基础。

我会继续努力学习,巩固这些知识,并运用它们解决实际问题。

概率论与数理统计阶段性作业41

概率论与数理统计阶段性作业41

中国地质大学(武汉)远程与继续教育学院概率论与数理统计 课程作业4(共 4 次作业) 学习层次:专升本 涉及章节:第6章 --第8章1.),(~2σμi N X ,1,2,,10,i i μ= 不全等.试问1021,,,X X X 是简单随机样本吗?为什么?2.设2~(,)X N μσ,10,,2,1 =i .试问1021,,,X X X 是简单随机样本吗?为什么?3.设总体X 服从二点分布),1(p B ,p x P ==)1(其中p 是未知数,54321,,,,X X X X X 是从中抽取的一个样本.试指出在21X X +,}{min 51i i X ≤≤,p X 25+,215)(X X +,13+X ,44-X 中哪些是统计量,哪些不是统计量,为什么?4.对以下一组样本值,计算出样本平均值和样本方差:54,67,68,78,70,66,67,70,65,69.5.设车间生产一批产品要估计这批产品的不合格率p ,为此随机地抽取一个容量为n 的子样n X X X ,,,21 .用A 表示第i 次抽样为不合格品,求事件A 的概率p 的矩估计量。

6.设总体X 的期望)(X E 、方差)(X D 均存在, n X X X ,,,21 是X 的一个样本,试证统计量:(1)212114341),(X X X X +=ϕ; (2)212123231),(X X X X +=ϕ;(3)212138583),(X X X X +=ϕ.都是)(X E 的无偏估计,并说明哪个有效。

7.随机地从一批钉子中抽取16枚,测得其长度(以厘米计)为2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15,2.12,2.14,2.10,2.13,2.11,2.14,2.11。

设钉长服从正态分布.(1)若已知σ=0.01厘米;(2)若σ未知,分别求均值μ的置信度为90%的置信区间。

8.测量一孔直径六次,得到直径来均值495x来方厘米,样本方差=.120.00051S=平方厘米,设孔径服从正态分布,试求孔径真值的范围。

2023年概率论与数理统计专升本阶段性作业

2023年概率论与数理统计专升本阶段性作业

概率论与数理记录(专升本)阶段性作业4总分:100分得分:0分一、单选题1. 设一批零件的长度服从, 其中均未知,现从中随机抽取16个零件,测得样本均值,样本标准差,, 则的置信度为0.90的置信区间是 _______(4分)(A) :(B) :(C) :(D) :参考答案:C2. 设总体~,其中已知,是的一个样本,则不是记录量的是 _______(4分)(A) :(B) :(C) :(D) :参考答案:C3. 设…,是总体的一个样本,则有 _______(4分)(A) :(B) :(C) :(D) : 以上三种都不对参考答案:D4. 设随机变量服从正态分布,对给定的,数满足,若,则等于 _______(4分)(A) :(B) :(C) :(D) :参考答案:C5. 设…,是总体的样本,并且,令,则 _______(4分)(A) :(B) :(C) :(D) :参考答案:B6. 设总体~,…, 是的一个样本,则 _______(4分)(A) : ~(B) :~(C) : ~(D) :~参考答案:B7. 设是总体的一个样本,则的无偏估计是 _______(4分)(A) :(B) :(C) :(D) :参考答案:C8. 设总体~,是的一个样本,则 _______(4分)(A) :(B) :(C) :(D) :参考答案:C9. 为总体的未知参数,的估计量是,则 _______(4分)(A) : 是一个数,近似等于(B) : 是一个随机变量(C) :(D) :参考答案:B10. 样本取自标准正态分布总体, 分别为样本均值及样本标准差, 则 _______(4分)(A) :(B) :(C) :(D) :参考答案:D11. 设随机变量和都服从标准正态分布,则 _______(4分)(A) : 服从正态分布(B) : 服从分布(C) : 和都服从分布(D) : 服从分布参考答案:C12. 若总体,其中已知,当置信度保持不变时,假如样本容量增大,则的置信区间 _______(4分)(A) : 长度变大(B) : 长度变小(C) : 长度不变(D) : 长度不一定不变参考答案:B13. 一个容量为的样本(或称子样)是一个 _______(4分)(A) : 随机变量(B) : 维向量(C) : 维随机向量(D) : 答案B或C参考答案:D二、填空题1. 在数理记录中,简朴随机样本必须满足两条基本原则,即随机性与___(1)___ .(4分)(1). 参考答案: 独立性解题思绪:简朴随机样本的基本定义.2. 在参数估计中,区间估计与点估计的最大区别在于不仅给出了一个包含参数的区间并且还给出了参数落在该区间内的___(2)___ .(4分)(1). 参考答案: 概率解题思绪:从两者的定义出发考虑.3. 评判一个点估计量优劣的标准通常用一致性、有效性与什么性来进行___(3)___ .(4分)(1). 参考答案: 无偏性解题思绪:评判标准的三条定义.4. 反复独立实验所相应的抽样方法称为___(4)___ .(4分)(1). 参考答案: 简朴随机抽样5. 在数理记录中,我们把研究的对象全体称之为___(5)___ .(4分)解题思绪:数理记录的基本概念.6. 设为总体的一个样本,为一个连续函数,假如中___(6)___ ,则称为一个记录量.(4分)(1). 参考答案: 不包含任何未知参数7. 极大似然估计法是在___(7)___ 已知情况下的一种点估计方法.(4分)8. 在数理记录中,参数估计通常用点估计法和什么估计法___(8)___ (4分)解题思绪:参数估计的基本方法内容9. 在区间估计中,样本容量、置信区间的宽度和置信水平之间有着密切的联系.当样本容量拟定期,其置信区间的宽度会随着置信水平的增长而___(9)___ .(4分)(1). 参考答案: 增长解题思绪:置信水平的增长,说明包含参数的概率增长,可信度加大了,则必然导致置信区间增长10. 在参数估计中,极大似然估计的原理是,假如在随机实验中事件A发生了,则参数在各个也许的取值中,应选择使A发生的概率___(10)___ 的那个值.(4分)(1). 参考答案: 最大解题思绪:由极大似然估计的定义中寻找答案.三、判断题1. 样本与样本观测值是两个不同的概念。

概率论与数理统计阶段练习2_参考答案

概率论与数理统计阶段练习2_参考答案

《概率论与数理统计》阶段练习2参考答案真-报童卖报,每份元,英成本为元.报馆每天给报童1000份报,并规泄他不得把卖不 出的报纸退回.设X 为报童每天卖出的报纸份数,试将报童赔钱这一事件用随机变量的表 达式表示・2、设随机变量X 的概率分布为:¥P {X = K} = a —. A=a 1. 2,…,久 >0.R!试确定常数解依据概率分布的性质: [P[X=k}>G 工 P{X=k} = l ・w欲使上述函数为概率分布应有心。

j 忒宀,从中解得"•3、X 具有离散均匀分布,即P(X =A ;) = !/n,/ = 12—?,求X 的分布函数.解 将X 所取的”个值按从小到大的顺序排列为切<“2> <・・•<*(和 贝Ijxvx ⑴时,F(x) = P{X<x} = 0. ・*1)<X< 斗2)时,F(x) = P{X < A } =l/zh •¥(2)< X < 兀⑶ H4 ♦ F(x) = P{X <x} = 2/八,•V (灯 <尤<兀(*祕)时,F(x) = P{X <x} = k/n. 入•>兀如时,F(x) = P{X<x} = \0,^x<min (召,…‘丿k/n,当力> min (M 斗)且大,(y =1,2,…屮恰好有k 个不头于;V U当X vmax (X],…,兀 J求X 的的分布函数,并求* 3*注:这里用到了常见的暮级数展开式宀Y 务Jt-O故 Fg ・4.设随机变量X 的概率分布为X Pi-1241/4 1/2 1/4’P{X<l/2}, P {3/2vX<5/2}, P{2<X<3}・5、设随机变量X 的密度函数为0.求苴分布函数F(x)・解 F(x) = X<x} = [:/ ⑴由 当 xv-h F(x) = 0;当-l<x<l, F(x)= fo-Jz+ f' —Jl-rt/f =—y/l-x- +—arcsinx+-J-x J ・i 〃 只 n 26.设随机变量X 具有概率密度kx ・V/U)= 2-|, 3<X<4, 0, 苴它(2)求X 的分布函数F(x): ⑶求PU<X<7/2}・ 丫 2--b=i, 八2/(2) X 的分布函数为「7/2 朴 1 「7/2/ X(3) P{l<X<7/2}・“U)d2| 評讨 12-- 或 P {l<X<7/2} = F(7/2)-F(l)=41/4&7、设某项竞赛成绩X 〜N (65,100),若按参赛人数的10%发奖,问获奖分数线应 定为多少 解 设获奖分数线为则求使P{X>x^} = OA 成立的心・其它当 X>1・ F(x) = 1,故 F(x)n0, A f --- 7 1 1—Vl-f +—arcsinx + — XV-12’A->1⑴确泄常姒;解⑴由 J f(x)dx = l* 得解得k = \©于是X 的概率密度为/Cv) =X6*2 ■丄20<x<33<x<4・尖它F(x)=<0,Jo 6x<0 0<x<33<x<4 x>4a X-/12. —3 + 2x ■x<00<x<33<x<4 x>4P{X >x^} = \-P{X <x^} = i-F(x^) =1-0筈竺) = 09査表得斗浮= 1.29,解得丸= 77.9,故分数线可宦为78分.I IU / 1U8、在电源电压不超过200伏,在200-240伏和超过240伏三种情形下,某种电子元件损坏 的概率分别为,和.假设电源电压X 服从正态分布N(22O, 25 2).试求:(1) 该电子元件损坏的概率a ;(2) 该电子元件损坏时,电源电压在200-240伏的概率0. 解引入事件州={电压不超过200伏}"2={电压不超过200-240伏}/3={电斥超过240伏};B = {电子元件损坏}• 由条件知X ~N(22O ・252),因此 < 笃严} = 54 8)= 1-0(0.8) = 0.212;Y _ Rf)]P“2)= P(2{)O<X<24O}=件-0・8<^^^^^^<0・8} =250.8)-1=0.576. P(州)=P{X >240| = 1-P(X<240} = 1-0(0,8) = 0.212・ (1)由题设条件,P(BIA)= 0丄 P(BIA2)= O ・OO1・ P(BI/V)= °・2于是由全概率公式,有3a = P(B) = ZP(A)P(BI A)= 0・0642・j-i⑵由贝叶斯公式,有0 = P(A,\B) = P"2)P"IA2)丸0.009. 卩 - P(B)9、已知某台机器生产的螺栓长度X(单位:厘米)服从参数// = 10.05, <7 = 0.06的正态分布.规定螺栓长度在10・05±0」2内为合格品,试求螺栓为合格品的概率.解 根据假设X ~ N(IO ・050062)・P{«<X<”}=©(匕勺一❻= e(2)-[l-e(2)] =252)-1 =2 x 0.9772-1 =0.9544. 即螺栓为合格品的概率等于.10•已知 X~N(&O ・52),求 {1) F(9),F(7); (2) P{7.5<X<10}; {3) P{IX-8K1};(4) P{IX-9lv0・5)・10P(A)= P{X<200} = P记“ =10・05-0・12 b = lQ05 + 0」2则{a<X<h}表示螺栓为合格品.于是q<)=(I>(2)-◎(-2)11•某种型号电池的寿命X 近似服从正态分布N(2).已知其寿命在250小时以上的 槪率和寿命不超过350小时的概率均为%,为使其寿命在“-兀和“+K 之间的概率不小于, X 至少为多少12.设X ~N(0,l),求y = X-的密度函数.解记r 的分布函数为 F Y (X ).则 Fy(x) = P{Y<x} = P{X-<x}. 显然,当丄yO 时,Ey(x) = P{X-<x} = 0;当x>o 时,Fy(x)= p{x- <x} = P {-5/7<X <5/7}・2e(頁)一1・注:以上述函数为密度函数的随机变量称为服从z'(l)分布,它是一类更广泛的分布 r ⑺)在"I 时的特例.关于Z-00分布的细将在第五章中给出.13、设随机变量X 服从参数为几的指数分布,求r = min{X.2|的分布函数•解根据已知结果,X 的分布函数I-严 x>0 0,x<0y 的分布函数Fy(y) = P{Y<y} = P{mn{X.2}<y}=l-P{min{X.2}>y} =1-P{X >”2>卅・当)Y 2 时,Fy(y) = \-P{X>y} = P{X<y} = Fx(yl 当 y>2 时,Fy(y) = \.注:在本例中,虽然X 是连续型随机变量,但Y 不是连续型随机变量,也不是离散型随机变量「的分布在y = 2处间断.从而y = X^的分布函数为Fy(x)h2<1>( 77)-1, %>0%<0于是其密度函数为fy(X)=F}(X)= -石倾仮)' 0,x>0.<o=r丄严,*>0JDC 0, x<0代入X 的分布函数中可得F 心)=1-宀0.y<Q"刘,0<yv2・h y>214s 设随机变量X 在(04) h 服从均匀分布"求r=-2In X 的概率密度. 9解 在区间(0,1) ±,函数InxvO,故y = -21nx>0・ / = --<0X 于是y 在区间(0・+8)上单调下降,有反函数x ・h (y )*F2已知X 在在(61)上服从均匀分布即门股从参数为仇的指数分布. 15.设X 的分布列为X -1 0 I 2 5/2Pi 1/5 1/10 1/10 1/10 3/10试求:(1) 2X 的分布律;(2) X2的分布律.16•设随机变量X 的概率密度为lxl7l~, Q<x< 仏0. 其它.求y = sinX 的概率密度•从而/r (y )=严2<1其它代入/V (y )的表达式中,得Zv (y )h 2^・ 0. 1, 0<x<l 0.苴它-v/2 y>Q 其它f(x) = <。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论》阶段作业:
1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。

2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。

(841
3.0)1(=Φ,9772.0)2(=Φ)
3.在区间(0,1)中随机地取两个数,求事件“两数之和小于5
6”的概率。

4.一船舶在某海域航行, 已知遭受每一次波浪的冲击, 纵摇角大于3︒度的概率为1/3,, 若船舶遭受了90000次波浪冲击, 问其中有29500~30500次纵摇角度大于3︒的概率为多少?
5、,X Y 相互独立,它们都服从标准正态分布(0,1)N 。

证明:
W X Y =+服从正态分布(0,2)N 。

6、设随机变量独立同分布,且021
122X
p
, 求: (1)),(Y X 的联合分布;
(2)max(,)z X Y =的概率分布;
(3)W XY =的概率分布。

7.设二维随机变量(X,Y)的密度函数为
30100,,(,),,x x y x f x y <<<<⎧=⎨⎩
其他 求 (1)(X,Y)关于X 、Y 的边缘分布密度,并判断X 与Y 是否相互独立。

(2)求概率{}P X Y >;
(3)求),(Y X 的联合分布函数。

相关文档
最新文档