2011~2012学年度第一学期八年级期末调研考试数学试题及答案
2011~2012学年第二学期期末调研考试-八年级数学参考答案

2011~2012学年第二学期期末调研考试八年级数学参考答案一、选择题:1、B ;2、C ;3、A ;4、D ;5、C ;6、B.二、填空题:7、a ≥×108;12、25;13、120;14、3600或5400或7200.;15、x1。
三、解答题:16、解:他的解法有错误:……………………1分第一步:去分母,得x+5-1<3x+7 (去分母时,—1没有乘以公分母2 )第二步:移项、合并同类项,得-2x<3 ( )第三步:两边都除以-2,得x<23-.(两边都除以-2时,不等号的方向没有改变)……3分正确的解题过程为:去分母,得x+5-2<3x+7移项、合并同类项,得-2x<4两边都除以-2,得x>-2. ……………6分 因为大于-2的非正整数有-1,0,所以该不等式的非正整数解为-1,0. ……………8分17、解:原式=xx x x x x x x x )2)(2()2)(2()2()2(3+-•+---+ ……………………3分 =xx x x x x x )2)(2()2)(2()4(2+-•+-+ ……………………5分 =2(x+4) ……………………7分当x=1时,原式=2(1+4)=10 ……………………9分 种类频数 频率 小说80 漫画40 科普60 其他20 合计 200 1……………………5分(2)由表格可知:喜欢“科普类书籍”的学生所占的频率为0.3,所以该年级喜欢““科普类书籍”的学生大约为:600×0.3=180(人) ……………………7分(3)只要学生叙述合理,即可得分. ……………………9分19、解:∵DE ∥BC (已知) ……………………2分∴∠DEB=∠EBC=200(两直线平行,内错角相等) ……………………4分又∵∠BDE+∠DBE+∠DEB=1800(三角形内角和等于1800) ……………………6分∴∠BDE=1800-∠DB E -∠DEB (等式变形)=1800-350-200 (代入求值)=1250 ……………………9分20、(1)如图,△A 1B 1C 1就是△ABC 平移后所得三角形; ……………4分(2)如图,△A 2B 2C 2就是△A 1B 1C 1放大后所得三角形。
初二数学上期期末考试试题及答案

初二数学上期期末考试试题及答案初二数学知识点总结八年级数学上册期末试题 A卷(共100分)一、选择题:(每小题3分,共30分)1.下列运算中,正确的是A。
9 = ±3B。
-8 = 2C。
(-2)² = 0D。
2¹ = 22.在5,3,-1/5中,无理数是A。
πB。
√5C。
0D。
-1/53.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为A。
(3,2)B。
(-2,-3)C。
(-2,3)D。
(2,-3)4.已知方程组,则x+y的值为A。
-1B。
0C。
2D。
35.不等式组的解集为{x|x>1/2},则x的取值范围是A。
x>1B。
x<-1C。
-1<x<1/2D。
x>-26.下列说法中错误的是A。
一个三角形中,一定有一个外角大于其中一个内角B。
一个三角形中,至少有两个锐角C。
一个三角形中,至少有一个角大于60°D。
锐角三角形中,任何两个内角的和均大于90°7.已知是二元一次方程组的解,则a-b的值为A。
1B。
2C。
-1D。
38.△ABC的三边长分别为3,3,√2,则此三角形是A。
等腰三角形B。
等边三角形C。
直角三角形D。
等腰直角三角形9.学校开展为贫困地区捐书活动,以下是六名学生捐书的册数:2,2,2,3,3,6,则这组数据的方差为A。
2B。
2.5C。
3D。
3.510.关于x的一次函数y=kx+k+1的图象可能正确的是A。
B。
C。
D。
二、填空题:(每小题3分,共15分)11.使x-2在实数范围内有意义的x的取值范围是:x>212.将一副三角板如图放置.若AE∥BC,则∠AFD=60°13.已知正比例函数y=kx的图象经过点A(-1,2),则正比例函数的解析式为:y=-2x14.点P(a,a-3)在第四象限,则a的取值范围是:a<315.设f(x)=2x²-3x+1,则f(-1)的值为:6根据提供的函数关系图,解决以下问题:1.由于故障,甲组在途中停留了x小时。
2011-2012学年度第一学期八年级期末数学训练试卷

D CA BD C B A 2011-2012学年度第一学期八年级期末数学训练试卷本试卷120分 考试用时120分钟一、选一选(本大题共1 2小题,每小题3分,共36分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答寒的代号在答题卡上将对应的答案标号涂黑。
1.下列运算中,正确的是A . x 2x 3=5x B . x+x 2=x 3 C . 2x 3÷x 2=x D .(2x )3=23x2.若2 x 在实数范围内有意义,则x 的取值范围是( )A. x≥-2B. x≠-2 .C. x≥2D. x≠23.下列各点,不在函数y=2x -1的图象上的是( ) A .(2,3) B .(-9,-5) C .(O ,-1) D .(-1,0)4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )5.估计与28最接近的整数是( )A .4B . 5 C.6 D . 76.下列各式:①XL 一xy';②X2一xy+2y2;③_X2+ y2;④X2—2xy+y2,其中能用 公式法分解因式的有A .1个B .2个C .3个D .4个 7.下列计算:①2+3=5;②2a 3·3a 2= 6a 6;③(2x+y)(x -3y)=2x 2-5xy -3y 2; ④(x+ y)2=x 2+ y 2.其中计算错误的个数是( )A.O 个B.l 个 C .2个 D.3个8.如图,点A 在线段BC 的垂直平分线上,AD=DC ,∠ A=28°, 则∠BCD 的度数为( )A . 76° .B . 62°C . 48°D . 38° 9.已知a+b=2,则a 2-b 2+4b 的值是( )A . 2B . 3C . 4D . 610.如果直线y=ax+2与直线y=bx -3相交于x 轴上的同一点,则a:b 等于 ( )A . -32 B .32 C.-23 D .23 11.甲、乙两人以相同路线前往距离工作单位10km 的培训中心 参加学习.图中l 甲、,l 乙分别表示甲、乙两人前往目的地所走的 路程S (km)随时间t (分)变化的函数图象,以下说法:①乙比甲E D ABCECAEDBAC8km 后遇到甲;④乙出发6分钟后追上甲,其中正确的有( ) A .4个 B .3个 C .2个 D .1个12.如图: △ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD, CE ⊥CD,且CE=CD ,连接BD. DE. BE ,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥ BE;④BDCD=1. 其中正确的是( ) A .①②③ B.①②④ C .①⑧④ D.①②⑧④二、填一填(每题3分,共12分)13.计算:(2a )3=_____, 24x 2y-(-6xy)=_________, ,2)3(- =___14.若1+-b a 与42++b a 互为相反数,则1+b a=______.15.如图,点D 、E 在△ABC 的BC 边上,.∠ BAD=∠CAE ,要推理得出 △ABF ≌△ACD,可以补充的一个条件是__________________. (不添加辅助线,写出一个即可). 16.如图,直线l 1 y 1:= kx+b 与直线l 2:y 2=mx+n 交点为P(1,1),当y 1>y 2>0时,x 的取值范围是________.三、解下列各题(本大题有9小题,共72分)17.(本题6分)计算:(21x 4y 3 -35x 3y 2+7x 2y 2)÷(18.(本题6分)分解因式:9x 2y- 6xy 2+ y 319. (本小题6分)如图,△ABC 中,AB=AC, BD 上AC 于点D , CE ⊥AB 于点E . 求证:BD=CE20.(本题7分)先化简,后求值:[(x 2+y 2)-(x —y)2+2y(x —y)]÷4y,其中2x-y =18.EEx 乙地甲地B 省A 省捐赠省台数(台)调运灾区FA21.(本题7分)(1)点(1,3)沿X 轴的正方向平移4个单位得到的点的坐标是_________(2)直线y=3x 沿x 轴的正方向平移4个单位得到的直线解析式为____________ (3)若直线l 与(2)中所得的直线关于直线x=2对称,试求直线l 的解析式. 22.(本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且BA=BC ,过点C 作BE 的垂线CD ,过E 点作EF 上AE 交∠DCE 的角平分线于F 点,交HE 于P . (1)试判断△PCE 的形状,并请说明理由. (2)若∠HAE=120°,AB=3,求EF 的长. 23.(本题10分)玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种 大型挖掘机,甲地需要27台,乙地需要25台;A 、B 两省获知情况后慷慨相助,分别捐赠 该型号挖掘机28台和24台,并将其全部调运往灾区,如果从A 省调运一台挖掘机到甲地耗 资0.4万元,到乙地耗资0.3万元;从B 省调运一台挖掘机到甲地耗资0.5万元,到乙 地耗资0.2万元;设从A 调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共 耗资y 万元:(1)请完成表格的填空:(2)求出y 与x 之间的函数关系式,并直接写出 自变量x 的取值范围 (3)画出这个函数的图象,结合图象说明若要使总耗资不超过16.2万元,有哪几种调运方案?哪种调运方案的总耗资最少?24.(本题10分)如图1,AD∥BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E 在线段AB 上.(1)填空:∠ADE=____°; 求证: AB=BC;2所示,若F 为线段CD 上一点,∠FBC=30°,求FCDF(3)的25. (本题12分)如图1:直线y= kx+4k (k ≠0)交x 轴于点A ,交y 轴于点C ,点M (2,m)为直线AC 上一点,过点M 的直线BD 交x 轴于点B ,交y 轴于点D . (1)求OAOC的值(用含有k 的式子表示.); (2)若S ∆BOM =3S ∆DOM ,且k 为方程(k+7)(k+5)-(k+6)(k+5=29的根,求直线BD 的解析式. (3)如图2,在(2)的条件下,P 为线段OD 之间的动点(点P 不与点O 和点D 重合),OE 上AP 于E ,,DF 上AP 于F ,下列两个结论:①DF OE AE +值不变;②DFOEAE -值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,青山区2010—2011学年度第一学期八年级期末测试数学试卷答案二、填空题三、解下列各题(本大题有9小题,共72分)17.(本题6分)解:原式=y xy y x -+-5322 (对一项得2分) ……6分 18. (本题6分)解:原式=y(9x 2-6xy+y 2) ……3分 =y(3x-y)2 ……6分19. (本小题6分)证明:∵BD ⊥AC ,CE ⊥AB∴∠ADB=∠AEC=90°……1分在△ABD 和△AEC 中⎪⎩⎪⎨⎧=∠=∠∠=∠AC AB AA AEC ADB ∴△ABD ≌△AEC(AAS ) ……4分 ∴BD =CE . ……6分20. (本题7分)解:原式=()[]y y xy yxy x y x 422222222÷-++--+ ……2分=[]y y xy y xy x y x 422222222÷-+-+-+ ……3分2=y x 21-……5分 ∵y x -2 =18∴y x 21-=9 ∴原式=9 ……7分21. (本题7分) 解:(1)(5,3); ……1分 (2)y=3x-12; ……3分 (3)设直线l 的解析式为:y=kx+b∵点(4,0)和(0,-12)在直线y=3x-12上,它们关于直线x=2的对称点为: (0,0) (4,-12) ……5分 将x=0,y=0和x=4,y=-12分别代入y= kx+b 中,得:⎩⎨⎧-=+=1240b k b 解得:⎩⎨⎧=-=03b k∴直线l 的解析式为:y=-3x ……7分22. (本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且,过点C 作BE 的垂线CD ,过E 点作交∠DCE 的角平分线于F 点,交HE 于P.(1)试判断△PCE 的形状,并请说明理由; (2)若,AB=3,求EF 的长.解: (1)△PCE 是等腰直角三角形,理由如下: ……1分∵∠PCE=21∠DCE=21×90°=45° ∠PEC=45°∴∠PCE=∠PE C ……3分 ∠CPE=90°∴△PCE 是等腰直角三角形 ……4分 (2)∵∠HEB=∠H=45°∴HB=BE ∵BA=BC∴AH =CE ……5分 而∠HAE=120°∴∠BAE=60°,∠AEB=30° 又∠AEP=90°∴∠CEP=120°=∠HAE ……6分 而∠H=∠FCE=45°∴△HAE ≌△CEF(ASA)又AE=2AB=2×3=6∴EF=6 ……8分23.(本题10分) (1)(每空1分) ……3分 解:(2)y=0.4x+0.3(28-x )+0.5(27-x )+0.2(x-3)0.221.3x =-+ ……5分 (273≤≤x 且 x 为整数) ……6分(3)如图,当2.16=y 时,2.163.212.0=+-x5.25=x ……7分 函数图象经过点(25.5,16.2) 又∵273≤≤x∴当275.25≤≤x 时,总耗资不超过16.2万元 ……8分∵x 为整数∴有两种调运方案:①当26=x 时,即从A 省调运26台到甲地,2台到乙地,从B 省调运1台到甲地,23台到乙地;②当27=x 时,即从A 省调运27台到甲地,1台到乙地,从B 省调运0台到甲地,24台到乙地. ……9分∵02.0 -∴y 随x 的增大而减小∴27=x ,即第二种方案耗资最少,为9.15=y 万元. ……10分24. (本题10分) 解:(1)45; ……2分 (2)证明:连接AC∵∠DCB=75º,AD ∥BC ∴∠ADC=105º由等边△DCE 可知:∠CDE =60º故∠ADE =45º由AB ⊥BC ,AD ∥BC 可得:∠DAB=90º ∴∠AED=45º∴AD=AE∴点A 在线段DE 的垂直平分线上 ……4分 又CD=CE∴点C 也在线段DE 的垂直平分线上 ……5分 ∴AC 就是线段DE 的垂直平分线 即AC ⊥DE∴AC 平分∠EAD ∴∠BAC=45°∴△ABC 是等腰直角三角形(3)解:连接AF ,延长BF 交AD 的延长线于点G ∵∠FBC=30º,∠ABC=90 º ∴∠ABF=60º,∠DCB=75º ∴∠BFC=75º 故BC=BF由(2)知:BA=BC ∴BA=BF∴△ABF 是等边三角形∴AB=BF=FA ……7分 ∴∠BAC=60 º ∴∠DAF=30 º 又∵AD ∥BC∴∠FAG=∠G=30º∴FG =FA= FB ……8分 又∠DFG=∠CFB∴△BCF ≌△GDF (ASA ) ……9分 ∴DF=CF∴DFFC=1 ……10分25. (本题12分)(1)解:∵A (-4,0) C(0,4k ) ……2分 由图象可知0k∴OA=4 , OC=4k - ……3分∴k kOA OC -=-=44 ……4分(2)解: ∵()()()()295657=++-++k k k k 解得:12k =-……5分 ∴直线AC 的解析式为:122y x =--∴M (2,-3) ……6分 过点M 作ME ⊥y 轴于E ∴ME=2∵DOM BO M S S ∆∆=3 ∴DOM BOD S S ∆∆=4又∵2OB OD S BOD ⋅=∆ 2MEOD S DOM ⋅=∆ ∴422⨯⋅=⋅MEOD OB OD ∴ME OB 4=∴8=OB∴B (8,0) ……7分 设直线BD 的解析式为:b kx y +=则有 ⎩⎨⎧=+-=+0832b k b k解得:⎪⎩⎪⎨⎧-==421b k ……9分∴直线BD 的解析式为:421-=x y ……8分(3)解:②DFOEAE -值不变.理由如下:过点O 作OH ⊥DF 交DF 的延长线于H ,连接EH ……9分 ∵DF ⊥AP∴∠DFP=∠AOP=90º 又∠DPF=∠APO ∴∠ODH=∠OAE ∵点D 在直线421-=x y ∴D(0,-4) ∴OA=OD=4又∵∠OHD=∠OEA=90 º∴△ODH ≌⊿OAE (AAS ) ……10分 ∴AE=DH , OE=OH , ∠HOD=∠EOA∴∠EOH=∠HOD+∠EOD=∠EOA+∠EOD=90º ……11分 ∴∠OEH=45º∴∠HEF=45º=∠FHE ∴FE=FH∴等腰Rt ⊿OH ≌等腰Rt ⊿FHE ∴OE=OH=FE=HF ∴1=-=-DFHFDH DF OE AE ……12分。
2012-2013学年度北师大版八年级上册数学期末期末教学质量检测(一)及答案

2012-2013学年度北师大版八年级上册数学期末期末教学质量检测(一)及答案(全卷五大题25小题 满分:120分 时限:120分钟)一、选择题(每小题3分,共30分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请把符合要求的选项前面的字母填写在Ⅱ卷上指定的位置. 1、12-的相反数是( )A 、12 B 、12-C 、2D 、2-2、下列交通标志中,不是轴对称图形的是( )3、如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A 、右转80°B 、左传80° (第五题)C 、右转100°D 、左传100°4、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的坐标为( ) A 、(-2,2) B 、(4,1) C 、(3,1) D 、(4,0) 5.若运算程序为:输出的数比该数的平方小1.则输入 ( ) A .10 B .11 C .12 D .13 6.下列各式运算正确的是( )A .m n mn =-33B .y y y =÷33C .623)(x x = D .632a a a =⋅7.如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元 C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分8.两个完全相同的长方体的长、宽、高分别为3、2、1,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最小值为 【 】DA .42 B . 38 C .20 D .329.下列说法:①对角线互相平分且相等的四边形是菱形;②计算2-的结果为1;③正六边形的中心角为60︒;④函数y =x 的取值范围是x ≥3. 其中正确的个数有 【 】 A .1个 B .2个 C .3个 D .4个10.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,共15分)将答案填写在Ⅱ卷上指定的位置.11.如图,菱形ABCD 中,∠A =60º,对角线BD =8,则菱形ABCD 的周长等于______. 12.若等腰三角形的一个外角为70,则它的底角为 . 13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭ .14、根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )15、如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x (天)之间的关系图象.根据图象提供的信息,(第12题)可知该公路的长度是______米.秋季学期八年级期末调研考试数 学 试 题Ⅱ卷 (解答题 共75分)三、解答题(每题6分,共24分)(1)1698149278253-⨯-+(2)已知()()213x x x y ---=-,求222x y xy +-的值.17、解方程组18、如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1) 由图观察易知A (0,2)关于直线l的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:B ' 、C ' ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为(不必证明);运用与拓广:(3) 已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.(第22题图)19、(本题满分14分)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.四、解答题(每小题7分,共21分)20.温州皮鞋畅销世界,享誉全球.某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入______________万元,二月份销售收入_____________万元,三月份销售收入__________万元;(2)二月份男、女皮鞋的销售收入各是多少万元?21.某校八年级(1)班50名学生参加2007年市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是.(2)该班学生考试成绩的中位数是.(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.22、如图,把矩形纸片A B C D沿E F折叠,使点B落在边A D上的点B'处,点A落在点A'处;(1)求证:B E BF'=;(2)设A E a A B b B F c===,,,试猜想a b c,,之间的一种关系,并给予证明.(第23题图)第一季度男女皮鞋ABCDFA'B' E五、解答题(每小题10分,共30分)23.(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.CBO D 图7ABAO DCE图825.某物流公司的快递车和货车每天往返于A 、B 两地,快递车比货车多往返一趟.图11表示快递车距离A 地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A 地晚1小时. ⑴请在图11中画出货车距离A 地的路程y (千米)与所用时间x (时)的函数图象; ⑵求两车在途中相遇的次数(直接写出答案);⑶求两车最后一次相遇时,距离A 地的路程和货车从A 地出发了几小时?2010年秋季初中期末调研考试(时)八 年 级 数 学 试 题Ⅱ卷 (解答题 共75分)二、填空题(每小题3分,共15分)将答案填写在Ⅱ卷上指定的位置.16、计算 (1)1698149278253-⨯-+=1343(2)已知()()213x x x y ---=-,求222x y xy +-的值.17、解方程组18、.解:(1)如图:(3,5)B ',(5,2)C '-(2) (b ,a )(3)由(2)得,D (1,-3) 关于直线l 的对称点D ' 的坐标为(-3,1),连接D 'E 交直线l 于点 Q ,此时点Q 到D 、E 两点的距离之和最小设过D '(-3,1) 、E (-1,-4)为b kx y +=,则314k b k b -+=⎧⎨-+=-⎩,.∴52132k b ⎧=-⎪⎪⎨⎪=-⎪⎩,.∴51322yx =--.由51322y x y x ⎧=--⎪⎨⎪=⎩,. 得137137x y ⎧=-⎪⎪⎨⎪=-⎪⎩,.∴所求Q 点的坐标为(137-,137-)-----10分说明:由点E 关于直线l 的对称点也可完成求解.19、(第22题图)四、解答题(每小题7分,共21分)20.解:(1)50;60;90.(2)设二月份男、女皮鞋的销售收入分别为x 万元,y 万元, 根据题意,得60(140)(164)90x y x y +=⎧⎨+++=⎩%%,解得3525x y =⎧⎨=⎩.答:二月份男、女皮鞋的销售收入分别为35万元、25万元.21. (1)88分(2)86分(3)不能说张华的成绩处于中游偏上的水平因为全班成绩的中位数是86分,83分低 于全班成绩的中位数22.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, 在矩形A B C D 中,AD BC ∥, B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. B F B E ''∴=. B E BF '∴=.(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. 证:连结B E ,则BE B E '=.由(1)知B E B F c '==,B E c ∴=.在A B E △中,90A ∠=,222AE AB BE ∴+=.A E a = ,AB b =,222a b c ∴+=.(ⅱ)a b c ,,三者存在的关系是a b c +>. 证:连结B E ,则BE B E '=.由(1)知B E B F c '==,B E c ∴=. 在A B E △中,AE AB BE +>,a b c ∴+>.说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分;3.a b c ,,三者关系写成a c b +>或b c a +>参照给分.23.解:(1)如图7.∵ △BOC 和△ABO 都是等边三角形, 且点O 是线段AD 的中点, ∴ OD=OC=OB=OA,∠1=∠2=60°, ∴ ∠4=∠5.又∵∠4+∠5=∠2=60°, ∴ ∠4=30°. 同理,∠6=30°. ∵ ∠AEB=∠4+∠6, ∴ ∠AEB=60°.(2)如图8.∵ △BOC 和△ABO 都是等边三角形, ∴ OD=OC, OB=OA,∠1=∠2=60°, 又∵OD=OA,∴ OD =OB ,OA =OC , ∴ ∠4=∠5,∠6=∠7. ∵ ∠DOB=∠1+∠3, ∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°, ∴ 2∠5=2∠6, ∴ ∠5=∠6.又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6, ∴ ∠AEB =∠2+∠5-∠5=∠2, ∴ ∠AEB =60°. 24、图88765421EO DCBA3 ABCDFA 'B ' EABCDFA 'B ' E25。
成都市八年级上数学期末试卷B卷题型汇总

川师大实验校·八年级上期期末数学试题B 卷(50分)一、填空题(每小题3分,共18分)1、点P(2,1+--b a )关于x 轴的对称点与关于y 轴对称的点的坐标相同,则b a ,的值分别是 。
2、点Q (3-a ,5 -a )在第二象限,则a 2 - 4a + 4 + a 2- 10a + 25 = .3.一个多边形除一个内角外,其余各内角的和等于2000°,则这个内角应等于 度 4. 如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8㎝, AB=6㎝,那么折叠后的重合部分的面积是___________________. 5.在平面直角坐标系中,已知A (2,-2),在坐标轴上确定 一点P,使△AOP 为等腰三角形,则符合条件的点P 的坐标为______.6.等腰梯形ABCD 中,AD //BC ,对角线AC 和BD 相交于E ,已知,∠ADB =60︒,BD =12,且BE ∶ED =5∶1,则这个梯形的周长是___________________.二(共8分)在西湖公园的售票处贴有如下的海报:(1)如果八年级(8)班27名同学去西湖公园开展活动,那么他们至少要花多少钱买门票? (2)你能针对该班参加活动各种可能的人数,设计合理的买票方案吗?三. (共8分)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y 微克随时间x 小时主变化如图所示,当成人按规定剂是服药后, (1)分别求出x<2和x>2时y 与x 的函数关系式,(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?四、(本题8分)如图,在正方形ABCD 中,E 为AD 的中点,BF=DF+DC.求证:∠ABE=21∠FBC.五、(本题8分)已知正方形ABCD 中,M 是AB 的中点,E 是AB 延长线上一点, MN ⊥DM 且交∠CBE 的平分线于N (如图1). (1)求证:MD=MN ;(图1) (2)若将上述条件中的“M 是AB 的中点”改为“M 是AB 上任意一点”,其余条件不变(如图2),则结论“MD=MN ”还成立吗?如果成立,请证明;如果不成立,请说明理由.(图2)ABCFD第4题图E AB CDEFCABCDM N EAB CDM NE2011-2012学年四川省成都市八年级(上)期末数学试卷五、(每小题10分,共20分)19.(10分)如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P沿路线0→C→B运动.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)求△COB的面积.(3)当△POB的面积是△COB的面积的一半时,求出这时点P的坐标.20.(10分)(2011•河北)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值.B卷一、填空题(每小题4分,共20分)21.(4分)(2011•成都)在平面直角坐标系xOy中,点P(2,a)在正比例函数的图象上,则点Q(a,3a﹣5)位于第_________象限.22.(4分)若一次函数y=kx+b,当﹣2≤x≤6时,函数值的范围为﹣11≤y≤9,则此一次函数的解析式为_________.23.(4分)已知:,=_________.24.(4分)如图,已知在△ABC中,AD、AE分别是边BC上的高线和中线,AB=9cm,AC=7cm,BC=8cm则DE的长为_________.25.(4分)如图,已知菱形ABC1D1的边长AB=1cm,∠D1AB=60°,则菱形AC1C2D2的边长AC1=_________cm,四边形AC2C3D3也是菱形,如此下去,则菱形AC8C9D9的边长=_________cm.二、解答题(8分)26.(8分)(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是_________m,他途中休息了_________min;(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?27.(10分)(2008•濮阳)如图,已知:在四边形ABFC 中,∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF=AE .(1)试探究,四边形BECF 是什么特殊的四边形?(2)当∠A 的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)四、解答题(12分)28.(12分)如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A <OB )是方程组的解,点C 是直线y=2x 与直线AB 的交点,点D 在线段OC 上,OD=.(1)求直线AB 的解析式及点C 的坐标; (2)求直线AD 的解析式;(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.成都七中初中学校2010-2011学年度上期期末数学模拟试卷B 卷(共50分)一、 填空题:(每小题4分,共20分)21、已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:a b c c -+-+-+=34102502||则△ABC的形状是 .22、有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .23、已知点P 的坐标为()63,2+-a a ,且点P 到两坐标轴的距离相等,则点P 的坐标 为 . 24、如图,在平行四边形ABCD 中,E F ,分别是边AD BC ,的中点,AC 分别交BE DF ,于点M N ,.给出下列结论:①ABM CDN △≌△;②13AM AC =;③2DN NF =;④12AMBABC S S =△△.其中正确的结论是 . 25、一次函数y =mx +1与y =nx +2的图像相交于x 轴上一点,那么m ∶n = . 二、 (共8分)26、某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?ADCE F BM N ABCD三、 (共10分)27、如图(1),一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图(2),当EF 与AB 相交于点M GF ,与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图(3)所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.四、 (12分)28、已知一次函数y=3+m(O<m≤1)的图象为直线l ,直线l 绕原点O 旋转180°后得直线l ',△ABC 三个顶点的坐标分别为A(-3,-1)、B(3,-1)、C(O ,2).(1)直线AC 的解析式为________,直线l '的解析式为________ (可以含m);(2)如图13,l 、l '分别与△ABC 的两边交于E 、F 、G 、H ,当m 在其范围内变化时,判断四边形EFGH 中有哪些量不随m的变化而变化?并简要说明理由;(3)将(2)中四边形EFGH 的面积记为S ,试求m 与S 的关系式,并求S 的变化范围; (4)若m=1,当△ABC 分别沿直线y=x 与y=3x 平移时,判断△ABC 介于直线l ,l '之间部分的面积是否改变?若不变请指出来.若改变请写出面积变化的范围.(不必说明理由)成都七中初中学校2011-2012学年度上学期期末交流试卷图1()D F C O()B E()A GD C NF OM BEAGD COBAN FEMG图2图3八年级数学20、(12分)已知:如图,直线1l 与y 轴交点坐标为(0,-1),直线2l 与x 轴交点坐标为(3,0),两直线交点为P (1,1),解答下面问题: (1)求出直线1l 的解析式;(2)请列出一个二元一次方程组,要求能够根据图象所提供的信息条件直接得到该方程组的解为11x y =⎧⎨=⎩;(3)当x 为何值时,1l 、2l 表示的两个一次函数的函数值都大于0?B 卷(50分)一、填空题(每小题5分,共20分)21、若有两条线段,长度是1cm 和2cm,第三条线段为 时, 才能组成一个直角三角形. 22、数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则22x x-+= 23、已知在正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1,则点C 的个数为 . 24、如图,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y =x 的图象与直线1l ,2l ,3l ,…n l 分别交于点1A ,2A ,3A ,…n A ;函数y =2x 的图象与直线1l ,2l ,3l ,…n l 分别交于点1B ,2B ,3B ,…n B .如果11OA B ∆的面积记作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…,四边形11n n n n A A B B --的面积记作n S ,那么2011S . 二、解答题25.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示. (1) 请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价.(2) 请你根据单位印制证书数量的多少,给出经济实惠的选择建议. (3) 如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?26、在四边形ABCD 中,对角线AC 、BD 相交于点O ,设锐角∠DOC =α.将△DOC 绕点O 逆时针方向旋转得到△D /O /C /(0°<旋转角<90°).连接AC /、BD /,AC /与BD /相交于点M .(1)当四边形ABCD 是矩形时,如图1,请猜想AC /与BD /的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;x y 1-O1234121-2-1l 2l ()11P ,(2)当四边形ABCD 是平行四边形时,如图2,已知AC =kBD ,请猜想AC /与BD /的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(3)当四边形ABCD 是等腰梯形时,如图3,AD ∥BC ,此时(1)中AC /与BD /的数量关系是否成立?∠AMB 与α的大小关系是否成立?不必证明,直接写出结论.27.如图,四边形OABC 是矩形,点A 、C 的坐标分别为(-3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 做直线y =21x +b 交折线OAB 与点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上,且DE =5时,作出矩形OABC 关于直线DE 的对称图形四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,如不变,求出该重叠部分的面积;若改变,请说明理由.成都市2011—2012学年度上期期末调研考试(预测题)B 卷(共50分)一、填空题:(每小题4分,共20分) 21. 已知函数5)2(32+-=-a xa y 是一次函数,求其解析式为 .22. 如图5,菱形ABCD 的周长为24cm ,∠A=120°,E 是BC 边的中点,P 是BD 上的动点,则 PE ﹢PC 的最小值是 . 23. 已知直线y kx b =+与直线y x =-2垂直,且在y 轴上的截距为2,则直线的解析式为___________.24. 当2>x时,化简代数式1212--+-+x x x x ,得 .25. 在Rt △ABC 中,090C ∠=,两直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则下列说法正确的有 .①. 分别以a 2,b 2,c2的长为边,能够组成一个三角形;②. 分别以a ,b,c 的长为边,能够组成一个三角A BC DE Oxy A BC DE OxyA BC DE Ox y 备用图1备用图2AMD /C /DCO BAM D /C /D O BCAD /DC /M O CB图1图2图3形;③. 分别以a+b ,c+h ,h 的长为边,能够组成直角三角形;④. 分别以a 1,b1,h1的长为边,能够组成直角三角形. 二、(共8分)26. 如图6,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片. (1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点CA B D PEM ,连接EG ,如果A DB C,试说明四边形XYOA D BC E 等腰梯形.三、(共10分) 27. 阅读下面的材料:XYO A (4,0)的根为YXC D BA O(1,4)(3,0)(-1,0)(0,3)∴,2221a ba b x x -=-=+ .4)4(22221a c aac b b x x =--=• 综上得,设)0(02≠=++a c bx ax的两根为1x 、2x ,则有,21ab x x -=+.21a cx x =请利用这一结论解决问题:(1)若02=++c bx x的两根为1和3,求b 和c 的值。
2011~2012年八年级上期末数学试卷含答案

2011—2012学年第一学期期末考试试卷初二数学下列各小题均有4个选项,其中只有一个..选项是正确的,请你把正确答案的字母序号填在下表中相应题号的下面 1.若分式21x -的值为0,则x 的值为 A .1B .1-C .1±D .22x 的取值范围是A .1x >B .1x ≥C .1x <D .1x ≤ 3.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 A .4cmB .5cmC .6cmD .13cm4.如图,AC ∥BD ,AD 与BC 相交于O ,4530A B ∠=∠=,,那么AOB ∠等于 A .75° B .60° C .45° D .30°5.下列判断中,你认为正确的是 AB .π是有理数 第4题C xD 26.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是A .冠军属于中国选手B .冠军属于外国选手C .冠军属于中国选手甲D .冠军属于中国选手乙7.下列运算中正确的是A .623x x x = B .1x y x y -+=-+C .22222a ab b a b a b a b +++=--D .11x xy y+=+8.如图,在Rt △ABC 中,∠C =90︒,AB=4,BC =2, D 为AB 的中点,则△ACD 的面积是 AB.C .2D .49.2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁.为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?设原计划每天铺设x 米管道,所列方程正确的是A .5505505(110%)x x -=+B .5505505(110%)x x -=+ C .5505505(110%)x x-=-D .5505505(110%)x x-=-10.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是 第10题A .60°B .70°C .80°D .不确定 二、填空题(本题共15分,每小题3分) 11.如图,在ABC △中,∠C 是直角,AD 平分∠BAC 交BC 于点D .如果AB =8,CD =2那么△ABD 的面积 等于 .12.计算:222233yx y x-÷= . 第11题 13.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥于点F .若4BC =, 则BE CF +=_____________. 14.如果11m m-=-,那么2m m += . 15.一般的,形如1x a x+=(a 是已知数)的分式方程有两个解,通常用1x ,2x 表示. 请你观察下列方程及其解的特征:(1)12x x +=的解为121x x ==;(2)152x x +=的解为12122x x ==,; (3)1103x x +=的解为12133x x ==,;…… ……解答下列问题:(1)猜想:方程1265x x +=的解为1x = ,2x = ; (2)猜想:关于x 的方程1x x += 的解为121(0)x a x a a==≠,.CBAF E B C D A第13题三、计算题(本题共15分,每小题5分)16.. 解:17.22⎤-⎦.解:18.2222+224a a a a a a +⎛⎫∙ ⎪+-+⎝⎭. 解:四、解答题(本题共10分,每小题5分)19. 已知:如图,在△ABC 中,∠B=∠C .求证:AB =AC .小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下: 小红:“过点A 作AD ⊥BC 于点D ”;小聪:“作BC 的垂直平分线AD ,垂足为D ”.(1) 请你判断小红和小聪的辅助线作法是否正确; (2) 根据正确的辅助线作法,写出证明过程. 解:(1)判断: ; (2)证明:20.如图,在ABC △中,AB=AC ,D 是AB 的中点,点P 是线段CD 上不与端点重合的 任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F .求证:(1)CAE CBF =∠∠; (2)AE BF =. 证明(1)(2)五、解答题(本题共15分,每小题5分) 21.已知20x y -=, 求22y 1x y x y÷-- 的值. 解:22. 解分式方程: 223124x x x --=+-. 解:23.列方程或方程组解应用题:随着人们环保意识的增强,环保产品进入千家万户.今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米? 解:六、解答题(本题共9分,其中24小题4分,25小题小题5分)24. 如图,ABC △中,90ACB ∠=°,将ABC △沿着一条直线折叠后,使点A 与点C 重合(图②).(1)在图①中画出折痕所在的直线l .设直线l 与AB AC ,分别相交于点D E ,,连结CD .(画图工具不限,不要求写画法) (2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(用字母表示,不要求证明) 解:(2)25. 已知:如图,ABC △中,45ACB ∠=︒,AD ⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,BAD FCD ∠=∠. 求证:(1)△ABD ≌△CFD ;(2)BE ⊥AC . 证明:(1)(2)①A B ②B 折叠后七、解答题(本题6分)26.已知ABC △,以AC 为边在ABC △外作等腰ACD △, 其中AC =AD .(1)如图1,若2DAC ABC ∠=∠,△ACB ≌△DAC , 则ABC ∠= °;(2)如图2,若30ABC ∠=︒,ACD △是等边三角形, AB =3,BC =4. 求BD 的长. 解:(2)答案及评分参考一 、选择题(本题共30分,每小题3分)11. 8, 12.392x -, 13. 2, 14. 1 ,15.1215,5x x ==(2分);21a a +(1分)三、计算下列各题(本题共20分,每小题5分) 16.解: 1=3452⨯⨯⨯==分分.................................................................5分222(13)(62)..........................................288⎤-⎦=+--=++=分分....................................4=分分2222222+224(2)2(2)(2)=.......................3(2)(2)(2)(2)422+4(2)................................................4(2)(2)4 (2)a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫∙ ⎪+-+⎝⎭⎡⎤-+++∙⎢⎥+-+-+⎣⎦-++=∙+-+=-分分....................................................................5分四、解答题(本大题共2个小题,每小题5分,共10分) 19. 解:(1)判断:小红的辅助线作法正确 ;………….1分 (2)证明:∵AD ⊥BC ,∴ ∠ADB=∠ADC =90°.…………………………2分 ∵ ∠B=∠C ,AD =AD . ………………………………………3分 ∴ △ABD ≌△ACD .………………………………4分 ∴ AB =AC . ……………………………………..5分 20.证明(1) ∵ AB=AC ,D 是AB 的中点,∴ CD 平分∠ACB ………………………………………1分 ∴ ACP BCP ∠=∠ ∵ CP CP =,∴ △ACP ≌△BCP ………………………………2分 ∴ CAE CBF ∠=∠…………………………………3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =,∴ △ACE ≌△BCF …………………………………………………………………4分 ∴ BF AE =. ………………………………………………………………………5分 五、解答题(本大题共15分,每小题5分) 21.解:原式=()())(y x y x y x y-⋅-+………………………………………………………2分 =yx y+………………………………………………………………………3分 ∵ 20x y -=, ∴ x =2y∴y x y +=312=+y y y ………………………………………………………………5分 22. 解分式方程:223124x x x --=+-. 解:22(2)(4)3x x ---=..................................................................................................2分45x -=-.………………………………………………………………3分54x =.………………………………………………………………..4分经检验,54x =是原方程的解.……………………………………………………….5分23.解:解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x .………………………………………….2分 解这个方程,得x =30 .…………………………………………………………………..3分 经检验,x =30是所列方程的根.………….……………………………………………….4分 答:小明家2月份用气30立方米. …………………………………………………….5分 六、解答题(本大题共9分,其中24小题4分,25小题小题5分) 24. 解:(1)如图所示: 2分 (2)ADC △,BDC △为等腰三角形. 4分25,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒……………………..1分∴ AD=CD. ………………………………………2分 ∵ BAD FCD ∠=∠,∴ △ABD ≌△CFD ………………………………3分(2) ∴ BD=FD. ………………………………………………………………………4分 ∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒. ∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒.∴ BE ⊥AC .……………………………………………………………………………5分 七、解答题(本题6分)26. 解:(1)45;…….………………………………………………………………………..2分 (2)如图2,以A 为顶点AB 为边在ABC △外作BAE ∠=60°, 并在AE 上取AE =AB ,连结BE 和CE .∵ ACD △是等边三角形, ∴AD =AC ,DAC ∠=60°. ∵ BAE ∠=60°,∴ DAC ∠+BAC ∠=BAE ∠+BAC ∠.即EAC ∠=BAD ∠. ∴EAC △≌BAD △. …….…………………………….3分∴ EC =BD.∵ BAE ∠=60°,AE =AB=3, ∴ AEB △是等边三角形,∴ =60EBA ∠︒,EB =3.………………………………………………………………….4分∵ 30ABC ∠=︒, ∴ 90EBC ∠=︒.∵ 90EBC ∠=︒,EB =3,BC =4,∴ EC =5…………………………………………………………………………………5分 ∴ BD =5. ……………………………………………………………………………….6分A AEBCD2图。
2011-2012学年度第一学期期末考试八年级数学试卷
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以乙下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分 ×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
2011-2012学年度第二学期期中调研考试八年级数学答案卷
2011-2012学年度第二学期期中检测八年级数学试题本试题第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷60分,第Ⅱ卷60分,共120分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,务必将自己的姓名.准考证号.考试科目.试卷类型用2B 铅笔涂.写在答题卡上;2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,用橡皮擦干净后,再涂其他答案,不能答在试卷上:3.考试结束后,监考人员将本试卷和答题卡一并收回。
一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列式子一定是二次根式的是( ) A.2--x B. x C. 22+x D. 22-x2.若13-m 有意义,则m 能取的最小整数值是( )A.m=0B.m=1C.m=2D.m=33.下列二次根式中,与54是同类二次根式的是( ) A. 12 B. 24 C.27 D. 504.下列根式中,最简二次根式是( ) A. 14 B.48 C. b a D. a5.05.下列运算正确的是( ) A. 25=±5 B. 2734-=1 C. 9218=÷ D. 62324=∙ 6. 32-和23-的大小关系是( ) A. 32-﹥23- B. 32-﹤23- C. 32-=23- D.不能确定7.2﹤x ﹤3,化简x x -+-3)2(2得正确结果是( )A.1B.-1C.2x-5D.5-2x8.对于二次根式92+x ,以下说法不正确的是( )A.它是一个非负数B.它是一个无理数C.它是最简二次根式D.它的最小值为39.如果两个相似三角形的相似比是1﹕2,那么他们的面积比是( )A.1:2B.2:1C.1: 2D.1:410.如图,已知AD 与CB 相交于点O ,A B ∥CD,如果B ∠=40°,D ∠=30°,则AOC ∠的大小为( )A.60°B.70°C.80°D.120°11.如图,已知D 、E 分别是ABC ∆ 的边AB 、AC 上的点,D E ∥BC,且ADE S ∆︰DBCE S 四边形=1︰8,那么AE ︰AC 等于( )A.1︰9B.1︰8C.1︰3D.1︰212.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC ∆相似的是( ) 13.如图所示,Rt ABC ∆∽Rt DEF ∆,则cosE 的值等于( ) A.21 B. 22 C. 23 D. 33 14.如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定ABM ∆≌CDN ∆的是( )A.∠M=∠NB.AB=CDC.AM=CND.AM ∥CN15.下列说法正确的是( )A.直角三角形都相似B.等腰三角形都相似C.锐角三角形都相似D.等腰直角三角形都相似16.如果ABC ∆∽111C B A ∆,AB=4,11B A =6,那么ABC ∆的周长和111C B A ∆的周长之比CA B O 10题图 D E B A C 11题图 A M N C B D 14题图C BA F E D 13题图ABC A B C D是( )A.1︰3B.4︰9C.2︰3D.3︰217.如图,在ABC ∆中,DE ∥BC,DE 分别与AB 、AC 相交于点D 、E ,若EC=1,AC=3则DE ︰BC 的值为( )A. 32B. 21C. 43D. 31 18.如图,D 在AB 上,E 在AC 上,且∠B=∠C,则在下列条件中,无法判定ABE ∆≌ACD ∆的是( )A.AD=AEB.AB=ACC.BE=CDD.∠AEB=∠ADC19.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶( )A.0.6mB.0.55mC.0.5mD.2.2m20.如图,ABC ∆是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC ∆的面积的( )A.91 B. 92 C. 94 D. 31E A B D C 18题图 B E A D C 17题图A C20题图第Ⅱ卷(非选择题 共60分)注意事项:1.第Ⅱ卷用蓝、黑钢笔或中性笔直接答在试卷中(除题目有特殊要求外);2.答卷前将座号和密封线内的题目填写清楚。
2011-2012八年级数学期中考试
学校 班级 考号 姓名_________________试场号______________装订线内不要答题 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆2011——2012学年度下期期中调研考试八年级数学试题考生注意:本试卷共 三 大题,总分120 分,考试时间 100 分钟.一、选择题(每题3分,共18分)1. 在式子1a,2xyπ,2324a b c ,56x +,7x+8y ,9x+10y,2xx中,分式的个数是( )A, 2 B, 3 C, 4 D, 52.如果分式23xy y中,x,y 的值都变为原来的2倍,则分式的值 ( )A ,不变 B, 缩小为原来的12C, 扩大原来2倍, D,不能确定3.某动动场总建筑面积达25.6万平方米,将25.6万平方米用科学业记数法表示( )平方数 A ,425.610⨯ B, 42.5610⨯ C, 52.5610⨯ D, 62.5610⨯ 4.已知函数k y x=的图象经过(2,3),下列说法正确的是( )A,y 随x 的增大而增大 B, 函数的图象只在第一象限.C, 当x<0时,必有y<0 D, 点(-2,-3)不在此函数的图象上 5. 分式方程11122x x x--=--的两边同时乘以(x-2),约支去分母得:A, 1+(1-x )=x-2 B, 1-(1-x)=x-2 C, 1-(1-x)=1 D, 1+(1-x)=16.三角形的面积为82cm ,则底边上的高y(cm)与底边x(cm)之间的函数图像大致位置是 ______________ 二,填空题:(每题3分,共27分) 7.使分式53x x -有意义的x 的取值范围是__________________.8.计算: (-2x 2y -2z)3= _____________ . 9,化简:2211366aa a÷--的结果是________________10.如图,台风过后,一旗杆在B 处断裂,旗杆顶部A 落在离旗杆底部C8米处,已知旗杆长16米,折痕处离地面的高度是 .xxxxCA11.如图所示,在长方形A B CD 中,A D=4,CD =3,A E ⊥B D ,则A E 的长为:_________则这个反比例函数解析式为 . 12.若11a b-=5,则2222a ab b a ab b+---= .13.命题“同位角相等,两直线平行”的逆命题是:.14,已知一次函数y=2x-5的图象与反比例函数k y x=的图象交与第四象限的P (a,-3a )点,则这个反比例函数的关系式为___________________15.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点, E 是AB 边的一动点,则CE+ED 的最小值是_____________三,解答题:16(本题6分)计算:2421422a a a +--+- 17(本题6分)2232()()()3y x yxy x--÷18,(本7分)解方程:21124x x x -=-- 19.若2510a a -+=,求221a a+的值(a ≠0)(本7分)20(8分)阅读下列解题过程:已知a ,b , c 为△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状.解:∵222244a cbc a b -=-, ① ∴2222222()()()c a b a b a b -=+-, ② ∴222c a b =+ ③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出错误?请写出该步的代号________; (2)错误的原因是_______________________________________________; (3)本题正确的结论是___________________________________________;CB20(8分)已知.2,42,212+=-=-=x x C x B x A 将它们组合成C B A ÷-或C B A ÷-)(的形式,请你从中任选一种进行计算,先化简,再求值其中3x =-.22(本题11分)一张边为15cm 正方形的纸片,剪去两个面积一定且一样的上矩形得到一个“E ”图案如图所示,小长方形的长x(cm)与宽y(cm)之间的函数关系如图所示; (1)求y 与x 的函数关系式;(2)求“E ”图案的面积是多少?(3)如果小长方形的长x 取值范围是6c m ≤x ≤/22.(10分)某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单贵了4元,结果第二批用6300元; (1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?23.(本题12分)如图,一次函数2y kx k =+(k ≠0)的图象与x 轴交于点B ,与双曲线21(5)m y m x+=+交于A.、 C ,其中A 在第一象限,点C 在第三象限.(1求双曲线的解析式和B 的坐标 (2)若2AO B S = 求点A 的坐标(3)在(2)的条件下,在x 轴上是否存在点P ,使△AOP 是等腰三角形?若存在,请你直接写出P 点的坐标;若不存在,请说明理由.x。
2011-2012学年度上学期期末考试八年级数学试卷
图2 DA图1m E DCBA 2011-2012学年度上学期期末考试八年级数学试题一、选择题(本大题共12小题, 每小题3分, 共36分)1、计算4的结果是()A.2B.±2C.-2D.42、函数 y =31-x 的自变量x 的取值范围是( )A.x >-3 B.x <3 C.x ≠3 D.x ≠-33、下列不是一次函数的是( ) A .y=x 1-x B. y=21x -1 C. y=21-x D. y=2x 4、 下面哪个点不在函数y=-x +3的图象上( ) A .(-1,2) B .(0,3) C .(3,0) D .(1,2) 5、点(4,5)关于y 轴的对称点的坐标是( ) A .(-4,5) B .(4,-5) C .(-4,-5) D .(4,5)6、如图1, 直线m是多边形ABCDE 的对称轴,其中∠A=130°,∠ABC =110°,那么∠BCD 的度数等于( ) A .50° B .60° C .70° D .80°7如图2,已知∠1=∠2,AC=AD ,增加下列条件之一:①AB=AE ;②BC=ED ; ③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( ) A .1个 B .2个 C .3个 D .4个 8、下列各式由左边到右边的变形中,是因式分解的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(22-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-9、已知一次函数(1)y a x b =-+的图象如图3所示,那么a 的取值范围是( ) A.1a > B.1a < C.0a > D.0a <10、如图4,李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )图3图411、如图5,△ABC 是等边三角形,D 是BC 中点,DE ⊥AC 于E ,若CE =1,则AB =( )A .2B ..3 D .412、如图6,Rt △ACB 中,∠ACB =90°,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D . 过P 作PF ⊥AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连结AF 交DH 于点G .则下列结论:①∠APB =45°;②PF=P A ;③BD-AH=AB ;④DG=AP+GH .其中正确的是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(共4小题,每小题3分,共12分)13、计算: ⎪⎭⎫⎝⎛-⋅23313x x =________;24(2)a --=________;()532x x ÷= . 14、a 的算术平方根为8,则a 的立方根是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011~2012学年度第一学期八年级期末调研考试数 学 试 题(考试时间:100分钟,试卷总分:100分)一、选择题:本大题共10小题;每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后 的括号内.1. -8的立方根等于 ( )A .-2B .2C .±D .2. 下列函数中,“y 是x 的一次函数”的是 ( )A .y =2x -1B .y =12x 2C .y =1D .y =1-x3. 使分式4141x x -+无意义...的x 的值是 ( )A .x =-14B .x =14C .x ≠-14D .x ≠144. 将图1的正方形彩纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图2所示.最后将图2的彩纸剪下一纸片,如图3所示.下列图形中为图3的展开图是( )第4题图图1图2图3学校 班级 学号 姓名_________________装订线内不要答题 ················装··········································订·········································线·················5. 如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形.....,则点C 的个数是() A .6 B .7 C .8 D .96. 由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3①,我们把等式①叫做多项式乘法的立方公式.下列应用这个立方公式进行的变形不正确...的是 ( ) A .(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 B .(2x+y )(4x 2-2xy+y 2)=8x 3+y 3 C .(a +1)(a 2+a +1)=a 3+1 D .x 3+27=(x +3)(x 2-3x +9)7. 把多项式ax 3-ax -2a 分解因式,下列结果正确的是 ( )A .a (x +2)(x -1)B .a (x -2)(x +1)C .a (x -1) 2D .(a x -2)(a x +1) 8. 解分式方程22411x x =--,得方程 ( )A .解为x =1B .解为x =-1C .解为x =3D .无解 9. 已知反比例函数y =2x的图象如图所示,当x ≥-1时,y ( )A .y <-2B .y ≤-2C .y ≤-2或y >0D .y <-2或y ≥0 10.甲、乙两人沿着同一路线从A 地到B 地办事,A ,B 两地相距35km .甲步行先出发,乙骑车后出发,两人行进的路程s (km )和时间t (是 )A .甲比乙早出发2 hB .乙出发2 h 追上甲C .乙比甲早到达B 地D .甲、乙同时到达B 地二、填空题:本大题共8小题;每小题2分,共16分.不需写出解答过程, 请把最后结果填在题中横线上.11.直角坐标系内点P (-2,3)关于x 轴的对称点Q 的坐标为 .12.若将三个数13.将5.62×10-8用小数表示为 .14.已知一次函数y =(2m -1)x +2,若y 随x 的增大而减小,满足条件的m 的取值范围是 .第12题图第5题图第10题图s (km15.做如下操作:在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD 沿直线AD对折,不难发现△ABD与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是(16.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是.17.如图已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,则关于x,y的方程组1,3y xy ax=+⎧⎨=+⎩的解是.18.直线y=kx(k<0)与双曲线y=-4x交于A(x1,y1),B(x2,y2)两点,则3x1y2-8x2y1的值等于.三、解答题:本大题共8小题;共64分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,共12分)19.(本题满分6分)先化简,再求值:(2a+b)(2a-b)+(4ab3-8a2b2)÷4ab.其中a=2,b=1.20.(本题满分6分)给出三个多项式2x2+3xy+y2,3x2+3xy,x2+xy,请你任选两个进行加(或减)法运算,再将结果分解因式.第15题图AB CD第16题图a a图甲学校班级学号姓名_________________装订线内不要答题················装···········································································线·················(21~23题,共19分)21.(本题满分6分)一个正数x的平方根是2a―4与6―a,求a和x的值.22.(本题满分6分)计算2()()2x y xy x yx y x y x y x y x y-÷+---+-.23.(本题满分7分)列方程解应用题:过节了,某超市用6000元购进一批陕西“红富士”苹果进行试销,由于销售状况良好,超市又调拨13000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克8元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?(24~25题,共14分)24.(本题满分7分)如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B . (1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴相交于P ,且使OP =2OA ,求△ABP 的面积.25.(本题满分7分)汽车在高速公路上行驶,从如皋驶往上海.已知汽车到上海所需时间t (h )与行驶速度v(km/h )满足函数关系式:t =k v,其图象为如图所示的一段曲线,且端点为A (60,4),B (120,m ).根据给出的图象,解答下列问题.(1)汽车在高速公路上行驶的速度不低于 km/h ;(2)求如皋到上海的路程;(3)若汽车上午6:40从如皋出发,中途在服务区休息10分钟,则最快上午几点到达上海.)学校 班级 学号 姓名_________________装订线内不要答题 ················装··········································订·········································线·················(26~27题,共19分)26.(本题满分9分)如图,已知△ABC 中,AB =AC =12cm ,BC =10cm ,点D 为AB 的中点.(1)如果点P 在线段BC 上以4cm/s 的速度由点B 向点C 运动,同时,点Q 在线段CA上由点C 向点A 运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等? (2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?27.(本题满分10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1(km ),出租车离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x的函数关系图象如图所示:(1)根据图象,填空:客车的速度是 km/h ,出租车的速度是 km/h ; (2)写出y 1,y 2关于x 的函数关系式; (3)若设两车间的距离为s (km ),求s 关于x 的函数关系式;并在备用图中画出它的函数图象; (4)甲、乙两地间有A ,B 两个加油站,相距200km ,若客车进入A 站加油时,出租车恰好进入B 站加油.求A 加油站到甲地的距离.P第26题图y (h )Os (km ) x (h 第27题备用图数学评分标准及参考答案一、选择题:本题共10小题,每小题2分,共20分.1.A 2.D 3.A 4.B 5.C 6.C 7.B 8.D 9.C 10.D 二、填空题:本大题共8小题;每小题2分,共16分.11.(―2,―3) 12 13.0.0000000562 14.m <1215.②③ 16.(a +b )(a -b )=a 2-b 2 17.1,2x y =⎧⎨=⎩ 18.―20三、解答题:本大题共8小题;共64分.19.(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab=4a 2-b 2+b 2-2ab ……………………………………………3分=4a 2-2ab . ……………………………………………4分 把a =2,b =1代入上式,得原式=4×22-2×2×1=12 ……………………………6分 20.答案不唯一,参照下式给分.(2x 2+3xy +y 2)-(3x 2+3xy ) =2x 2+3xy +y 2-3x 2-3xy= y 2-x 2 ……………………………………………3分=(y +x )(y -x ) ……………………………………………6分 21.由题意可得2a ―4=―(6―a ),解得a =―2. …………………………………………3分x =(2a ―4)2=(―8)2=64. ……………………………………………6分 22.原式=2222()()x y xy x yx yx yx y x y -+÷--+-……………………………………………2分=22()()xyx y x y x y x y+--+ ……………………………………………4分=2222x y xy x y++(或22()xy x y x y++). ……………………………………………6分23.(1)设试销时这种苹果的进货价是每千克x 元,依题意,得13000600020.5x x=⨯+.解这个方程,得x =6.经检验,x =6是原分式方程的解.答:试销时苹果的进货价是每千克6元. ……………………………………4分 (2)试销时进苹果的数量为:60006=1000 (千克),第二次进苹果的数量为:2×1000=2000(千克), 盈利为:2600×8+400×8×0.7-6000-13000=4040(元)答:商场在两次苹果销售中共盈利4040元. ………………………………7分 24.(1)令y=0,得x =32-.∴点A 坐标为(32-,0).令x =0,得y =3∴点B 坐标为(0,3). ………………………………3分(2)设点P 坐标为(x ,0),依题意,得x =±3. ∴点P 坐标为P 1(3,0)或P 2(-3,0). ∴S △ABP 1=13(3)322⨯+⨯=274.S △ABP 2=13(3)322⨯-⨯=94.∴△ABP 的面积为274或94. ………………………………7分25.(1)60; ………………………………2分(2)将(60,4)代入t =k v,得k =240.答:如皋到上海的路程为240km ; ………………………………4分 (3)由(2)可知,函数解析式为:t =240v.由图象可知,汽车在高速公路上行驶的速度不得超过120km/h . ∴当v =120时,t =240120=2.答:汽车最快上午8:50到达上海. ………………………………7分 26.(1)①∵t =1s ,∴BP =CQ =4×1=4(cm ). ∵AB =12cm ,点D 为AB 的中点,∴BD =6cm .又∵PC =BC -BP ,BC =10cm ,∴PC =6cm . ∴PC = BD .又∵AB = AC ,∴∠B =∠C .∴△BPD ≌△CQP . ………………………………3分 ②∵v P ≠v Q ,∴BP ≠CQ .又∵△BPD ≌△CQP ,∠B =∠C ,则BP =PC =5cm ,CQ =BD =6cm . ∴点P 、点Q 运动的时间t =4P B =54(s ).∴v Q =C Q t=654=4.8(cm/s ). ………………………………6分(2)设经过x s 后点P 与点Q 第一次相遇,根据题意,得4.8x -4x =2×12, 解得x =30.∴点P 共运动了30×4=120(cm ). ∵120=3×34+18∴点P 、点Q 在AC 边上相遇,∴经过30s 点P 与点Q 第一次在边AC 上相遇. ………………………………9分 27.(1)60,100;(2分)(2)y 1=60x (0≤x ≤10),y 2=-100x +600(0≤x ≤6);(2分)(3)S =15160600(0),415160600(6),460(610).x x x x x x ìïï-+?ïïïïïï-?íïïïï#ïïïïî(2分) 画图正确;(2分)(4)由题意得:S =200,①当0≤x <415时,-160x +600=200,∴x =25.∴y 1=60x =150km ;②当415≤x <6时,160x -600=200,∴x =5.∴y 1=300km ;③当6≤x ≤10时,60x ≥360(不合题意).即:A 加油站到甲地距离为150km 或300km .(2分)s (h )。