运筹学

合集下载

运筹学概念

运筹学概念

⏹运筹学:Operational Research,是一门应用科学。

从实际出发解决实际问题的方法。

⏹建模七步:第一步,定义问题;第二步,收集数据;第三步,构造模型;第四步,验证模型;第五步,计算结果;第六步,提交报告;第七步,投入使用⏹线性规划是由丹捷格(G. B. Dantzig)在1947提出的,并提出了求解线性规划的单纯形法,成为运筹学的标志性成就,被誉为「线性规划」之父。

⏹线性规划模型就是目标函数为线性函数,约束条件也是线性函数的最优化模型。

⏹线性规划模型包括三个部分:目标函数;决策变量;约束条件。

⏹满足所有约束条件的解称为该线性规划的可行解;线性规划问题可行解的集合,称为可行域。

⏹把使得目标函数值最大(或最小)的可行解称为该线性规划的最优解,此目标函数称为最优目标函数值,简称最优值。

⏹图解法只适合于二维线性规划问题⏹松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力)⏹剩余变量,约束方程左边为“≥”不等式时,变成等式约束条件⏹如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点)⏹唯一最优解:只在其一个顶点达到⏹无穷多个最优解:在其两个顶点的连线上达到⏹无界解:可行域无界。

缺少必要的约束⏹无可行解(无解):可行域为空集。

约束条件自相矛盾导致的建模错误⏹灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一些系数ci、aij、bj变化时,对最优解产生什么影响。

或者是这些参数在什么范围内发生变化,最优解不变。

⏹对偶价格:在约束条件右边常量增加一个单位而使最优目标函数得到改进的数量称之为这个约束条件的对偶价格。

⏹对偶价格可以理解为对目标函数的贡献。

如果对偶价格大于零,则其最优目标函数值得到改进。

即求最大值时,变得更大;求最小值时,变得更小。

⏹如果对偶价格小于零,则其最优目标函数值变坏。

运筹学简介

运筹学简介
运筹学
Operational Research
1
运筹学简介
一、运筹学发展简介 二、运筹学的定义 三、运筹学在管理中的应用 四、运筹学的工作步骤 五、运筹学内容介绍
2
一、运筹学(OR)发展简介
1. 运筹学在国内
中国古代朴素的运筹学思想
田忌赛马
战国时代,齐王常与他的大将田忌赛马,双方约定每场各 出一匹马,分三场进行比赛。齐王的马有上、中、下三等, 田忌的马也有上、中、下三等,但每一等都比不上齐王同等 的马,于是田忌屡赛屡输。一日,田忌的宾客、对军事颇有 研究的孙膑给田忌出了一个主意,结果以二比一赢了齐王。 即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强 的目的——典型的博弈问题.
Operations Research Societies, IFORS).
我国学术界1955年开始研究运筹学时,正是从《史记》中 摘取 “运筹”一词作为OR (Operations Research)的意 译,就是运用筹划、以智取胜的含义.
6
2. 运筹学在国外 运筹学的产生
运筹学的早期历史可以追溯到19世纪中叶,特拉法加尔 (Trafalgar)海战和纳尔森(Nelson)秘诀。法国拿破仑统帅 大军要与英国争夺海上霸主地位。英国海军统帅、海军中将 纳尔森亲自制定了周密的战术方案。1805年10月21日,这 场海上大战爆发了。英国是纳尔森亲自统帅的地中海舰队, 由27艘战舰组成;另外一方是由费伦钮夫(Villenuve)率领 的法国-西班牙联合舰队,共有33艘战舰。在一场海战后, 法国-西班牙联合舰队以惨败告终:联合舰队司令费伦钮夫 连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。

运筹学

运筹学

Page 7
与此同时,运筹数学有了飞快的发展,并形成了运筹的 许多分支。如数学规划(线性规划、非线性规划、整数 规划、目标规划、动态规划、随机规划等)、图论与网 络、排队论(随机服务系统理论)、存储论、对策论、 决策论、维修更新理论、搜索论、可靠性和质量管理等。
注:兰德公司是美国最重要的以军事为主的综合性战略 研究机构。它先以研究军事尖端科学技术和重大军事战 略而著称于世,继而又扩展到内外政策各方面,逐渐发 展成为一个研究政治、军事、经济科技、社会等各方面 的综合性思想库,被誉为现代智囊的“大脑集中营”、 “超级军事学院”,以及世界智囊团的开创者和代言人。 它可以说是当今美国乃至世界最负盛名的决策咨询机构。
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
优化配置上千个国内航线航班来实现利润 每年节约成本1亿美元 最大化
线性规划
(Linear Programming)
本章主要内容:
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
Page 10
第一定义强调以量化为基础,必然要用数学。但任何决策都 包含定量和定性两方面,而定性方面又不能简单地用数学表 示,如政治、社会等因素,只有综合多种因素的决策才是全 面的。 第二定义表明运筹学具有与多学科交叉的特点,如综合运用 经济学、心理学、物理学、化学中的一些方法。 第三定义说明,运筹学是强调最优决策,“最”是过分理想 了,在实际生活中往往用次优、满意等概念代替最优。

__运筹学概述

__运筹学概述

第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。

北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。

这是战国时期运筹学思想成功应用的典型实例。

孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。

形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。

运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。

运筹让生活得更有条理的艺术。

谈起运筹学,是否会想到很通俗的例子——沏茶水。

沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。

让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。

其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。

善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。

而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。

另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。

这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。

在人生大事的安排上,也同样需要下功夫好好运筹一番。

从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。

运筹学的基本概念与应用

运筹学的基本概念与应用

运筹学的基本概念与应用运筹学是一门应用数学科学,主要涉及决策问题的建模和求解。

它的核心目标是通过数学方法来优化决策,以便在资源有限的情况下取得最优的结果。

运筹学的应用领域广泛,包括物流管理、供应链优化、生产计划、交通调度等等。

一、运筹学的基本概念1.1 问题建模在运筹学中,问题建模是解决问题的第一步。

它涉及将实际问题抽象化为数学模型,以便使用运筹学方法进行求解。

常用的建模方法包括线性规划、整数规划、图论等。

1.2 数学优化方法数学优化方法是解决运筹学问题的主要手段。

其中最常用的方法是线性规划和整数规划。

线性规划主要用于解决连续变量的优化问题,而整数规划则考虑了变量的整数限制。

除此之外,还有许多其他的数学优化方法,如非线性规划、动态规划等。

1.3 求解技术为了求解运筹学问题,需要使用相应的求解技术。

最常用的求解技术有单纯形法、分支定界法、模拟退火算法等。

这些求解技术可以帮助我们找到问题的最优解或近似最优解。

二、运筹学的应用2.1 物流管理物流管理是运筹学的典型应用领域之一。

通过合理的路径规划、运输调度和仓储管理,可以最大程度地降低物流成本,提高配送效率。

运筹学方法可以帮助企业优化物流网络、车辆调度和库存管理,从而提升物流管理的效果。

2.2 供应链优化供应链是企业和客户之间的交互系统,优化供应链可以带来许多益处。

运筹学可以帮助企业优化供应链的结构和运作方式,从而实现更高效的生产和配送。

通过运筹学方法,可以降低库存成本、提高客户满意度,并且减少供应链中的风险。

2.3 生产计划在生产过程中,需要合理地安排生产计划,以便最大化生产效率、最小化生产成本。

运筹学可以通过合理的订单批量规划、生产调度和生产线优化来提供支持。

通过运筹学方法,可以降低生产时间、提高资源利用率,并最大程度地满足客户需求。

2.4 交通调度交通调度是城市交通管理的重要组成部分,也是一个复杂的优化问题。

运筹学方法可以帮助交通管理部门优化交通信号、路线规划和公交车辆调度,以降低交通拥堵和提高交通效率。

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学概述一、运筹学的定义 运筹学(Operational Research...

运筹学概述一、运筹学的定义 运筹学(Operational Research...

运筹学研究的模型主要是抽 象模型——数学模型。数学模型 的基本特点是用一些数学关系 (数学方程、逻辑关系等)来描 述被研究对象的实际关系(技术 关系、物理定律、外部环境等)。
运筹学模型的一个显著 特点是它们大部分为最优化 模型。一般来说,运筹学模 型都有一个目标函数和一系 列的约束条件,模型的目标 是在满足约束条件的前提下 使目标函数最大化或最小化。
3、系统性
运筹学用系统的观点来分析 一个组织或系统),它着眼于整 个系统而不是一个局部,通过协调 各组成部分之间的关系和利害冲突, 使整个系统达到最优状态。
4、综合性
运筹学研究是一种综合性的 研究,它涉及问题的方方面面,应 用多学科的知识,因此,要由一个 各方面的专家组成的小组来完成。
三、运筹学模型
都江堰水利工程
丁谓的皇宫修复工程 北宋年间,丁谓负责修复火毁的开 封皇宫。他的施工方案是:先将工程 皇宫前的一条大街挖成一条大沟,将 大沟与汴水相通。使用挖出的土就地 制砖,令与汴水相连形成的河道承担 繁重的运输任务;修复工程完成后, 实施大沟排水,并将原废墟物回填, 修复成原来的大街。丁谓将取材、生 产、运输及废墟物的处理用“一沟三 用”巧妙地解决了。
二、运筹学研究的特点
1、科学性 (1)它是在科学方法论的指导下通 过一系列规范化步骤进行的;
(2)它是广泛利用多种学科的科学 技术知识进行的研究。运筹学研究不 仅仅涉及数学,还要涉及经济科学、 系统科学、工程物理科学等其他学科。
2、实践性
运筹学以实际问题为分析对象, 通过鉴别问题的性质、系统的目标 以及系统内主要变量之间的关系, 利用数学方法达到对系统进行最优 化的目的。更为重要的是分析获得 的结果要能被实践检验,并被用来 指导实际系统的运行。

运筹学专题知识

运筹学专题知识
晋国公重建皇城旳施工方案,体现了运筹学旳朴素思想。要使重建 工程旳各个工序,在时间、空间上彼此协调,环环相扣,就需要利 用行列式旳有关知识,进行精确计算。
2024/10/29
(二)运筹学旳产生
运筹学是一门利用科学,它本身是在利用中产生与发 展旳,产生旳背景为第二次世界大战。
1.“OR”一词旳提出 2.不列颠之战 3.盟军封锁直布罗陀海峡
2024/10/29
一、运筹学旳历史
运筹学旳精粹可归纳为“优化决策”,而优化决策 古已经有之,作为完整、系统旳学科,运筹学产生于本 世纪,古代旳优化决策与当代运筹学旳产生有着旳主动 影响。
(一)朴素旳优化思想
1.赛马与桂陵之战 2.晋国公重建皇城
2024/10/29
1.赛马与桂陵之战
“田忌赛马”是家喻户晓旳历史故事。战国时齐威王与齐相田忌 赛马,双方各出三匹马比赛,每胜一场赢得一千金。因为王府旳 马比相府旳马好,所以田忌每天都要输掉三千金。
巡查机中队击沉击伤德军潜艇3艘,自己无一伤亡。
2024/10/29
(三)运筹学旳发展
战后OR技术被广泛用于经济领域,并得到了很大旳发展。它旳发展大致可 分三个阶段:
1.从1945年到50年代初,被称为创建时期。此阶段旳特点是从事运筹学研 究旳人数不多,范围较小,运筹学旳出版物、研究组织等寥寥无几
2.从50年代早期到50年代末期,被以为是运筹学旳成长时期。此阶段旳一 种特点是电子计算机技术旳迅速发展,使得运筹学中某些措施如单纯形法、动 态规划措施等,得以用来处理实际管理系统中旳优化问题,增进了运筹学旳推 广应用。
2024/10/29
2.晋国公重建皇城
距今约1023年前,开封一场 大火,北宋皇城毁于一旦。宋真 宗命晋国公丁渭,主持重建全部 宫室殿宇。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/5/21
14
教学中应注意的几个问题
1.1 运筹学的起源 1.2 运筹学性质、特点与研究方法 1.3 运筹学在实际管理决策中的应用 1.4 运筹学研究的具体内容 附录1 中国古代优秀的运筹案例
2020/5/21
15
教学中应注意的几个问题
1. 运筹学的军事起源
军事是运筹学的第一个起源. 运筹 学思想方法的起源可追溯到古代. 人 们发现,在我国先秦时期的诸子著作 中,就存在许多朴素的运筹思想. 被 后世称为兵圣的我国春秋时期(公元前770年— 公元前476年)军事家孙武,在他的著作《孙子兵 法》一书中,体现了丰富的运筹思想,孙武首先将 度、量、数等概念引人军事领域,通过必要的计算 来预测战争的胜负并指导战争中的有关行为.
2020/5/21
8
课程开设情况
为了帮助学生掌握好运筹学的思想和方法,提高分析、 解决实际问题的能力,本课程以运筹学的思想、方法 为主,表述通俗易懂,讲清方法思路,使读者理解、 掌握运筹学的思想、方法的实质.
2020/5/21
9
课程开设情况
教学中突出三个方面: 一是如何将一个实际问题提炼成一个运筹学问题; 二是如何借助软件求解,最后落实到一个“用” 字上,在讲清楚概念、原理的基础上,借助计算 机技术,解决复杂的数学推理过程; 三是在授课过程中提供大量实际应用案例,充分 调动学生的学习积极性。教会学生运用运筹学的 思维方法看问题、想问题、做出科学决策。
2020/5/21
2
数学教育的地位和作用
数学学科专业发展战略研究报告(2005)中指出: 数学是人类社会进步的产物,也是推动社会发展 的动力之一。数学在人类文明的进展中,一直在 文化层面上发挥着重要的作用。
数学不仅是一种重要的“工具”或“方法”,也 是一种思维模式,即“数学方式的理性思维”;
数学不仅是一门科学,也是一种文化,即“数学 文化”;
首都师范大学管理与决策研究中心
焦宝聪
E-mail: jiaobc3093@
2020/5/21
1
数学文化
数学文化的内涵 从狭义上说,“数学文化”即数学的思想、精神、 方法、观点、语言及其的形成和发展过程; 从广义上说,除了狭义的内容外,“数学文化” 还包括数学家、数学史、数学美、数学教育、数 学发展中的人文成分以及数学与各种文化的关系。
数学不仅是一些知识,也是一种素质,即“数学 素质”。
2020/5/21
3
数学教育的地位和作用
数学的思想、精神、方法,从数学角度看问题的 着眼点、处理问题的条理性、思考问题的严密性, 对人的综合素质的提高都有不可或缺的作用。数 学教育是提高整个中华民族国民素质的重要环节。 数学素质已经成为人的文化素质的一个重要方面。 运筹学中的许多优秀思想、方法应该在数学素质 的培养中占有重要地位。
研究目的: 了解和发现这种运用及筹划活动的基 本规律,以便发挥1有.1 运限筹资学的源起的源 最大效益,来达到 全局最优的目标.
运筹学研究的重要特点: 强调研究过程的完整性、 强调理论与实践的结合,构造数学模型是运筹学 中最重要的方法.
应用范围: 遍及工农业生产、经济管理、科学技 术、国防事业等各方面.
美国实验心理学家威廉.詹姆士说过:
播下一种思想,收获一种行为; 播下一种行为,收获一种习惯; 播下一种习惯,收获一种性格; 播下一种性格,收获一种命运。
我们希望在当代大学生的思维 模式中播下运筹学的思想
2020/5/21
6
课程开设情况
从2001年起,我们每年在首都师范大学为 17个院系47个专业的大学生开设校公共选 修课——运筹学的思想方法及应用,深受 学生们的欢迎;同时也为北京市的中学数 学教师继续教育开设该课程。学习该课程 的在校生、中学教师已超过1400余人。
2020/5/21
4
课程开计情况
我们开设“运筹学的思想方法及应用” 这门校公共 选修课的目的是使个专业的大学生学会运筹学的思 想方法,掌握使用运筹学知识解决实际问题的能力, 善于优化、充分利用资源,提高学生的运筹决策能 力。
2020/5/21
5
课程开设情况
威廉.詹姆士 美国实验心理学家 1842.1.11日—1910.8.26
2020/5/21
7
课程开设情况
在多年从事运筹学课程教学的实践中发现,许多 大学生以及从事规划、投资、决策、管理等领域 工作的各级行政管理干部和公司企业管理者,对 运筹学既爱又怕,他们很多人从千古名句“运筹 帷帐中,决胜千里外”知道运筹学的名称,喜爱 运筹学的巧妙思路,希望自己具有运筹帷幄、决 胜千里的能力,但又畏惧运筹学复杂的数学计算, 这导致他们无缘接受运筹学的学习.
2020/5/21
16
教学中应注意的几个问题
在国外,运筹学思想方法也可追溯到很早以前. 阿基米德、达芬奇、伽利略都研究过作战问题.
阿基米德(约公元前 287~212是古希腊物
理学家、数学家
达·芬奇 (1452-1519)意大 利文艺复兴时期最负盛名 的美术家、雕塑家、建筑 家、工程师、机械师、科 学巨匠和发明家2020/源自/2110课程理念
学习运筹学的关键是掌握使用运筹学思 想方法解决实际问题的能力,善于优化 利用资源.运筹学的本质,具体说就是在 做决策时: 首先要考虑做的事情是否有价值?其次 要考虑自己是否有资源和能力完成这个 计划?如果资源或能力不足,从哪里可 以获得支持? 善于发现资源和找到支持去完成有价值 的决策,同时又能优化利用资源,才能 形成竞争力.
主要历史人物,介绍运筹学的思想、精神、 方法、观点、语言及其形成和发展过程。 使学生对运筹学有一个比较全面的了解。 例如
2020/5/21
13
教学中应注意的几个问题
运筹学(Operational Research)诞生于第二次世 界大战期间,由于反法西斯战争的需要发展起来 的一门新兴学科.
研究对象:人类对各种资源的运用及筹划活动.
2020/5/21
11
课程主要内容
第一章 运筹学简介 第二章 线性规划及其应用 第三章 动态规划 第四章 决策分析及其应用 第五章 博弈论的思想方法及其应用 第六章 试验最优化方法 第七章 灰色预测模型及其应用 第八章 马尔可夫预测方法
2020/5/21
12
教学中应注意的几个问题
一. 突出数学文化色彩 在第一章介绍运筹学学科历史发展源流及
相关文档
最新文档