设计一个单相全桥逆变器
电压型单相全桥逆变电路

1. 引言逆变电路 所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交换电(DC/AC)的进程.当把转换后的交换电直接回送电网,即交换侧接入交换电源时,称为有源逆变;而当把转换后的交换电直接供应负载时,则称为无源逆变.平日所讲的逆变电路,若不加解释,一般都是指无源逆变电路.1. 电压型逆变器的道理图当开关S1.S4闭合,S2.S3断开时,负载电压u o 为正;当开关S1.S4断开,S2.S3闭应时,u o 为负,如斯瓜代进行下去,就在负载上得到了由直流电变换的交换电,u o 的波形如图7.4(b)所示.输出交换电的频率与两组开关的切换频率成正比.如许就实现了直流电到交换电的逆变.2. 电压型单相全桥逆变电路它共有4个桥臂,可以算作由两个半桥电路组合而成.两对桥臂瓜代导通180°.输出电压和电流波形与半桥电路外形雷同,幅值凌驾一倍.转变输出交换电压的有用值只能经由过程转变直流电压U d 来实现. 输出电压定量剖析u o 成傅里叶级数基波幅值基波有用值当u o 为正负各180°时,要转变输出电压有用值只能转变d d1o 9.022U U U ==πU d来实现可采取移相方法调节逆变电路的输出电压,称为移相调压.各栅极旌旗灯号为180º正偏,180º反偏,且T1和T2互补,T3和T4互补关系不变.T3的基极旌旗灯号只比T1落伍q ( 0<q <180º),T3.T4的栅极旌旗灯号分离比T2.T1的前移180º-q,uo 成为正负各为q 的脉冲,转变q 即可调节输出电压有用值.3MATLAB 仿真Simulink组建电路模子及试验成果电压型全桥逆变电路构造图:阻感性质下的仿真:T1 T4的脉冲旌旗灯号:T2 T3的脉冲旌旗灯号:带电阻情形下Ia Vab 波形电感负载下的Ia波形Vab波形阻感负载时RL负载电流波形输入电流Id的波形剖析:在直流电源电压Vd一准时,输出电压的基波大小不成控,且输出电压中谐波频率低.数值大,直流电源电流Id脉动频率低且脉动数值大.是以为了使负载获得优越的输出电压波形和减小直流电源电流的脉动,必须采取较大的LC输出滤波器和LdCd输入滤波器.经由过程此次的功课,在运用MATLAB的进程中碰到了很多问题,在对这些问题的解决进程中逐渐学会一些关于这套软件的运用办法,在查找MATLAB软件运用办法的时刻找到了相干的专业论坛,这为今后进修生涯供给了很多帮忙,可以在与他人的交换进程中学到更多的常识.《电力电子变换和掌握技巧》高级教导出版社陈坚《电力电子及其仿真》江苏技巧师范学院刑绍邦《电力电子技巧运用电路》机械工业出版社王文郁石玉《石新春电力电子技巧》中国电力出版社石新春。
单相全桥逆变电路毕业设计

2008级应用电子技术毕业设计报告设计题目单相电压型全桥逆变电路设计姓名及学号学院专业应用电子技术班级2008级3班指导教师老师2011年05月1日题目:单相电压型全桥逆变电路设计目录第一章绪论1.1整流技术的发展概况 (4)第二章设计方案及其原理2.1电压型逆变器的原理图 (5)2.2电压型单相全桥逆变电路 (6)第三章仿真概念及其原理简述3.1 系统仿真概述 (6)3.2 整流电路的概述 (8)3.3 有源逆变的概述 (8)3.4逆变失败原因及消除方法 (9)第四章参数计算4.1实验电路原理及结果图 (10)第五章心得与总结 (14)参考文献 (15)第一章绪论1.1整流技术的发展概况正电路广泛应用于工业中。
整流与逆变一直都是电力电子技术的热点之一。
桥式整流是利用二极管的单向导通性进行整流的最常用的电路。
常用来将交流电转化为直流电。
从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。
基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。
目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。
系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。
加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。
从而大大提高了通信网运行可靠和通信质量。
高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。
由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。
新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。
第二章 设计方案及其原理2.1电压型逆变器的原理图原理框图等效图及其输出波形当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正; 当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如上图 (b)所示。
单相全桥逆变器的原理及其建模

单相全桥逆变器的原理及其建模
单相全桥逆变器是一种常见的电力电子设备,用于将直流电转
换为交流电。
其原理是利用四个功率晶体管(MOSFET或IGBT)或功
率二极管来控制电流的流向,从而产生交流输出。
在正半周,两个
功率晶体管导通,另外两个关断;在负半周,另外两个功率晶体管
导通,另外两个关断。
通过适当的控制,可以实现交流输出的波形
控制。
单相全桥逆变器的建模可以从电路和控制两个方面进行描述。
在电路方面,可以将逆变器建模为由功率开关和滤波电路组成的复
杂电路。
功率开关的导通和关断状态可以用数学方程表示,而滤波
电路则用于平滑输出电压波形。
在控制方面,逆变器的建模涉及到
控制策略的选择,比如PWM控制、调制索引控制等。
这些控制策略
可以通过数学模型来描述其工作原理和输出特性。
此外,建模过程还需要考虑到逆变器的损耗特性、输出电压和
电流的变化规律、稳定性分析等方面。
综合考虑电路、控制、损耗
和稳定性等因素,可以建立全面的单相全桥逆变器模型,用于仿真、分析和设计优化。
总的来说,单相全桥逆变器的原理是利用功率开关控制电流流向实现直流到交流的转换,建模则涉及到电路和控制两个方面的描述,需要综合考虑多种因素来建立全面的模型。
单项全桥逆变器课程设计

单项全桥逆变器课程设计一、课程目标知识目标:1. 学生能理解并掌握单项全桥逆变器的基本工作原理及其电路构成。
2. 学生能够解释逆变器中各个元件的作用,并明确逆变器在新能源发电中的应用。
3. 学生能够运用所学知识,分析并计算单项全桥逆变器的主要技术参数。
技能目标:1. 学生能够独立完成单项全桥逆变器电路图的绘制,并进行电路仿真。
2. 学生能够通过实验,观察并分析逆变器工作时电压、电流的变化,培养实际操作能力。
3. 学生能够运用相关软件对单项全桥逆变器进行设计与优化,提高解决实际问题的能力。
情感态度价值观目标:1. 培养学生对电子技术领域的兴趣,激发学生探索新能源技术的热情。
2. 通过小组合作完成课程设计,培养学生团队协作精神,提高沟通与交流能力。
3. 增强学生环保意识,让学生认识到新能源技术对环境保护的重要性。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生掌握单项全桥逆变器的基本知识和技能,同时培养他们的情感态度价值观,为我国新能源技术的发展培养具备实际操作能力和创新精神的优秀人才。
通过本课程的学习,学生将能够达到上述具体的学习成果。
二、教学内容1. 理论知识:- 逆变器的基本概念与分类- 单项全桥逆变器的工作原理- 单项全桥逆变器电路构成及各元件功能- 逆变器在新能源发电中的应用2. 实践操作:- 单项全桥逆变器电路图的绘制- 电路仿真与参数计算- 实验设备的使用与操作- 观察并分析逆变器工作时的电压、电流波形3. 设计与优化:- 逆变器设计原理与方法- 相关软件的使用与操作- 基于实际需求的设计与优化- 小组讨论与成果展示教学内容安排与进度:第一周:逆变器基本概念、分类及工作原理学习第二周:单项全桥逆变器电路构成及各元件功能学习第三周:电路图的绘制与电路仿真实践第四周:实验操作与观察数据分析第五周:逆变器设计与优化方法学习与实践第六周:小组讨论与成果展示教学内容参照课本相应章节,结合课程目标进行科学性和系统性组织,确保学生能够循序渐进地掌握单项全桥逆变器的理论知识、实践操作技能以及设计与优化方法。
学位论文-—单相桥式逆变电路

电力电子技术课程设计说明书单相桥式逆变电路的设计院、部学生姓名:指导教师:职称专业:班级:学号:完成时间:摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及IGBT的工作原理、全桥的工作特性和无源逆变的性能。
本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud 逆变为波形电压,并将它加到纯电阻负载两端。
首先分析了单项桥式逆变电路的设计要求。
确定了单项桥式逆变电路的总体方案,对主电路、保护电路、驱动电路等单元电路进行了设计和参数的计算,其中保护电路有过电压、过电流、电压上升率、电流上升率等,选择和校验了IGBT、SG3525等元器件,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
最后利用MATLAB仿真软件建立了SIMULINK仿真模型,并进行了波形仿真,仿真的结果证明了完成设计任务要求,满足设计的技术参数要求。
关键词:单相;逆变;设计ABSTRACTWith the rapid development of power electronics technology, the inverter circuit is widely used, batteries, dry batteries, solar cells are DC power supply, when we use these power supply power to the AC load, you need to use the inverter circuit. This time based on MOSFET single phase bridge inverter circuit design, mainly related to the work principle of IGBT, the full bridge of the working characteristics and the performance of passive inverter. The single-phase full bridge inverter circuit designed by IGBT as the switching device, the DC voltage Ud inverter as the waveform voltage, and will be added to the pure resistance load at both ends.Firstly, the design requirements of the single bridge inverter circuit are analyzed. To determine the overall scheme of single bridge inverter circuit, of the main circuit, protection circuit, driving circuit unit circuit design and parameter calculation, the protection circuit have voltage, current and voltage rate of rise, the current rate of rise, selection and validation of the IGBT and SG3525 components, IGBT is by BJT (bipolar transistor) and MOS (insulated gate field effect transistor) composed of full control type voltage driven type power semiconductor devices, both MOSFET's high input impedance and GTR low conductance through the advantages of pressure drop. At last, the MATLAB simulation software is used to build the SIMULINK model, and the simulation results are carried out. The results prove that the design task is required to meet the design requirements.Keywords: single phase; inverter; design目录1 绪论 (1)1.1 逆变电路的背景与意义 (1)1.2 逆变器技术的发展现状 (2)1.3 本设计主要内容 (2)2 单相桥式逆变电路主电路设计 (3)2.1 方案设计 (3)2.1.1 系统框图 (3)2.1.2 主电路框图 (3)2.2 逆变电路分类及特点 (3)2.2.1 电压型逆变电路的特点 (3)2.2.2 单项全桥逆变电路的移相调压方式 (4)2.3 主电路的设计 (4)2.4 相关参数的计算 (5)3 辅助电路设计 (7)3.1 保护电路的设计 (7)3.1.1 保护电路的种类 (7)3.1.2 保护电路的作用 (7)3.1.3 过电流保护电路 (8)3.2 驱动电路的设计 (8)3.2.1 驱动电路的种类及作用 (8)3.2.2 驱动电路的设计 (8)3.2.3 驱动电路的原理 (9)3.3 控制电路的设计 (9)3.3.1 控制电路的作用 (9)3.3.2 控制电路原理分析 (9)4 仿真分析 (11)4.1 仿真软件MATLAB介绍 (11)4.2 主电路仿真图及参数计算 (13)4.3 仿真所得波形 (16)4.4 波形分析 (17)结束语 (18)参考文献 (19)附录 (21)1 绪论1.1 逆变电路的背景与意义随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。
本文选用双极性SPW调制。
1双极性单相SPW原理SPWM采用的调制波的频率为f s的正弦波U s U sm Sin s t , s 2f s;载波U c 是幅值为U cm,频率为f c的三角波。
载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m通常采用调制信号与载波信号相比较的方法生成SPW信号.当Us>Uc 时,输出电压Uo等于Ud,当UsvUc时,输出信号Uo等于-Ud.随着开关以载波频率fc轮番导通,逆变器输出电压不断在正负Ud之间来回切换。
2 建立仿真模型2.1 主电路模型第一步设置电压源:在Electrical Sources 库中选用DCVoltage Source,设置Ud=300X第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes ,构成单项全桥电路。
第三步使用Series RLC Branch 设置阻感负载为1 Q, 2mH 并在Measurement 选项中选择Branch Voltage and current, 利用multimeter 模块观察逆变器的输出电压和电流。
电路如图2.1 所示。
图2.1单相全桥逆变逆变器电路图2.2双极性SPW 信号发生器在Simulink 的Source 库中选择Clock 模块,提供仿真时间t, 乘以2 f 后通过一个sin 模块即sin t ,乘以调整深度m 可获得所需的 正弦调整信号。
选择 Source 库中的Repeating Sequenee 模块产生三 角载波,设置 Time Values 为[0 1/fc/4 3/fc/4 1/fc ],设置OutputValues 为[0 -1 1 0],生成频率为fc 的三角载波。
单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。
本文选用双极性SPWM 调制。
1双极性单相SPWM 原理SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 就是幅值为cm U ,频率为c f 的三角波。
载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。
通常采用调制信号与载波信号相比较的方法生成SPWM 信号、当Us>Uc 时,输出电压Uo 等于Ud,当Us<Uc 时,输出信号Uo 等于-Ud 、随着开关以载波频率fc 轮番导通,逆变器输出电压不断在正负Ud 之间来回切换。
2 建立仿真模型2、1主电路模型第一步设置电压源:在Electrical Sources 库中选用DC Voltage Source,设置Ud =300V 。
第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes,构成单项全桥电路。
第三步使用Series RLC Branch 设置阻感负载为1Ω,2mH,并在Measurement 选项中选择Branch Voltage and current,利用multimeter 模块观察逆变器的输出电压与电流。
电路如图2、1所示。
图2、1 单相全桥逆变逆变器电路图2、2双极性SPWM信号发生器在Simulink的Source库中选择Clock模块,提供仿真时间t,乘以fπ2后通过一个sin模块即tωsin,乘以调整深度m可获得所需的正弦调整信号。
选择Source库中的Repeating Sequence模块产生三角载波,设置Time Values 为[0 1/fc/4 3/fc/4 1/fc],设置Output Values 为[0 -1 1 0],生成频率为fc的三角载波。
单相全桥电压型逆变电路电阻负载计算公式

一、概述在电力系统中,逆变器是一种将直流电转换成交流电的重要设备,它在电力调节和能量转换方面具有重要作用。
而在逆变器的设计和应用中,对电路参数的计算和分析尤为重要,其中电阻负载的计算更是必不可少的一部分。
本文将重点讨论单相全桥电压型逆变电路电阻负载的计算公式,旨在为工程师们提供一种简单、方便的计算方法。
二、单相全桥电压型逆变电路的基本原理单相全桥电压型逆变电路是逆变器中常用的一种拓扑结构,它由四个功率开关管和一个负载组成。
当开关管的导通和关断状态发生改变时,将直流电源的电压转换成交流电压输出到负载上。
在电路工作过程中,负载扮演着重要的角色,其阻值的选择和计算对电路性能有着显著的影响。
三、电阻负载计算公式的推导1. 第一步为了计算单相全桥电压型逆变电路的电阻负载,首先需要了解逆变电路的工作原理。
在一个周期内,逆变电路运行了一个完整的周期,其工作原理如下:在 0~t1 时间段,开关管S1和S4导通,开关管S2和S3关断,此时负载处于正半周的工作状态;在 t1~t2 时间段,开关管S1和S4关断,开关管S2和S3导通,此时负载处于负半周的工作状态。
2. 第二步我们需要推导在一个周期内,负载上电流的波形表达式。
假设一个周期为T,直流电压为Vdc,负载电阻为R,负载电流波形表达式为i(t)。
在一个周期内,负载电流波形可以用数学表达式来表示:i(t) = I1 * sin(ωt), 0<t<t1;i(t) = I2 * sin(ω(t-t2)), t2<t<T。
其中,I1和I2分别为正半周和负半周的电流峰值,ω为角频率。
3. 第三步我们可以通过上述步骤的推导,得到单相全桥电压型逆变电路电阻负载的计算公式为:R = Vdc / (2 * Imax)其中,R为负载电阻,Vdc为直流电压,Imax为负载电流的最大值。
四、公式应用实例下面以一个实际的例子来说明如何使用上述计算公式:假设直流电压Vdc为24V,负载电流波形峰值I1和I2分别为2A和3A,根据计算公式可得:R = 24V / (2 * 3A) = 4Ω当给定直流电压和负载电流波形后,可以快速计算出负载电阻的数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计一个单相全桥逆变器,参数如下:
1、线电压为:()220u sin t ω=
2、电流大小为10A ,相角关系如下图所示:
解:单相全桥逆变器如下图所示:
由题中所给条件可得出:
I 10X 120=∠︒A ,U 11020=∠︒V ,L L U 10X -150=∠︒ V ,C L U U-U =,向量图如下:
求解的:()
U 1105C L L C j X U α=+=∠,其中030α︒<<︒,且C U U >,如下图:
单相全桥逆变器的工作过程如下:
t0~t1时间段内,在t0时刻电流I反向,可控硅全部关断,通过二极管1’和2’进行续流,电流I流向为1’→C→2’,电容C充电,属于整流过程;
t1~t2时间段内,在t1时刻电流I反向,可控硅1、2导通,电流I流向为2→C→1,电容C 放电,属于逆变过程;
t2~t3时间段内,在t2时刻电压U C反向,可控硅全部关断,通过二极管3’和4’进行续流,电流I流向为3’→C→4’,电容C充电,属于整流过程;
t3~t4时间段内,在t3时刻电压U C反向,可控硅3、4导通,电流I流向为4→C→3,电容C放电,属于逆变过程。