带电粒子在电场中的偏转(含答案)
高中物理每日一点十题之带电粒子在电场中的偏转

高中物理每日一点十题之带电粒子在电场中的偏转一知识点如图,两个相同极板Y与Y′的长度为l,相距d,极板间的电压为U.一个质量为m、电荷量为e的电子沿平行于板面的方向射入电场中,射入时的速度为v0.把两极板间的电场看作匀强电场.(1)电子在电场中做什么运动?如何处理?答案电子在电场中做类平抛运动,应用运动的分解进行处理,沿v0方向:做匀速直线运动;沿静电力方向:做初速度为零的匀加速直线运动(2)设电子不与平行板相撞,完成下列内容(均用题所给字母表示).①电子通过电场的时间t=l v0.②静电力方向:加速度a=eUmd,离开电场时垂直于极板方向的分速度vy=eUlmd v0.③速度与初速度方向夹角的正切值tan θ=eUlmd v02.④离开电场时沿静电力方向的偏移量y=eUl2 2md v02.十道练习题(含答案)一、单选题(共9小题)1. 如果带电粒子进入电场时的速度与匀强电场的电场力垂直,则粒子在电场中做类平抛运动.若不计粒子的重力,影响粒子通过匀强电场时间的因素是( )A. 粒子的带电荷量B. 粒子的初速度C. 粒子的质量D. 粒子的加速度2. 带电粒子垂直进入匀强电场中偏转时(除电场力外不计其他力的作用)( )A. 电势能增加,动能增加B. 电势能减少,动能增加C. 电势能和动能都不变D. 上述结论都不正确3. 如图所示,有一带电粒子贴着A板沿水平方向射入匀强电场,当偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U2时,带电粒子沿②轨迹落到B板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( )A. U1∶U2=1∶8B. U1∶U2=1∶4C. U1∶U2=1∶2D. U1∶U2=1∶14. 如图所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A. 它们运动的时间t Q>t PB. 它们运动的加速度a Q<a PC. 它们所带的电荷量之比q P∶q Q=1∶2D. 它们的动能增加量之比ΔE kP∶ΔE kQ=1∶25. 如图所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A. 2倍B. 4倍C.D.6. 氢的三种同位素氕、氘、氚的原子核分别为H、H、H.它们以相同的初动能垂直进入同一匀强电场,离开电场时,末动能最大的是( )A. 氕核B. 氘核C. 氚核D. 一样大7. 质子和氦核从静止开始经相同电压加速后,又垂直于电场方向进入一匀强电场,离开偏转电场时,它们侧向偏移量之比和在偏转电场中运动的时间之比分别为( )A. 2∶1,∶1B. 1∶1,1∶C. 1∶2,2∶1D. 1∶4,1∶28. 如图所示,带电荷量之比为q A∶q B=1∶3的带电粒子A、B,先后以相同的速度从同一点水平射入平行板电容器中,不计重力,带电粒子偏转后打在同一极板上,水平飞行距离之比为x A∶x B=2∶1,则带电粒子的质量之比m A∶m B以及在电场中飞行的时间之比t A∶t B分别为( )A. 1∶1,2∶3B. 2∶1,3∶2C. 1∶1,3∶4D. 4∶3,2∶19. 如图所示,一重力不计的带电粒子以初速度v0射入水平放置、距离为d的两平行金属板间,射入方向沿两极板的中心线.当极板间所加电压为U1时,粒子落在A板上的P点.如果将带电粒子的初速度变为2v0,同时将A板向上移动后,使粒子由原入射点射入后仍落在P点,则极板间所加电压U2为( )A. U2=3U1B. U2=6U1C. U2=8U1D. U2=12U1二、多选题(共1小题)10. 如图所示,三个α粒子在同一地点沿同一方向垂直飞入偏转电场,出现了如图所示的运动轨迹,由此可判断( )A. 在B飞离电场的同时,A刚好打在负极板上B. B和C同时飞离电场C. 进入电场时,C的速度最大,A的速度最小D. 动能的增加值C最小,A和B一样大1. 【答案】B【解析】水平方向:L=v0t,则粒子在电场中的运动时间t=.2. 【答案】B【解析】整个过程电场力做正功,只有电势能与动能之间相互转化,根据能量守恒,减少的电势能全部转化为动能,故A、C、D错误,B正确3. 【答案】A【解析】由y=at2=··得:U=,所以U∝,可知A项正确4. 【答案】C【解析】设两板距离为h,P、Q两粒子的初速度为v0,加速度分别为a P和a Q,粒子P到上极板的距离是,它们做类平抛运动的水平距离均为l.则对P,由l=v0t P,=a P t,得到a P=;同理对Q,l=v0t Q,h=a Q t,得到a Q=.由此可见t P=t Q,a Q=2a P,而a P=,a Q=,所以q P∶q Q=1∶2.由动能定理得,它们的动能增加量之比ΔE kP∶ΔE kQ=ma P∶ma Q h=1∶4.综上所述,C项正确5. 【答案】C【解析】电子在两极板间做类平抛运动.水平方向:l=v0t,所以t=.竖直方向:d=at2=t2=,故d2=,即d∝,故C正确6. 【答案】D【解析】因为qU1=mv=E k0偏移量:y=,可知三种粒子的偏移量相同.由动能定理可知:qE·y=E k-E k0,E k相同,D正确7. 【答案】B【解析】偏移量:y=,可知y1∶y2=1∶1,时间t=l,t1∶t2=1∶,B正确8. 【答案】D【解析】粒子在水平方向上做匀速直线运动x=v0t,由于初速度相同,x A∶x B=2∶1,所以t A∶t B=2∶1,竖直方向上粒子做匀加速直线运动y=at2,且y A=y B,故a A∶a B=t∶t=1∶4.而ma=qE,m=,=·=×=.综上所述,D项正确9. 【答案】D【解析】板间距离为d,射入速度为v0,板间电压为U1时,在电场中有=at2,a=,t=,解得U1=;A板上移,射入速度为2v0,板间电压为U2时,在电场中有d=a′t′2,a′=,t′=,解得U2=,即U2=12U1,故选D10. 【答案】ACD【解析】由题意知,三个α粒子在电场中的加速度相同,A和B有相同的偏转位移y,由公式y=at2得,A和B在电场中运动时间相同,由公式v0=得v B>v A,同理,v C>v B,故三个粒子进入电场时的初速度大小关系为v C>v B>v A,故A、C正确,B错误;由题图知,三个粒子的偏转位移大小关系为y A =y B>y C,由动能定理可知,三个粒子的动能增加值C最小,A和B一样大,D正确.。
物理带电粒子在电场中的偏转运动

物理带电粒子在电场中的偏转运动1.偏转问题:(1)条件分析:带电粒子垂直于电场线方向进入匀强电场。
(2)运动形式:类平抛运动。
(3)处理方法:应用运动的合成与分解。
(4)运动规律:2.带电粒子在电场中偏转的两类问题:最终侧移的距离和偏转后的动能或速度。
典例如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流,以相同的速度v0从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m=4×10-5 kg,电荷量q=+1×10-8 C,g=10 m/s2。
求:(1)微粒入射速度v0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U应取什么范围?【巩固练习】1.(多选)如图所示,带电荷量之比为qA∶qB=1∶3的带电粒子A、B以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C、D点,若OC=CD,忽略粒子重力的影响,则( )A.A和B在电场中运动的时间之比为1∶2B.A和B运动的加速度大小之比为4∶1C.A和B的质量之比为1∶12D.A和B的位移大小之比为1∶12.如图所示,两个平行带电金属板M、N相距为d,M板上距左端为d处有一个小孔A,有甲、乙两个相同的带电粒子,甲粒子从两板左端连线中点O处以初速度v1平行于两板射入,乙粒子从A孔以初速度v2垂直于M板射入,二者在电场中的运动时间相同,并且都打到N板的中点B处,则初速度v1与v2的关系正确的是( )3.(多选)如图所示的直角坐标系中,第一象限内分布着均匀辐向的电场,坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E。
大量电荷量为-q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场。
带电粒子在电场中的偏转

P带电粒子在电场中的偏转1.右下图为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、N 间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P 点。
已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为l 1,到荧光屏的距离为l 2,电子的质量为m ,电荷量为q ,不计电子受到的重力及它们之间的相互作用力。
(1)求电子穿过A 板时速度的大小;(2)求电子从偏转电场射出时的侧移量y ;(3)求电子打到荧光屏上的位置P 偏离荧光屏中心O 距离Y.2.如图所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行极板间的电场中,入射方向跟极板平行.整个装置处在真空中,重力可忽略.在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是( )A .U 1变大、U 2变大 B.U 1变小、U 2变大 C .U 1变大、U 2变小 D .U 1变小、U 2变小3.如图所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变.则 ( )A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间延长tU -U 4.如图7-3-12所示,一个质量为m ,带电量为q 的粒子,从两平行板左侧中点沿垂直场强方向射入,当入射速度为v 时,恰好穿过电场而不碰金属板.要使粒子的入射速度变为v/2,仍能恰好穿过电场,则必须再使( )A .粒子的电量变为原来的1/4B .两板间电压减为原来的1/2C .两板间距离增为原来的4倍D .两板间距离增为原来的2倍5.如图7-9两平行金属板竖直放置,左极板接地,中间有小孔.右极板电势随时间变化的规律如图所示.电子原来静止在左极板小孔处.(不计重力作用)下列说法中正确的是( ) A.从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.从t=0时刻释放电子,电子可能在两板间振动C.从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.从t=3T /8时刻释放电子,电子必将打到左极板上6.如图所示,带等量异号电荷的两平行金属板在真空中水平放置,M 、N 为板间同一电场线上的两点,一带电粒子(不计重力)以速度v M 经过M 点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度v N 折回N 点。
高二物理:带电粒子在电场中的偏转(答案)

高二物理:带电粒子在电场中的偏转班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1. 带电粒子在匀强电场中的偏转222y F a __________m a.t _____11qU b.y at t ,22md t 1y at ________2vtan ________v ⎧===⎪⎪⎧⎪⎪⎪=⎪⎪⎪⎪==⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪==⎪⎪⎪θ==⎪⎩0加速度:能飞出平行板电容器:运动时间打在平行极板上:离开电场时的偏移量:离开电场时的偏转角正切: 【答案】2. 解电偏转问题的三种方法方法一、分解法(速度三角形和位移三角形):加速度mdqU m qE a ==;时间0v L t =; 偏移2221v L md qU y =;偏角20mdv qUL tan =θ 方法二、推论法:①tanθ=2tanα;推导:位移偏转角2021v Lmd qU x y tan ==α;速度偏转角20v L md qU v v tan x y ==θ所以tanθ=2tanα。
②末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
方法三、动能定理法: qEy =ΔE K 【答案】3. 带电粒子在匀强电场中偏转的功能关系(1)当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv20,其中U y =U d y ,指初、末位置间的电势差.(2)电势能的变化量:ΔE P =-qU y =-qEy 【答案】4. 电偏转中的比较与比值问题二、选择题5. (2004广东理综)图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)射入.不计重力,要使此粒子能从C 处射出,则A 、B 间的电压应为( )A 、222ql mv d B 、2202qd mvl C 、qd lmv 0 D 、v dlv q 0【答案】A【解析】图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)。
带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
带电粒子在电场中的偏转-高考物理复习

由动能定理得 eU20=12mv2-12mv02 解得 v= v02+emU0.
(2)若电子从t=0时刻射入,恰能平行于极板飞出,则极板至少为多长? 答案 见解析
t=0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A极板 方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运 动,再经过半个周期,电子在电场方向上的速度减小到零,此时的 速度等于初速度v0,方向平行于极板,以后继续重复这样的运动;要 使电子恰能平行于极板飞出,则电子在OO′方向上至少运动一个周 期,故极板长至少为L=v0T.
5v0,tan θ=vv0y=12,则速度方向与竖直方向夹角 θ≠30°,故 B、D 错误;
x=v0t=2mqEv02,与 P 点的距离 s=cosx45°=2 2qmEv02, 故 C 正确.
考向2 带电粒子在组合场中的运动
例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏 转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′和YY′之间 都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心, 产生一个亮斑如图乙所示.若板间电势差UXX′和UYY′随时间变化关系图 像如丙、丁所示,
小球通过 P 点时的速度大小 vP=gt= 3v0,则动能 EkP =12mvP2=32mv02,选项 D 错误.
例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O、P是
电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的
小球A、B.A不带电,B的电荷量为q(q>0).A从O点发射时的速度大小为v0,
带电粒子在电场中的偏转大题

1、一带电粒子以一定的初速度垂直进入匀强电场,在电场中做类平抛运动。
下列说法正确的是:A. 粒子的电势能一直减小B. 粒子的动能一直增大C. 粒子的速度方向与电场力方向的夹角一直减小D. 粒子的加速度方向与电场力方向相反(答案:A)2、一个带正电的粒子,在电场中仅受电场力作用,从A点运动到B点。
在此过程中,粒子的速度大小随时间变化的图象可能是:A. 速度大小不变B. 速度大小均匀增大C. 速度大小先减小后增大D. 速度大小先增大后减小(答案:C,若粒子先做减速运动,电场力方向与初速度方向相反,后做加速运动,则可能出现此情况)3、带电粒子以相同的速度分别垂直进入水平方向的匀强电场和匀强磁场中,粒子将:A. 在电场和磁场中都做匀速圆周运动B. 在电场中做类平抛运动,在磁场中做匀速圆周运动C. 在电场和磁场中都做匀变速曲线运动D. 在电场中做匀变速直线运动,在磁场中做匀速直线运动(答案:B)4、一带电粒子在电场中运动,只受电场力作用,下列说法正确的是:A. 粒子的运动轨迹一定与电场线重合B. 粒子的速度方向一定与电场力方向相同C. 粒子的速度大小一定变化D. 粒子的动能可能不变(答案:D,如粒子在匀强电场中做匀速圆周运动,动能不变)5、一初速度为零的带电粒子,经过电压为U的加速电场后,垂直进入电势差为U的匀强偏转电场。
已知加速电场和偏转电场的宽度相同,下列说法正确的是:A. 偏转距离随着加速电压U的增大而增大B. 偏转距离与加速电压U无关C. 粒子从偏转电场射出时的速度随着加速电压U的增大而增大D. 粒子从偏转电场射出时的速度方向与加速电压U无关(答案:B)6、带电粒子在电场中偏转时,下列说法正确的是:A. 电场力对粒子一定做正功B. 电场力对粒子可能不做功C. 粒子的电势能可能增加D. 粒子的动能一定增加(答案:B,若粒子初速度与电场力方向垂直且向电场力反方向偏转,则电场力先做负功,电势能增加,动能减小)7、一带电粒子在匀强电场中运动,电场力与运动方向成某一角度,粒子只受电场力作用。
带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1) 条件分析:带电粒子垂直于电场线方向进入匀强电场. (2) 运动性质:匀变速曲线运动.(3) 处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4) 运动规律:①沿初速度方向做匀速直线运动,运动时间la. 能飞出电容器:t =.V o1 2 qU 2b. 不能飞出电容器:y = ;at 2 =t 2, t = 722 md②沿电场力方向,做匀加速直线运动F qE a ==m m特别提醒 带电粒子在电场中的重力问题 (1)基本粒子:如电子、质子、a粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).⑵带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都 不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论Uq md离开电场时的偏移量:Uql2 mdv 2离开电场时的偏转角:Uql mdv 2 加速度:tan(1) 不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点0为粒子水平位移l的中点,即0到偏转电场边缘的距离为 亍. 3、带电粒子在匀强电场中偏转的功能关系1 1 o当讨论带电粒子的末速度 v 时也可以从能量的角度进行求解: qU y = §mv 2 — -mv 2,其中U y = dy ,指初、末位置间的电势差.二、练习题1、如图,一质量为 m ,带电量为+ q 的带电粒子,以速度 v o 垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A •粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀证明:由qU 0 = 2mvo__ 20u dv q m -得:y =U i l 24U o d ,tan U i le= 2UTd1 - 22y2加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C •分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小答案BCD2、如图所示,两平行金属板A、B长为L= 8 cm,两板间距离d = 8 cm , A板比B板电势高300 V,一带正电的粒子电荷量为q = 1.0 x 10-10 C,质量为m = 1.0 x 10 -20 kg ,沿电场中心线RO垂直电场线飞入电场,初速度V0= 2.0 x 106 m/s,粒子飞出电场后经过界面MN、PS间的无电场区域,然后进入固定在O点的点电荷Q形成的电场区域(设界面PS右侧点电荷的电场分布不受界面的影响)•已知两界面MN、PS相距为12 cm , D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9 cm,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏be 上.(静电力常量k = 9.0 X 10 9 N •m 1 2/C 2,粒子的重力不计)1 求粒子穿过界面MN时偏离中心线RO的距离多远?到达PS界面时离D点多远?2 在图上粗略画出粒子的运动轨迹.⑶确定点电荷Q的电性并求其电荷量的大小.解析(1)粒子穿过界面MN时偏离中心线RO的距离(侧向位移):21 y=尹L = v o t1 2 qu L 2则 y = —at 2 = ( ) = 0.03 m = 3 cm2 2md Vo粒子在离开电场后将做匀速直线运动, 其轨迹与PS 交于H ,设H 到中心线的距离为 Y , 则有yY ,解得 Y = 4y = 12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略)⑶粒子到达H 点时,其水平速度 V x = v o = 2.0 x 10 6 m/s 竖直速度 V y = at = 1.5 x 10 6 m/s 贝U v 合=2.5 x 106 m/s该粒子在穿过界面 PS 后绕点电荷 Q 做匀速圆周运动,所以 Q 带负电根据几何关系可知半径 r = 15 cmqQ v 合 k -7 = m — r r解得 Q 〜1.04 x 10 _8 C答案 (1)12 cm (2)见解析 (3)负电 1.04 x 10 -8 C 3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为 L 处有一与电场平行的屏•现有一电荷量为+ q 、质量为 m 的带电粒子(重力不计),以垂直于电场线方向的初速度 V 0射入电场中,V 0方向的延长线与屏的交点为O .试求:F qUa=—=— mdm1 2L 1 2L +12cm答案2L⑴忆qEL⑵mvi3qEL22 mv2解析(1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入2L电场到打到屏上所用的时间t=.V o⑵设粒子刚射出电场时沿平行电场线方向的速度为Eq场中的加速度为:a =mV y,根据牛顿第二定律,粒子在电L qEL所以vy=a v o=mv;所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为(3)解法一一设粒子在电场中的偏转距离为y,则tanV y qEL a== 2.v o mv o1 L2 1 qEL2 y=2a(v o)=2 • mvr 又x = y + L tan a,解得:x = 3qEL22 mv2L解法二x =冒V0 + y=2LEq3(1) 粒子从射入电场到打到屏上所用的时间;⑵粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan a;⑶粒子打在屏上的点P到0点的距离x.204、如图所示,虚线 PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为 m = 2.0 x 10 -11 kg 、电荷量为q = + 1.0 x 10 -5 C ,从a 点由静止开始经电压为 U = 100 V的电场加速后,垂直于匀强电场进入匀强电场中,从虚线 MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成 30 °角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1) 带电粒子刚进入匀强电场时的速率 V 1; (2) 水平匀强电场的场强大小; (3) ab 两点间的电势差.答案 (1)1.0 x 104 m/s (2)1.732 x 103 N/C (3)400 V1解析(1 )由动能定理得:qU = ^mv i代入数据得V 1 = 1.0 x 104 m/s (2)粒子沿初速度方向做匀速运动: d = V 1t粒子沿电场方向做匀加速运动:V y = at由题意得:V 1tan 30 ° =- V y由牛顿第二定律得:qE = ma联立以上各式并代入数据得:解法三L + 二x由—= yL2厂得:x = 3y =3qEL 2 2~ 2 mvoE= 3 X 10 3 N/C ~ 1.732 X 103 N/C(3) 由动能定理得:qU ab= 2m (v2+ v$) —0联立以上各式并代入数据得:U ab = 400 V.5、如图所示,一价氢离子(1H)和二价氦离子(4He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们()A •同时到达屏上同一点B •先后到达屏上同一点C •同时到达屏上不同点D •先后到达屏上不同点答案B解析一价氢离子(1 H)和二价氦离子©He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选 B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动 B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c所带电荷量最多答案D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B错误;在相同的运动时间内,液滴c水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D正确;因为重力做功相同,而电场力对液滴c做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy所在平面与光滑水平面重合,电场方向与x轴正向平行,电场的半径为R= 2 m,圆心O与坐标系的原点重合,场强E = 2 N/C. —带电荷量为q=—1 x 10 5 C、质量m = 1 x 10 5 kg的粒子,由坐标原点O处以速度v o = 1 m/s沿y轴正方向射入电场(重力不计),求:(1) 粒子在电场中运动的时间;(2) 粒子出射点的位置坐标;(3) 粒子射出时具有的动能.答案(1)1 s (2)( — 1 m,1 m) (3)2.5 x 10 -5 J解析⑴粒子沿x轴负方向做匀加速运动,加速度为a,则有:1 2Eq = ma , x =尹3 4沿y轴正方向做匀速运动,有y= v o t2,2 2x + y = R解得t = 1 s.(2) 设粒子射出电场边界的位置坐标为(一X1, y1),则有1 2一X1 = [at2= 1 m , y1 = v o t = 1 m,即出射点的位置坐标为(一1 m,1 m)3 2(3) 射出时由动能定理得Eqx 1 = E k —^mv2代入数据解得E k = 2.5 x 10 —5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边(不计重力)从FA •粒子的运动轨迹一定经过 P 点B •粒子的运动轨迹一定经过 PE 之间某点C •若将粒子的初速度变为原来的一半,粒子会由 域答案 BD点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过 P 点,所以粒子轨迹一定经过 PE 之间某点,选项 A 错误,B 正确;由平抛运动知识可知,当竖直位 移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项 C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道 AB 部分为倾角为30。
的斜面,AC 部分为竖直平面上半径为 R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为 E 、方向水平向右的匀强电场中. 现 有一个质量为 m 的小球,带正电荷量为 q =;;g ,要使小球能安全通过圆轨道,在3 E0点的初速度应满足什么条件?ED 之间某点射出正方形 ABCD 区D •若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过审题与关联=30。