高考数学文科试题汇编不等式
【高三】不等式2021年全国各地高考题汇编(文科)

【高三】不等式2021年全国各地高考题汇编(文科)2021年全国各地高考文科数学试题分类汇编6:不等式我1.(2021年高考四川卷(文))若变量满足约束条件且的最大值为,最小值为,则的值是()a、不列颠哥伦比亚省。
【答案】c2(福建2022卷)(文本):如果变量满足约束条件,则分别为(和)最大值和最小值a.4和3b.4和2c.3和2d.2和0[答:]B3.(2021年高考课标ⅱ卷(文))设x,y满足约束条件,则z=2x-3y的最小值是()a、 b-6c.d-3【答案】b4.(2022年高考福建卷(文))如果,取值范围为()a.b.c.d.[答:]d5.(2021年高考江西卷(文))下列选项中,使不等式x<<成立的x的取值范围是()a、(,-1)b.(-1,0)c.0,1)d.(1,+)【答案】a6.(2022年高考山东卷(文))如果满足正实数,则当获得最大值时,的最大值为() a.0b.c.2d.[答:]C7.(2021年高考课标ⅱ卷(文))若存在正数x使2x(x-a)<1成立,则a的取值范围是()答(-∞,+∞)b、(-2+∞)c、(0+∞)d、(-1+∞)【答案】d8、(天津2022卷)(文本)使变量x和y满足约束条件,然后目标函数的最小值为()a.-7b.-4c.1d.2[答:]a9.(2021年高考湖北卷(文))某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆.则租金最少为()a、 31200元b.36000元c.36800元d.38400元【答案】c10(陕西高考2022卷(正文))如果点(x,y)位于曲线y=x和y=2的封闭区域中,2xy的最小值为()a.-6b.-2c.0d.2[答:]a11.(2021年高考重庆卷(文))关于的不等式()的解集为,且:,则()a、不列颠哥伦比亚省。
不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题14不等式1.【2022年全国乙卷】若x ,y 满足约束条件+O2,+2N4,O0,则=2−的最大值是()A .−2B .4C .8D .122.【2021年乙卷文科】若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为()A .18B .10C .6D .43.【2021年乙卷文科】下列函数中最小值为4的是()A .224y x x =++B .4sin sin y x x=+C .222x xy -=+D .4ln ln y x x=+4.【2020年新课标3卷文科】已知函数f (x )=sin x +1sin x,则()A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称5.【2019年新课标2卷理科】若a >b ,则A .ln(a −b )>0B .3a <3b C .a 3−b 3>0D .│a │>│b │6.【2022年新高考2卷】若x ,y 满足2+2−B =1,则()A .+≤1B .+≥−2C .2+2≤2D .2+2≥17.【2020年新高考1卷(山东卷)】已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D≤8.【2020年新课标1卷理科】若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.9.【2020年新课标2卷文科】若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.10.【2020年新课标3卷理科】若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.11.【2020年新课标3卷理科】关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.12.【2019年新课标2卷文科】若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.13.【2018年新课标1卷理科】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.14.【2018年新课标2卷理科】若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为__________.15.【2018年新课标3卷文科】若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.。
2024高考数学专题试题 不等式

专题二 不等式一、单项选择题1.(2023届山东烟台期中,3)下列结论正确的是( ) A.若a >b >0,则ac 2>bc 2 B.若a >b ,m >0,则b+ma+m >ba C.若a >b ,c <0,则a c <b c D.若a <b <0,则(12)a−(12)b >0 答案 D 对于A ,当c =0时,ac 2=bc 2,故A 中结论错误; 对于B ,b+ma+m −ba =ab+am−ab−bma(a+m)=m(a−b)a(a+m),当b <a <0,m >0,且|m |>|a |时,m (a -b )>0,a <0,a +m >0,所以m(a−b)a(a+m)<0,即b+ma+m <ba ,故B 中结论错误; 对于C ,当c =-1,a >0>b 时,ac >0>b c ,故C 中结论错误; 对于D ,设f (x )=(12)x,因为0<12<1,所以f (x )单调递减,因为a <b <0,所以f (a )>f (b ),即(12)a>(12)b ,所以(12)a −(12)b>0,故D 中结论正确.故选D .2.(2023届沈阳小三校联考,4)若a >b >0,则下列不等式一定成立的是 ( )A.ba >b+1a+1B.a +1a >b +1bC.a +a b>b +b aD.2a+b a+2b >a b答案 C 对于A ,b a−b+1a+1=b−aa(a+1),因为a >b >0,所以b -a <0,a +1>0,所以b−a a(a+1)<0,即ba<b+1a+1,故A 中不等式一定不成立; 对于B ,a +1a−(b +1b)=a 2b+b−ab 2−aab=(a−b)(ab−1)ab,因为a >b >0,所以a -b >0,ab >0,但ab 与1的大小不确定,故B 中不等式不一定成立; 对于C ,a +ab−(b +b a)=a 2b+a 2−ab 2−b 2ab=(a−b)(ab+a+b)ab,因为a >b >0,所以a -b >0,ab >0,ab +a +b >0,所以(a−b)(ab+a+b)ab>0,所以a +ab >b +ba ,故C 中不等式一定成立;对于D ,2a+ba+2b −ab =(2a+b)b−a(a+2b)b(a+2b)=(b−a)(b+a)b(a+2b),因为a >b >0,所以b -a <0,b +a >0,a +2b >0,所以(b−a)(b+a)b(a+2b)<0,所以2a+ba+2b<ab ,故D 中不等式一定不成立.故选C .3.(2023届哈尔滨质监,2)已知不等式ax 2+bx -2<0的解集为{x |-1<x <2},则不等式ax 2+(b -1)x -3>0的解集为 ( )A.RB.∅C.{x |-1<x <3}D.{x |x <-1或x >3}答案 D 由已知得x 1=-1,x 2=2是方程ax 2+bx -2=0的两根,故{−1+2=−ba ,−1×2=−2a ,解得a =1,b =-1,则不等式ax 2+(b -1)x -3>0可化为x 2-2x -3>0,其解集为{x |x >3或x <-1},故选D . 4.(2023届安徽示范高中联考二,7)下列几个不等式中,不能取到等号的是 ( )A.√x √x ≥2(x >0)B.|x |+2|x|≥2√2(x ≠0)C.-4x−x16≥1(x <0) D.√x 2+5+√x 2+5≥2(x ∈R )答案 D 对于A ,当x >0时,√x +√x≥2·√√x √x=2,当且仅当x =1时等号成立,故A 正确;对于B ,因为x ≠0,所以|x |>0,故|x |+2|x|≥2√2,当且仅当x =±√2时等号成立,故B 正确; 对于C ,因为x <0,所以-x >0,故-4x−x 16≥2·√(−4x )·(−x16)=1,当且仅当x =-8时等号成立,故C 正确;对于D ,令f (x )=√x 2+5+√x 2+5,√x 2+5=t ,t ≥√5,易知函数f (t )=t +1t 在[√5,+∞)上单调递增,所以f (t )min =f (√5)=√5√5=6√55,故D 错误.故选D .5.(2023届山西临汾期中,6)已知a >0,b >0,a +1b =2,则4a +b 的最小值是 ( )A.72B.4C.92D.5答案 C 因为a >0,b >0,a +1b =2,所以1b =2-a ,即b =12−a .由{a >0,b =12−a >0解得0<a <2,所以4a +b =4a +12−a =12[a +(2-a )](4a +12−a )=12[5+4(2−a)a +a 2−a]≥1 2[5+2√4(2−a)a·a2−a]=92,当且仅当4(2−a)a=a2−a,即a=43时,等号成立,故4a+b的最小值是92.故选C.6.(2023届安徽蚌埠质检一,2)若a,b∈R且ab≠0,则“ab<1”是“a<b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D ∵a,b∈R且ab≠0,∴a≠0,b≠0.当b<0时,由ab<1可得a>b.故充分性不成立.当b<0时,由a<b可得ab>1.故必要性不成立.故“ab<1”是“a<b”的既不充分也不必要条件,故选D.7.(2023届皖优联盟阶段测试一,6)下列说法正确的是()A.若a>b,c<0,则a2c<b2cB.若a>b,则a3c2>b3c2C.若a<b<0,则a2>ab>b2D.函数y=2√x2+4的最小值是2√2答案 C 对于A,当a=2,b=-3,c=-1时,a2c=-4,b2c=-9,a2c>b2c,故A错误;对于B,当c=0时,a3c2=b3c2,故B错误;对于C,当a<b<0时,a2>ab,ab>b2,所以a2>ab>b2,故C正确;对于D,y=2√x2+4=2√x2+4=√x2+4√x2+4,令t=√x2+4,t∈[2,+∞),则y=t+2t,t∈[2,+∞),所以y'=1-2t2=(t−√2)(t+√2)t2,当t∈[2,+∞)时,y'>0,则y=t+2t在[2,+∞)上单调递增,所以y min=2+22=3,即函数y=2√x2+4的最小值是3,故D错误.故选C.8.(2023届江西贵溪实验中学月考一,6)已知关于x的不等式mx−1x+3>0的解集为(m,n),则m+n的值为()A.-5B.-103C.-4D.-5或-103答案 B 由题设可得(mx-1)(x+3)>0的解集为(m,n),∴m<0.令(mx-1)(x+3)=0,解得x=1m 或x=-3.当m<-13时,-3<x<1m,此时{m=−3,n=1m,即{m=−3,n=−13,∴m+n=−103;当m=-13时,1m=-3,不等式(mx-1)(x+3)>0无解;当-13<m<0时,1m<x<-3,此时{m=1m,n=−3,无解.综上,m+n=-103.故选B.二、多项选择题9.(2022江苏泰州二调,10)若a>b>0>c,则()A.ca >cbB.b−ca−c>baC.a c>b cD.a-c>2√−bc答案ABD 对于A,因为a>b>0,所以1a <1b,因为c<0,所以ca>cb,正确;对于B,b−ca−c −ba=a(b−c)−b(a−c)a(a−c)=−ac+bca(a−c)=c(b−a)a(a−c),因为a>b>0>c,所以b-a<0,a-c>0,所以b−ca−c −ba>0,即b−ca−c>ba,正确;对于C,因为c<0,所以y=x c单调递减,又a>b,所以a c<b c,错误;对于D,a-c=a+(-c)>2√−ac>2√−bc,正确.故选ABD.10.(2022河北邯郸一模,12)下列大小关系正确的是()A.1.92<21.9B.22.9<2.92C.2ln22ln2−1<√22√2−1D.log74<log127答案ABD 作出y=2x和y=x2的图象,如图所示,由图可得,当x∈(0,2)时,2x>x2,当x∈(2,4)时,x2>2x,所以1.92<21.9,22.9<2.92,故A,B正确.令f (x )=2x2x −1,则f (x )=1+12x −1,易证f (x )在(0,+∞)上单调递减,所以2ln22ln2−1>√22√2−1,故C 错误.log 74-log 127=log 74-1log 712=log 74·log 712−1log 712<(log 74+log 7122)2−1log 712=(log 7482)2−1log 712<0,所以log 74<log 127,故D 正确.故选ABD .11.(2022福建莆田3月质检,10)已知直线l :ax +by +1=0(a >0,b >0)与圆C :x 2+y 2=1相切,则下列说法正确的是( ) A.ab ≥12 B.1a 2+1b 2≥4C.(a+b 2)2≤12 D.1a +1b ≤2√2答案 BC 由题意得a 2+b 2=1.对于A ,ab ≤a 2+b 22=12,A 错误;对于B ,1a 2+1b 2=2+b 2a 2+a 2b 2≥2+2√b 2a 2·a 2b 2=4(当且仅当a =b =√22时取等号),B 正确;对于C ,(a+b 2)2≤a 2+b 22=12,C 正确;对于D ,当a 2=19,b 2=89时,1a +1b =3+3√24>2√2,D 错误.故选BC .12.(2022广东汕头一模,10)已知正实数a ,b 满足a +2b =ab ,则以下不等式正确的是 ( ) A.2a +1b ≥2B.a +2b ≥8C.log 2a +log 2b <3D.2a +b ≥9答案 BD 对于A ,因为正实数a ,b 满足a +2b =ab ,所以a+2b ab =1,即2a+1b =1,所以A 错误;对于B ,因为a >0,b >0,a +2b =ab ,所以a +2b ≥2√2ab =2√2(a +2b),当且仅当a =2b 时取等号,所以(a +2b )2≥8(a +2b ),因为a +2b >0,所以a +2b ≥8,所以B 正确;对于C ,若log 2a +log 2b <3,则log 2a +log 2b =log 2(ab )<3=log 28,所以ab <8,所以a +2b <8,而由选项B 可知a +2b ≥8,所以log 2a +log 2b <3不成立,所以C 错误;对于D ,由A 可知2a +1b =1,所以2a +b =(2a +b )(2a +1b )=5+2ab+2b a≥5+2√2a b·2b a =9,当且仅当2b a=2ab,即a =b =3时取等号,所以D 正确,故选BD .三、填空题13.(2022上海交大附中开学考试,6)不等式(x+1)|x−3||x|−1>0的解集为 .答案 (1,3)∪(3,+∞)解析 由题意得{|x −3|≠0,(x +1)(|x |−1)>0,当x <-1或-1<x <1时,(x +1)(|x |-1)<0,不符合题设;当x >1时,(x +1)·(|x |-1)>0满足题设,所以{|x −3|≠0,x >1,可得x ∈(1,3)∪(3,+∞).14.(2023届陕西咸阳高新一中检测二,15)若关于x 的不等式x 2+mx -2>0在区间[1,2]上有解,则实数m 的取值范围为 . 答案 (-1,+∞)解析 当关于x 的不等式x 2+mx -2>0在[1,2]上无解时,{1+m −2≤0,4+2m −2≤0,解得m ≤-1,所以不等式x 2+mx -2>0在区间[1,2]上有解时m 的取值范围为(-1,+∞).15.(2023届鄂西北六校期中,15)已知-3<x <0,则f (x )=x √9−x 2的最小值为 . 答案 -92解析 因为-3<x <0, 所以f (x )=x √9−x 2=−√(9−x 2)·x 2≥−9−x 2+x 22=−92,当且仅当9-x 2=x 2,即x =-3√22时取等号, 所以f (x )=x √9−x 2的最小值为-92.16.(2019北京,14,5分)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 答案 ①130 ②15解析 ①x =10时,一次购买草莓和西瓜各1盒,共140元,由题可知顾客需支付140-10=130元.②设顾客一次购买水果的促销前总价为y 元, y <120元时,李明得到的金额为y ×80%,符合要求.y≥120元时,有(y-x)×80%≥y×70%,即x≤y8恒成立,即x≤(y8)min=15,所以x的最大值为15.。
2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .62.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .123.(2019•北京)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .74.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .455.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .37.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .68.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 9.(2017•山东)已知x ,y 满足约束条件250302x y x y -+⎧⎪+⎨⎪⎩………则2z x y =+的最大值是( )A .3-B .1-C .1D .310.(2017•浙江)若x 、y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞11.(2017•北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( )A .1B .3C .5D .912.(2017•新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是() A .15-B .9-C .1D .913.(2017•新课标Ⅲ)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]14.(2017•新课标Ⅰ)设x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩………,则z x y =+的最大值为( )A .0B .1C .2D .3二.填空题(共23小题) 15.(2020•上海)不等式13x>的解集为 . 16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 . 18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 . 19.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为 .21.(2019•天津)设0x >,0y >,25x y +=的最小值为 .22.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩………则3z x y =-的最大值是 .23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .24.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 ,最大值为 .25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 . 26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 ,最大值是 .27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 .28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 .29.(2018•新课标Ⅱ)若x ,y 满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩………,则z x y =+的最大值为 .30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 . 31.(2017•上海)不等式11x x->的解集为 . 32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 .33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 . 36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .37.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 .三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 39.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +….2017-2019年高考真题“不等式”全集(含详细解析)参考答案与试题解析一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .2.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .12【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.3.(2019•北京)若x,y满足||1x y-…,且1y-…,则3x y+的最大值为() A.7-B.1C.5D.7【解答】解:由||11x yy-⎧⎨-⎩……作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选:C.4.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .45【解答】解:由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选:C .5.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 【解答】解:当1a =-时,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y -+>,2}x y +…,显然(2,1)不满足,4x y -+>,2x y +…,所以A 不正确;当4a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,44x y +>,42}x y -…,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y +>,2}x y -…,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .3【解答】解:变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图:目标函数z x y =+结果可行域的A 点时,目标函数取得最大值, 由30y x =⎧⎨=⎩可得(0,3)A ,目标函数z x y =+的最大值为:3.故选:D .7.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .6【解答】解:画出约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………表示的平面区域,如图所示;由30350x x y +=⎧⎨++=⎩解得(3,4)A -,此时直线1122y x z =-+在y 轴上的截距最大,所以目标函数2z x y =+的最大值为 3245max z =-+⨯=.故选:C .8.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2ab a a b b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 【解答】解:0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .9.(2017•山东)已知x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………则2z x y=+的最大值是()A.3-B.1-C.1D.3【解答】解:x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………的可行域如图:目标函数2z x y=+经过可行域的A时,目标函数取得最大值,由:2250yx y=⎧⎨-+=⎩解得(1,2)A-,目标函数的最大值为:1223-+⨯=.故选:D.10.(2017•浙江)若x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,则2z x y=+的取值范围是()A.[0,6]B.[0,4]C.[6,)+∞D.[4,)+∞【解答】解:x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,表示的可行域如图:目标函数2z x y=+经过C点时,函数取得最小值,由3020x yx y+-=⎧⎨-=⎩解得(2,1)C,目标函数的最小值为:4目标函数的范围是[4,)+∞.故选:D.11.(2017•北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩………,则2x y+的最大值为()A.1B.3C.5D.9【解答】解:x,y满足32xx yy x⎧⎪+⎨⎪⎩………的可行域如图:由可行域可知目标函数2z x y=+经过可行域的A时,取得最大值,由3xx y=⎧⎨=⎩,可得(3,3)A,目标函数的最大值为:3239+⨯=.故选:D.12.(2017•新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩………,则2z x y=+的最小值是()A .15-B .9-C .1D .9【解答】解:x 、y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………的可行域如图:2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是:15-. 故选:A .13.(2017•新课标Ⅲ)设x ,y 满足约束条件3260x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【解答】解:x ,y 满足约束条件32600x y x y +-⎧⎪⎨⎪⎩………的可行域如图: 目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值, 由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-, 目标函数的取值范围:[3-,2]. 故选:B .14.(2017•新课标Ⅰ)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.二.填空题(共23小题)15.(2020•上海)不等式13x>的解集为1(0,)3.【解答】解:由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 15(,)44 .【解答】解:1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<,x ∴的取值范围为15(,)44.故答案为:15(,)44.17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 6- . 【解答】解:作出不等式组002x y x y ⎧⎪⎨⎪+⎩………表示的平面区域, 由23z x y =-即23x zy -=,表示直线在y 轴上的截距的相反数的13倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-, 故答案为:6-.18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 98 .【解答】解:132y x =+…∴298y x =…;故答案为:9819.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy ++的最小值为 92.【解答】解:0x >,0y >,24x y +=, 则(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+; 0x >,0y >,24x y +=,由基本不等式有:42x y =+…, 02xy ∴<…, 552xy …, 故:5592222xy ++=…; (当且仅当22x y ==时,即:2x =,1y =时,等号成立), 故(1)(21)x y xy ++的最小值为92;故答案为:92.21.(2019•天津)设0x >,0y >,25x y +=的最小值为【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:64xyxy=当且仅当时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:22.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………则3z x y=-的最大值是9.【解答】解:由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.故答案为:9.23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【解答】解:①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元), 即有顾客需要支付14010130-=(元); ②在促销活动中,设订单总金额为m 元, 可得()80%70%m x m -⨯⨯…, 即有8mx …恒成立, 由题意可得120m …, 可得120158x =…, 则x 的最大值为15元. 故答案为:130,1524.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 3- ,最大值为 .【解答】解:由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,【解答】解:设1(A x ,1)y ,2(B x ,2)y , 1(OA x =,1)y ,2(OB x =,2)y ,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB =⨯⨯∠=, 即有60AOB ∠=︒,即三角形OAB 为等边三角形,1AB=,的几何意义为点A ,B 两点 到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行, 可设:0AB x y t ++=,(0)t >, 由圆心O到直线AB 的距离d =,可得1,解得t1=,+26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 2- ,最大值是 .【解答】解:作出x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………表示的平面区域,如图:其中(4,2)B -,(2,2)A . 设(,)3z F x y x y ==+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最小值.()4,22z F ∴=-=-最小值.可得当l 经过点A 时,目标函数z 达到最最大值:()2,28z F ==最大值. 故答案为:2-;8.27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 3 .【解答】解:画出变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………表示的平面区域如图:由2240x x y =⎧⎨-+=⎩解得(2,3)A .13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 3 . 【解答】解:作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:329.(2018•新课标Ⅱ)若x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………,则z x y=+的最大值为9.【解答】解:由x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………作出可行域如图,化目标函数z x y=+为y x z=-+,由图可知,当直线y x z=-+过A时,z取得最大值,由5230xx y=⎧⎨-+=⎩,解得(5,4)A,目标函数有最大值,为9z=.故答案为:9.30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 6 . 【解答】解:作出不等式组对应的平面区域如图: 由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=, 故答案为:631.(2017•上海)不等式11x x->的解集为 (,0)-∞ . 【解答】解:由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞, 故答案为:(,0)-∞.32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 4 .【解答】解:【解法一】a ,b R ∈,0ab >,∴4441a b ab ++2241a b ab +=144ab ab ab ab=+=…,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,即2222214a b a b ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.【解法二】a ,b R ∈,0ab >,∴44334141142222a b a b ab b a ab ab a ab ab++=+++=…, 当且仅当44414ab ab ab ⎧=⎪⎨=⎪⎩,即2222214a b ab ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.故答案为:4.33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 5- . 【解答】解:由x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………作出可行域如图,由图可知,目标函数的最优解为A , 联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -.32z x y ∴=-的最小值为31215-⨯-⨯=-.故答案为:5-.34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 30 .【解答】解:由题意可得:一年的总运费与总存储费用之和6000644240x x =⨯+⨯=…(万元).当且仅当30x =时取等号. 故答案为:30. 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 8 . 【解答】解:直线1(0,0)x ya b a b+=>>过点(1,2),则121a b +=,由12442(2)()2244448a b a b a b a b a b b a b a +=+⨯+=+++=++++=…,当且仅当4a bb a=,即12a =,1b =时,取等号,2a b ∴+的最小值为8,故答案为:8.36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数;()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则424x y y x >⎧⎪>⎨⎪⨯>⎩,即48y x <<<, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1237.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 1- . 【解答】解:由34z x y =-,得344zy x =-,作出不等式对应的可行域(阴影部分), 平移直线344z y x =-,由平移可知当直线344zy x =-, 经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值, 将B 的坐标代入34341z x y =-=-=-, 即目标函数34z x y =-的最小值为1-. 故答案为:1-.三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解答】解:由柯西不等式得2222222()(122)(22)x y z x y z ++++++…, 226x y z ++=,2224x y z ∴++… 是当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,222x y z ∴++的最小值为439.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解答】(Ⅰ)解:由已知,x ,y 满足的数学关系式为70606005530200x y x y x y x y +⎧⎪+⎪⎪⎨⎪⎪⎪⎩……………,即766062000x y x y x y x y +⎧⎪+⎪⎪-⎨⎪⎪⎪⎩…………….该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z 万,则目标函数为6025z x y =+. 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大. 又x ,y 满足约束条件,∴由图可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大. 解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +…. 【解答】证明:224a b +=,2216c d +=, 令2cos a α=,2sin b α=,4cos c β=,4sin d β=.8(cos cos sin sin )8cos()8ac bd αβαβαβ∴+=+=-….当且仅当cos()1αβ-=时取等号.因此8ac bd +….另解:由柯西不等式可得:22222()()()41664ac bd a b c d +++=⨯=…,当且仅当a bc d=时取等号.88ac bd ∴-+剟.。
(6)不等式——2024年高考数学真题模拟试题专项汇编

(6)不等式——2024年高考数学真题模拟试题专项汇编一、选择题1.[2024届·长沙市第一中学·模拟考试]若正数a ,b 满足111a b +=,则1411a b +--的最小值为()A.4B.6C.9D.162.[2024届·长沙市第一中学·二模]已知函数()22log log 28x xf x =⋅,若()()12f x f x =(其中12x x ≠),则1219x x +的最小值为()A.4B.2C.32D.343.[2024届·湖北·模拟考试联考]已知集合{}2230A x x x =∈-->R ∣,集合B 满足B A Ø,则B 可以为()A.[1,3]- B.(,1]-∞- C.(,1)-∞- D.(,3)-∞4.[2024届·江苏省前黄高级中学·一模]设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --≤+--恒成立,则实数k 的最大值为()A.12B.24C.D.5.[2024届·重庆市第八中学·模拟考试]已知集合{23}M x x =-<<∣,{}2540N x x x =-+>∣,则M N = ()A.()2,1- B.()2,4- C.()(),14,-∞+∞ D.()(),34,-∞+∞7.[2024届·海南·模拟考试校考]已知集合{}2,1,0,1,2M =--,{}2280N x x x =+-≥,则M N = ()A.{}2,2-B.{}2-C.{}2 D.2二、多项选择题8.[2024届·湖北·模拟考试联考]若0a b c >>>,则()A.a a c b >B.22a ab c >C.a b ba c c->- D.a c -≥9.[2024届·吉林吉林·模拟考试校考]a ,b ,c ,d 均为实数,且0a b >>,0c d >>,则下列结论正确的是()A.ac bd >B.a c b d->- C.a c b d+>+ D.a bd c>三、填空题10.[2024届·贵州·模拟考试联考]以()max min M M 表示数集M 中最大(小)的数.设0a >,0b >,0c >,已知22a c b c +=1,则111min max ,,a b c ⎧⎫⎧⎫=⎨⎨⎬⎬⎩⎭⎩⎭__________.11.[2024届·河北衡水·二模联考]设集合{}2230,A x x x x =--<∈R ,{},0B x x a a =>>,则A B =R ,则实数a 的取值范围为__________.12.[2024届·海南省华侨中学·二模]已知0x >,0y >,且122x y +=,则21x y +的最小值为_______________.13.[2024届·全国·模拟考试]已知1x ,2x 是实数,满足221212848x x x x +-=,当1x 取得最大值时,12x x +=_________.14.[2024届·吉林吉林·模拟考试校考]设1x >-,则函数461y x x =+++的最小值是__________.15.[2024届·合肥一六八中学·模拟考试]设x ,y 是正实数,记S 为x ,1y x +,1y 中的最小值,则S 的最大值为______.参考答案1.答案:A解析:方法一:由111a b +=,可得1ba b =-,所以144=1111b a b b +-+---由a ,b 为正数且111a b+=,可得1a >,1b >,所以144=14111b a b b +-+≥=---,当且仅当411b b -=-,即3b =,32a =时等号成立.故选:A.方法二:由111a b +=,可得11b a a =-,11ab b=-,所以144411b a a b a b +=+≥=--,当且仅当4b a a b =,即32a =,3b =时等号成立.故选:A.2.答案:C 解析:()()()()2222222log log log 1log 3log 4log 328x x f x x x x x =⋅=-⋅-=-+ ,由()()12f x f x =,2122log log 4x x ∴+=,即1216x x =,121933242x x ∴+≥=⨯=,当且仅当1219x x =,即143x =,212x =时等号成立.故选C.3.答案:C解析:由集合{}2230{3A x x x x x =∈-->=>R ||或1}x <-,B A Ø则(,1)(3,)(,1)-∞-+∞-∞- Ø.故选:C4.答案:B 解析:32x >,3y >,变形为23030x y ->->,,令230a x =->,30b y =->,则()()33222338123k x y x y x y --≤+--转化为()()33228123233x y x y k x y +--≤--,即224323x y k y x +≥--,其中()()((222222334323a b x y y x b aba+++=+≥+--1224a b b a ⎛⎫=+≥= ⎪⎝⎭当且仅当33a b b a a b=⎧⎪=⎪⎨⎪=⎪⎩,即3x =,6y =时取等号,可知24k ≤.故选:B 5.答案:D7.答案:C解析:因为2{|280}{|4N x x x x x =+-≥=≤-或2}x ≥,所以{2}M N = .故选:C.8.答案:ACD解析:()a a a b c c b bc --=,又0a b c >>>,所以0b c ->,0b >,所以0a a c b ->,即a ac b>,故A 正觕;当1a =,1b =-,2c =-时,22a a b c <,故B 错误,()()()()()a b b a b c a c b a c b a c c a c c a c c------==---,又0a b c >>>,所以0a c ->,0c b -<,所以0a b b a c c -->-,即a b b a c c->-,故C 正确因为0a b c >>>,所以0a b ->,0b c ->,所以a c a b b c -=-+-≥,当且仅当a b b c -=-时等号成立,故D 正确.故选ACD.9.答案:ACD解析:因为a ,b ,c ,d 均为实数,且0a b >>,0c d >>,由不等式的基本性质可得ac bd >,a c b d +>+,AC 选项正确;因为0c d >>,则110d c >>,故a bd c>,D 选项正确;取3a =,2b =,2c =,1d =,则a c b d -=-,B 选项错误.故选:ACD.10解析:由221a c b c +=,得221a b c +=,设111max ,,M a b c ⎧⎫=⎨⎬⎩⎭,则22111,,2M M M a b ab a b c≥≥≥=+≥,由32223M M ab ab=≥=≥M ≥,当且仅当a b c ===.11.答案:()0,1解析:由题意{}{}2230,|13A x x x x x x =--<∈=-<<R ,{}{,0|B x x a a x x a =>>=>或},0x a a <->,若满足A B =R ,则B A ⊆R ð,又因为{}|B x a x a =-≤≤R ð,所以130a a a -<-⎧⎪<⎨⎪>⎩,解得01a <<.故答案为:()0,1.12.答案:16解析:()212182228816,y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当82y x x y =时等号成立.即当11,48x y ==时,21x y +取得最小值为16.故答案为:16.13.答案:5解析:221212848x x x x +-= .()()221222122222482x x x x x x -+∴-+=≥.2116x ∴≥,14x ∴≤.取等条件:1221224x x x x -=⎧⎨=±⎩,1241x x =⎧∴⎨=⎩或1241x x =-⎧⎨=-⎩,125x x ∴+=.14.答案:9解析:由1x >-,可得10x +>,则446155911y x x x x =++=+++≥+=++,当且仅当411x x +=+时,即1x =时,等号成立,所以函数461y x x =+++的最小值是最小值为9.故答案为:9.15解析:方法一:设0a x =>,10b y =>,1110c y x b a =+=+>,当11a b c b a===+时,a b ==不妨设a b ≤,11min ,,S a b b a ⎧⎫=+⎨⎬⎩⎭①当a b ==时,11min ,,S a bb a ⎧⎫=+=⎨⎬⎩⎭②当0a b <≤≤时,1111min ,,min ,S a b ab a b a ⎧⎫⎧⎫=+=+⎨⎬⎨⎬⎩⎭⎩⎭,若11a b a ≤+,则11min ,a a b a ⎧⎫+=≤⎨⎬⎩⎭若11a b a >+,则1111min ,a a b a b a⎧⎫+=+<≤⎨⎬⎩⎭;③当0a b <≤≤122a ≥,122b ≥,11c b a =+≥,11min ,,S a b ab a ⎧⎫=+=≤⎨⎬⎩⎭;a b ≤≤时,122a ≤,122b ≤,11c b a =+≤,1111min ,,S a bb a b a ⎧⎫=+=+≤⎨⎬⎩⎭同理,当a b >时,可以证明S ≤综上所述:S .方法二:由题意知0S x <≤,10S y <≤,则11x S ≤,1y S≤所以1112S yx S S S≤+≤+=,解得0S <≤,故S。
文科数学高考真题分类汇编 不等式综合应用

专题七不等式第二十一讲不等式综合应用2019年 1.(2019 天津文13)设0x >,0y >,24x y +=,则 (1)(21)x y xy++的最小值为__________.2010-2018年一、选择题1.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =−+>−≥≤则 A .对任意实数a , (2,1)A ∈ B .对任意实数a , (2,1)A ∉C .当且仅当0a <时, (2,1)A ∉D .当且仅当32a ≤时, (2,1)A ∉ 2.(2018)浙江已知1a ,2a ,3a ,4a 成等比数列,且 1234123 ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >32017 .(天津)已知函数 ||2,1,()2 , 1.x x f x x x x+<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式 ()||2x f x a +≥在R 上恒成立,则a 的取值范围是A . [2,2]−B . [23,2]−C . [2,23]−D . [23,23]−4.(2015 福建)若直线 1(0,0)x y a b a b+=>>过点(1,1),则a b +的最小值等于 A 2 B 3 C 4 D 5. . ..52015 .( 湖南)若实数,a b 满足12ab a b+=,则ab 的最小值为 A .2 B 2 C 2..2 D 4.62014 .( 重庆)若 b a ab b a +=+则)(,log 43log 24的最小值是A . 326+B . 327+C . 346+D . 347+7.(2013 福建)若 122=+y x ,则y x +的取值范围是A .]2,0[B .]0,2[−C .),2[+∞− D . ]2,(−−∞ 82013.(山东)设正实数,,x y z 满足22 340x xy y z −+−=.则当xy z取得最大值时, 212x y z+−的最大值为 A 0 B 1 C . . .94D 3 . 9.(2013山东)设正实数z y x ,,满足04322 =−+−z y xy x ,则当z xy取得最大值时,2x y z +−的最大值为A 0B ..98C 2D ..9410.( 2012浙江)若正数,x y 满足35x y xy +=,则34x y +的最小值是A .245B .285C 5D 6 .. 11.(2012 陕西)小王从甲地到乙地的时速分别为a 和b (a b <),其全程的平均时速为v ,则A .a v ab <<B .v =abC .ab <v <2a b + D .v =2a b + 12.(2012 湖南)已知两条直线1l :y m = 和2l :y =821m +(0m >),1l 与函数2log y x =的图像从左至右相交于点,A B ,2l 与函数2log y x =的图像从左至右相交于,C D .记线段AC 和BD 在x 轴上的投影长度分别为,a b ,当m 变化时,b a 的最小值为 A . 162 B.82 C.384 D. 34413.( 2011陕西)设 0a b <<,则下列不等式中正确的是A .2a b a b ab +<<< B .2a b a ab b + <<< C .2a b a ab b + <<< D .2a b ab a b + <<< 14.( 2011上海)若,a b R ∈,且0ab >,则下列不等式中,恒成立的是A .222a b ab +>B .2a b ab +≥C . 112a b ab+> D .2b a a b +≥ 二、填空题15.(2018)天津已知,a b ∈R ,且 360a b −+=,则128a b+ 的最小值为. 16.(2018天津)已知a ∈R ,函数22 220() 220x x a x f x x x a x ⎧ ++−⎪=⎨−+−>⎪⎩ ,≤, ,.若对任意 [3,)x ∈−+∞, ()||f x x ≤恒成立,则a 的取值范围是____.17.( 2017天津)若,a b ∈R ,0ab >,则4441a b ab++ 的最小值为. 18.( 2017山东)若直线 1(00)x y a b a b+=>,>过点(1,2),则2a b +的最小值为. 192017 .(江苏)某公司一年购买某种货物吨,每次购买600 x 吨,运费为万元6 /次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是.20.(2017北京)能够说明“设a ,b ,c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数a ,b ,c 的值依次为____________________.21.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+−+ 在区间,[14]上的最大值是5,则a 的取值范围是.22.(2017 江苏)在平面直角坐标系xOy 中, (12,0)A −,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅≤,则点P 的横坐标的取值范围是. 23.( 2015重庆)设,0a b >,5a b +=,则 1++3a b +的最大值为________.24.(2015)山东定义运算“⊗”:22x y x y xy−⊗=(,x y ∈R ,0xy ≠).当0x >, 0y >时, (2)x y y x ⊗+⊗的最小值为.25.( 2014浙江)已知实数,,a b c 满足0a b c ++=, 2221a b c ++=,则a 的最大值是__;26.(2014 辽宁)对于0c > ,当非零实数,a b 满足22 420aab b c −+−=,且使 |2|a b +最大时, 124a b c++的最小值为. 27.(2014 辽宁)对于0c >,当非零实数a ,b 满足224240a ab b c −+−=,且使 |2|a b +最大时, 345a b c−+的最小值为. 28.(2014 湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆小时)与车流速度/v (假设车辆以相同速度行驶,单v 位:米秒)、平均车长(单位:米)有关,其公式为/l 的值276000 1820v F v v l=++. ()如果不限定车型,Ⅰ 6.05l = ,则最大车流量为辆小时; /()如果限定车型,Ⅱ5l =,则最大车流量比(Ⅰ)中的最大车流量辆.增加 /小时29.( 2013天津)设a b + = 2,b >0,时, 则当a = 1|| 2||a ab +取得最小值. 30.( 2013四川)已知函数 ()4(0,0)a f x x x a x=+>>在3x =时取得最小值,则a =__.31.( 2011浙江)若实数,x y 满足22 1x y xy ++=,则x y +的最大值是____ . 32.( 2011湖南)设,x y R ∈,则222211 ()(4)x y y x++ 的最小值为. 33.( 2010安徽)若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是写出所有正确命题的编号. ()①1ab ≤;② 2a b +≤;③ 222a b +≥ ; ④333a b +≥;⑤ 112a b +≥.。
新编高考真题汇编文科数学(解析版)不等式

新编高考真题汇编文科数学(解析版)不等式一、选择题某2y2,1.【20某某高考山东文6】设变量某,y满足约束条件2某y4,则目标函数z3某y的取值范4某y1,围是333(A)[,6](B)[,1](C)[1,6](D)[6,]222【答案】A【解析】做出不等式所表示的区域如图,由z3某y得y3某z,平移直线y3某,由图象可知当直线经过点E(2,0)时,直线y3某z的截距最小,此时z最大为z3某y6,当直线经过C点时,直线截距最大,此时z最小,由1某4某y133,解得,此时,所以z3某y的取值范围是z3某y32222某y4y33[,6],选A.2某02.【20某某高考安徽文8】若某,y满足约束条件某2y3,则z某y的最小值是2某y3(A)-3(B)0(C)【答案】A【解析】约束条件对应ABC边际及内的区域:A(0,3B),3(D)323则(0C,),(1,1)2t某y[3,0]。
3.【20某某高考新课标文5】已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(某,y)在△ABC内部,则z=-某+y的取值范围是(A)(1-3,2)(B)(0,2)(C)(3-1,2)(D)(0,1+3)【答案】A【解析】做出三角形的区域如图,由图象可知当直线y某z经过点B时,截距最大,此时z132,当直线经过点C时,直线截距最小.因为AB某轴,所以yC132,三角形的边长为2,设C(某,2),则2AC(某1)2(21)22,解得(某1)23,某13,因为顶点C在第一象限,所以某13,即(13,2)代入直线z某y得z(13)213,所以z的取值范围是13z2,选A.4.【20某某高考重庆文2】不等式某10的解集是为某2(A)(1,)(B)(,2)(C)(-2,1)(D)(,2)∪(1,)【答案】C【解析】原不等式等价于(某1)(某2)0即2某1,所以不等式的解为(2,1),选C.5.【20某某高考浙江文9】若正数某,y满足某+3y=5某y,则3某+4y的最小值是A.2428B.C.5D.6551311313某12y13)5,(3某4y)()(5y某5y某5y某【答案】C【解析】某+3y=5某y,1132365.55某y3,某2y12,6.【20某某高考四川文8】若变量某,y满足约束条件2某y12,则z3某4y的最大值是某0y0()A、12B、26C、28D、33【答案】C【解析】如图可行域为经过点M时z有最大值,联立方程组选C.图中阴影部分,当目标函数直线某2y12得M(4,4),代入目标函数得z28,故2某y122某y207.【20某某高考天津文科2】设变量某,y满足约束条件某2y40,则目标函数z=3某-2y的最某10小值为(A)-5(B)-4(C)-2(D)3【答案】B【解析】做出不等式对应的可行域如图,由z3某2y得y3z3z3z由图象可知当直线y某经过点C(0,2)时,直线y某的截距最大,某,222222而此时z3某2y最小为z3某2y4,选B.8.【20某某高考陕西文10】小王从甲地到乙地的时速分别为a和b (aA.aabababab【答案】A.【解析】设甲乙两地相距,则小王用时为abab2ab2ab21a.、,avab.故选A.ab2ab2bab10,某y某y20,则2某+3y的最大值为9.【20某某高考辽宁文9】设变量某,y满足0剟0剟y15,(A)20(B)35(C)45(D)55【答案】D【解析】画出可行域,根据图形可知当某=5,y=15时2某+3y最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中。
专题07 不等式丨十年高考数学真题分项汇编(解析版)(共39页)

十年(2014-2023)年高考真题分项汇编—不等式目录题型一:不等式的性质及其应用.......................................1题型二:解不等式...................................................4题型三:基本不等式.................................................5题型四:简单的线性规划问题.........................................7题型五:不等式的综合问题 (34)题型一:不等式的性质及其应用一、选择题1.(2019·天津·理·第6题)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为()A .a c b <<B.a b c<<C.b c a<<D.c a b<<【答案】A解析:5511log 2log ,0,22a a ⎛⎫=<=∴∈ ⎪⎝⎭,110.5222log 2log 50.log 5log 42b --===>=,即2b >,11520.211220.5,,12222c c ⎛⎫⎛⎫⎛⎫==>=∴∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a c b <<.2.(2019·全国Ⅰ·理·第3题)已知2log 0.2a =,0.22b =,0.30.2c =,则()A .a b c <<B .a c b<<C .c a b <<D .b c a<<【答案】答案:B解析:22log 0.2log 10a =<=,0.20221b =>=,0.300.20.21,(0,1)c c =<=∴∈,故a c b <<.3.(2014高考数学四川理科·第4题)若0,0a b c d >><<,则一定有()A.a b c d >B.a b c d <C.a b d c >D.a b d c<【答案】D解析:由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c<4.(2018年高考数学课标Ⅲ卷(理)·第12题)设0.2log 0.3a =,2log 0.3b =,则()A .0a b ab +<<B.0ab a b <+<C .0a b ab +<<D.0ab a b<<+【答案】B解析:一方面()0.2log 0.30,1a =∈,()2log 0.32,1b =∈--,所以0ab <0.31log 0.2a =,0.31log 2b =,所以()()0.30.311log 0.22log 0.40,1a b+=⨯=∈所以1101a b <+<即01a b ab +<<,而0ab <,所以0a b +<,所以1a ba b ab ab+<⇒+>综上可知0ab a b <+<,故选B .5.(2014高考数学湖南理科·第8题)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为()A.2q p +B.()()2111-++q p C.pqD.()()111-++q p 【答案】D解析:设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒=-,故选D.6.(2017年高考数学山东理科·第7题)若0a b >>,且1ab =,则下列不等式成立的是()A.()21log 2a ba ab b +<<+B.()21log 2a b a b a b<+<+C.()21log 2a b a a b b +<+<D.()21log 2a ba b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2aba b a b ><<∴<+>=12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B.二、填空题1.(2017年高考数学北京理科·第13题)能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为_________________________.【答案】1,2,3---(答案不唯一)【解析】()123,1233->->--+-=->-出现矛盾,所以验证是假命题.三、多选题1.(2020年新高考全国Ⅰ卷(山东)·第11题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D +≤【答案】ABD解析:对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,所以≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 2.(2020年新高考全国卷Ⅱ数学(海南)·第12题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D +≤【答案】ABD解析:对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,所以≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD一、选择题1.(2015高考数学北京理科·第7题)如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是()()A.{}|10x x -<≤B.{}|11x x -≤≤C.{}|11x x -<≤D.{}|12x x -<≤【答案】C解析:如图所示,把函数2log y x =的图象向左平移一个单位得到2log (1)y x =+的图象1x =时两图象相交,不等式的解为11x -<≤,用集合表示解集,故选C.二、填空题1.(2015高考数学江苏文理·第7题)不等式422<-xx的解集为_______.【答案】(1,2).-解析:由题意得:2212x x x -<⇒-<<,解集为(1,2).-2.(2017年高考数学上海(文理科)·第7题)不等式11x x->的解集为________.【答案】(),0-∞【解析】111100x x x->⇒<⇒<,解集为(,0)-∞.一、填空题1.(2021高考天津·第13题)若0 , 0a b >>,则21a b a b ++的最小值为____________.【答案】解析: 0 , 0a b >>,212a b b a b b b ∴++≥+=+≥=,当且仅当21a a b =且2b b=,即a b ==所以21a b ab ++的最小值为故答案为:.2.(2020天津高考·第14题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________.【答案】4【解析】0,0,0a b a b >>∴+> ,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=,或22a b ==时,等号成立.故答案为:43.(2020江苏高考·第12题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45【解析】22451x y y += ,0y ∴≠且42215y x y -=42222221144+5555y y x y y y y -∴+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号.22x y ∴+的最小值为45.故答案为:45.4.(2019·天津·理·第13题)设0,0,25x y x y >>+=,则的最小值为.【答案】解析:524x y =+≥,=====即31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时等号成立,因为2538<<5.(2019·上海·第7题)若x y R+∈、,且123yx+=,则yx的最大值为________.【答案】98【解析】法一:yxyx212213⋅≥+=,∴892232=⎪⎪⎭⎫⎝⎛≤xy;法二:由yx231-=,yyyyxy32)23(2+-=⋅-=(230<<y),求二次最值89max=⎪⎭⎫⎝⎛xy. 6.(2019·江苏·第10题)在平面直角坐标系xOy中,P是曲线()4y x xx=+>0上一动点,则点P到直线x y+=的距离最小值是______.【答案】4【解析】法1:由已知,可设4(,0P x x xx+>,,所以42+4xxd===.当且仅当42xx=,即x=时取等号,故点P到直线的距离的最小值为4.法2:距离最小时,24'11yx-=-=,则x=,所以P,所以最小值为4.7.(2018年高考数学江苏卷·第13题)在ABC△中,角,,A B C所对的边分别为,,a b c,120ABC∠=︒,ABC∠的平分线交AC于点D,且1BD=,则4a c+的最小值为.【答案】9解析:由题意可知,ABC ABD BCDS S S∆∆∆=+,由角平分线性质和三角形面积公式得,111sin1201sin60+1sin60222ac a c=⨯⨯⨯⨯,化简得+ac a c=,111a c+=,因此1144(4)()5c aa c a ca c a c+=++=++≥,当且仅当=2=3c a时取等号,所以4a c+的最小值为9.8.(2018年高考数学天津(理)·第13题)已知,a b∈R,且360a b-+=,则128ab+的最小值为.【答案】14解析:由360a b -+=,得36a b =-,所以3633112222284ab b b ---+=+=⨯=≥,当且仅当363b b -=-,即1,3b a =-=-时等号成立,故128ab +的最小值为14.9.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =吨.【答案】20解:某公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用之和为40044x x ⋅+万元,40044x x⋅+≥160,当16004x x=即x =20吨时,一年的总运费与总存储费用之和最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学E 单元 不等式E1 不等式的概念与性质5.B6,E1[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .x 3>y 3B .sin x >sin yC .ln(x 2+1)>ln(y 2+1) D.1x 2+1>1y 2+15.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A.5.E1[2014·四川卷] 若a >b >0,c <d <0,则一定有( ) A.a d >b c B.a d <b c C.a c >b d D.a c <b d5.B [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-bc >0,所以a d <bc ,故选B.E2 绝对值不等式的解法9.E2、E8[2014·安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( )A .5或8B .-1或5C .-1或-4D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝ ⎛⎭⎪⎫-a 2≤x ≤-1,-3x -a -1⎝ ⎛⎭⎪⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=a 2-1=3,可得a =8.当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝ ⎛⎭⎪⎫x >-a 2,-x -a +1⎝ ⎛⎭⎪⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=-a 2+1=3,可得a =-4.综上可知,a 的值为-4或8.10.E2[2014·辽宁卷] 已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式 f (x -1)≤12的解集为( )A.⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 B.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤14,23 C.⎣⎢⎡⎦⎥⎤13,34∪⎣⎢⎡⎦⎥⎤43,74 D.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34 10.A [解析] 由题可知,当x ∈⎣⎢⎡⎦⎥⎤0,12时,函数f (x )单调递减,由cos πx ≤12,得13≤x ≤12;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,函数f (x )单调递增,由2x -1≤12,得12<x ≤34.故当x ≥0时,由f (x )≤12,得13≤x ≤34.又因为f (x )为偶函数,所以f (x )≤12的解解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,所以不等式f (x -1)≤12的解满足-34≤x -1≤-13或13≤x -1≤34,解得x ∈⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74. 3.E2、E3[2014·全国卷] 不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}3.C [解析] 由⎩⎪⎨⎪⎧x (x +2)>0,|x |<1,得⎩⎪⎨⎪⎧x >0或x <-2,-1<x <1,即0<x <1.E3 一元二次不等式的解法3.E2、E3[2014·全国卷] 不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}3.C [解析] 由⎩⎪⎨⎪⎧x (x +2)>0,|x |<1,得⎩⎪⎨⎪⎧x >0或x <-2,-1<x <1,即0<x <1.E4 简单的一元高次不等式的解法 E5 简单的线性规划问题13.E5[2014·安徽卷] 不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.13.4 [解析] 不等式组所表示的平面区域如图中阴影部分所示,S △ABD =S △ABD +S △BCD =12×2×(2+2)=4.13.E5[2014·北京卷] 若x ,y 满足⎩⎪⎨⎪⎧y ≤1,x -y -1≤0,x +y -1≥0,则z =3x +y的最小值为________.13.1 [解析] 可行域如图,当目标函数线z =y +3x 过可行域内A 点时,z 有最小值,联立⎩⎪⎨⎪⎧y =1,x +y -1=0,得A (0,1),故z min =3×0+1×1=1.11.E5,H4[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4911.C[解析] 作出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0表示的平面区域Ω(如下图阴影部分所示,含边界),圆C :(x -a )2+(y -b )2=1的圆心坐标为(a ,b ),半径为 1.由圆C 与x 轴相切,得b =1.解方程组⎩⎪⎨⎪⎧x +y -7=0,y =1,得⎩⎪⎨⎪⎧x =6,y =1,即直线x +y -7=0与直线y =1的交点坐标为(6,1),设此点为P .又点C ∈Ω,则当点C 与P 重合时,a 取得最大值, 所以,a 2+b 2的最大值为62+12=37,故选C.4.E5[2014·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z=2x +y 的最大值等于( )A .7B .8C .10D .114.D [解析] 作出不等式组所表示的平面区域,如图中阴影部分所示.作出直线l :2x +y =0,平移该直线,当直线经过点A (4,3)时,直线l 的截距最大,此时z =zx +y 取得最大值,最大值是11 .4.E5[2014·湖北卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x +y 的最大值是( )A .2B .4C .7D .84.C[解析] 作出约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0表示的可行域如下图阴影部分所示.设z =2x +y x +y =4与直线x -y =2的交点A (3,1)处,z =2x +y 取得最大值7. 故选C.13.E5[2014·湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥1,则z=2x +y 的最大值为________.13.7 [解析] 依题意,画出可行域,如图所示. 由⎩⎪⎨⎪⎧x +y =4,y =1得点B 的坐标为(3,1),则z =2x +y 在B (3,1)处取得最大值7.14.E5[2014·辽宁卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,则目标函数z =3x +4y 的最大值为________.14.18 [解析] 不等式组表示的平面区域如图阴影部分所示,由z =3x +4y 得y =-34x +z4 ,当直线经过点C 时,z 取得最大值.由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =3,故C 点坐标为(2,3),这时z =3×2+4×3=18.15.E5[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x+4y 的最大值为________.15.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界),z =x +4y 的最大值即为直线y =-14x +14z 的截距最大时z 的值.结合题意知,当y =-14x +14z 经过点A 时,z 取得最大值,联立x -y =0和x +2y =3,可得点A 的坐标为(1,1),所以z max =1+4=5.9.E5[2014·新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为( )A .8B .7C .2D .19.B [解析] 作出约束条件表示的可行域(略),可知该可行域为一三角形区域,当目标函数通过可行域的一个顶点(3,2)时,目标函数取得最大值,z max =3+2×2=7.11.E5[2014·全国新课标卷Ⅰ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-311.B [解析] 当a <0时,作出相应的可行域,可知目标函数z =x +ay 不存在最小值.当a ≥0时,作出可行域如图,易知当-1a >-1,即a >1时,目标函数在A 点取得最小值.由A ⎝ ⎛⎭⎪⎫a -12,a +12,知z min =a -12+a 2+a2=7,解得a =3或-5(舍去).10.E5[2014·山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0, 当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A .5B .4 C. 5 D .210.B [解析] 画出关于x ,y 的不等式组表示的可行域,如图阴影部分所示.显然当目标函数z =ax +by 过点A (2,1)时,目标函数z =ax +by 取得最小值,即25=2a +b ,所以25-2a =b ,所以a 2+b 2=a 2+(25-2a )2=5a 2-85a +20.构造函数m (a )=5a 2-85a +20(0<a <5),显然当a =455时,函数m (a )取得最小值4.故a 2+b 2的最小值为4.6.E5、L1[2014·四川卷] 执行如图1-2的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为()A .0B .1C .2D .3 6.C[解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x+y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取最大值2,2>1,故选C.2.E5[2014·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析] 作出可行域,如图中阴影部分所示.联立⎩⎪⎨⎪⎧x +y -2=0,y =1,解得⎩⎪⎨⎪⎧y =1,可得点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值z =1×1+2×1=3.12.E5[2014·浙江卷] 若实数x ,y满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y的取值范围是________.12.[1,3] [解析] 实数x ,y 满足的可行域如图中阴影部分(包括边界)所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎪⎫1,32.令z =x +y ,则y =-x +z .当直线y =-x +z 经过A 点时,z 取最小值1;经过B 点时,z 取最大值3.故x +y 的取值范围是[1,3].E6 2a b+≤9.B7、E6[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 39.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+2 4b a ·3a b =7+4 3,当且仅当4b a =3ab ,即a =4+2 3,b =2 3+3时等号成立,故其最小值是7+4 3.16.E6[2014·湖北卷] 某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时; (2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900 (2)100 [解析] (1)依题意知,l >0,v >0,所以当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v +18≤76 0002 v ·121v +18=1900,当且仅当v =11时,取等号.(2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v +18≤2000,当且仅当v =10时,取等号,此时比(1)中的最大车流量增加100辆/小时.14.C8、E6[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B=2sin C ,则cos C 的最小值是______.14.6-24 [解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab=34a 2+12b 22ab -24≥234a 2·12b 22ab-24=6-24, 当且仅当3a 2=2b 2,即a b =23时等号成立.16.E6[2014·辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab+b 2-c =0且使|2a +b |最大时,1a +2b +4c 的最小值为________.16.-1 [解析] 因为4a 2-2ab +b 2-c =0,所以(2a +b )2-c =6ab =3×2ab ≤3×(2a +b )24,所以(2a +b )2≤4c ,当且仅当b =2a ,c =4a 2时,|2a +b |取得最大值.故1a +2b +4c =2a +1a 2=⎝ ⎛⎭⎪⎫1a +12-1,其最小值为-1.21.H5,H8,E6[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105.(1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.21.解:(1)由题意知,a 2-b 2a =32,可得a 2=4b 2. 椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a5.因此2×25a 5=4105,即a =2,所以b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)(i)设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1). 因为直线AB 的斜率k AB =y 1x 1,且AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎨⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8mkx +4m 2-4=0, 所以x 1+x 2=-8mk1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2.由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1).令y =0,得x =3x 1,即M (3x 1,0). 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此,存在常数λ=-12使得结论成立. (ii)直线BD 的方程y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝ ⎛⎭⎪⎫0,-34y 1. 由(i)知M (3x 1,0),所以△OMN 的面积S =12×3|x 1|×34|y 1|= 98|x 1||y 1|.因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时,等号成立,此时S 取得最大值98, 所以△OMN 面积的最大值为98.E7 不等式的证明方法20.A1、D3、E7[2014·天津卷] 已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .20.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1 ≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1 =(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .E8 不等式的综合应用16.E8[2014·浙江卷] 已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.16.63 [解析] 方法一:令b =x ,c =y ,则x +y =-a ,x 2+y 2=1-a 2,此时直线x +y =-a 与圆x 2+y 2=1-a 2有交点,则圆心到直线的距离d =|a |2≤1-a 2,解得a 2≤23,所以a 的最大值为63.方法二:将c =-(a +b )代入a 2+b 2+c 2=1得2b 2+2ab +2a 2-1=0,此关于b 的方程有实数解,则Δ=(2a )2-8(2a 2-1)≥0,整理得到a 2≤23,所以a 的最大值为63.9.E2、E8[2014·安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( )A .5或8B .-1或5C .-1或-4D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝ ⎛⎭⎪⎫-a 2≤x ≤-1,-3x -a -1⎝ ⎛⎭⎪⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=a 2-1=3,可得a =8.当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝ ⎛⎭⎪⎫x >-a 2,-x -a +1⎝ ⎛⎭⎪⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=-a 2+1=3,可得a =-4.综上可知,a 的值为-4或8.9.E8[2014·福建卷] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元9.C [解析] 设底面矩形的一边长为x .由容器的容积为4 m 3,高为1 m .得另一边长为4x m.记容器的总造价为y 元,则 y =4×20+2⎝ ⎛⎭⎪⎫x +4x ×1×10=80+20⎝ ⎛⎭⎪⎫x +4x ≥80+20×2x ·4x=160,当且仅当x =4x ,即x =2时等号成立.因此,当x =2时,y 取得最小值160,即容器的最低总造价为160元,故选C.19.B3、B4、B14、E8[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =e x(x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立. 因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎥⎤-∞,-13.(3)令函数 g (x )=e x+1e x - a (-x 3+3x ),则g ′ (x ) =e x-1e x +3a (x 2-1).当 x ≥1时,e x-1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e-12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1; ②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.E8、B12[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2] D .[-4,-3]12.C [解析] 当-2≤x <0时,不等式可转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则 f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故函数f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤f min (x )=f (-1)=1+4-3-1=-2. 当x =0时,不等式恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3, 令g (x )=x 2-4x -3x 3(0<x ≤1), 则g ′(x )=-x 2+8x +9x 4,故函数g (x )在(0,1]上单调递增,此时有a ≥g max (x )=g (1)=1-4-31=-6.综上,-6≤a ≤-2.21.B11、B12、E8[2014·陕西卷] 设函数f (x )=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +e x ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增.∴x =e 时,f (x )取得极小值f (e)=ln e +e e =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立, 等价于f (b )-b <f (a )-a 恒成立.(*)设h (x )=f (x )-x =ln x +m x -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立, ∴m ≥14⎝ ⎛⎭⎪⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.E9 单元综合6.[2014·成都七中模拟] 若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A.1ab >12B.1a +1b ≤1C.ab ≥2D.1a 2+b 2≤18 6.D [解析] 因为2=a +b 2≤a 2+b 22,所以a 2+b 2≥8,所以1a 2+b 2≤18. 8.[2014·郑州联考] 已知a ,b ,c ∈R ,给出下列命题:①若a >b ,则ac 2>bc 2;②若ab ≠0,则a b +b a ≥2;③若a >|b |,则a 2>b 2.其中真命题的个数为( )A .3B .2C .1D .08.C [解析] 当c =0时,ac 2=bc 2=0,故①为假命题;当a 与b 异号时,a b <0,b a <0,故②为假命题;因为a >|b |≥0,所以a 2>b 2,故③为真命题.6.[2014·济南期末] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -3y 的最大值为( )A .4B .3C .2D .16.A [解析] 依题意画出可行域如图所示,由图可知,z =x -3y 在点(1,-1)处取得最大值4.8.[2014·长沙一中月考] 在关于x 的不等式x 2-(a +1)x +a <0的解集中恰有两个整数,则a 的取值范围是( )A .(3,4)B .(-2,-1)∪(3,4)C .(3,4]D .[-2,-1)∪(3,4]8.D [解析] 由题意得,原不等式为(x -1)(x -a )<0.当a >1时,解得1<x <a ,此时解集中的整数为2,3,则3<a ≤4;当a <1时,解得a <x <1,此时解集中的整数为0,-1,则-2≤a <-1.故a ∈[-2,-1)∪(3,4].11.[2014·青岛二中月考] 已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 311.C [解析] 因为lg 2x +lg 8y =lg 2,所以x +3y =1,所以1x +13y =1x +13y (x +3y )=2+3y x +x 3y ≥4,当且仅当3y x =x 3y ,即x =12,y =16时,取等号.17.[2014·西安模拟] 设OA→=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则1a +2b 的最小值是____________.17.8 [解析] 易知 AB→=(a -1,1),AC →=(-b -1,2).因为A ,B ,C 三点共线,所以2(a -1)-(-b -1)=0,即2a +b =1.又a >0,b >0,所以1a +2b =1a +2b (2a +b )=4+b a +4a b ≥4+4=8,当且仅当a =14,b =12时,取等号.。