1.1等腰三角形(四)教学设计

合集下载

等腰三角形教案设计5篇

等腰三角形教案设计5篇

等腰三角形教案设计5篇等腰三角形教案设计5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。

等腰三角形 第四课时 导学案

等腰三角形   第四课时  导学案

1.1 等腰三角形(四)一、学习准备:1、等边三角形的三个角都 ,并且每个角都等于 .2、已知:∠ABC,∠ACB 的平分线相交于F,过F 作DE ∥(1) 找出图中的等腰三角形(2) BD,CE,DE 之间存在着怎样的关系? (3) 证明以上的结论。

二、学习目标:1、掌握等边三角形的判定定理及推论。

2、能利用所学定理解决简单的实际问题。

三、学习提示:阅读P10~12完成下列任务: 1,合作探究:(1).一个等腰三角形满足什么条件时便成为等边三角形?(2).你认为有一个角等于60°等腰三角形是等边三角形吗?你能证明你的结论吗?把你的思路与小组成员进行交流一下。

要求画出图形,写出已知、求证、然后再证明得到定理: .2、练习:证明:三个角都相等的三角形是等边三角形.3. 自主探究:用两个含30°的三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.由此你能想到,在直角三角形中,30°角所对的直角三角形与斜边有怎样的大小关系?能证明你的结论吗?如图,在△ABC 中,∠ACB =90°,∠A =30°,则∠B =60°。

延长BC 至D ,使CD =BC ,连接AD得到定理 .(1) (2)D图 1-74、练习:求证:等腰三角形的底角为15°,那么腰上的高是腰长的一半。

已知:如图1-8,在△ABC 中,已知AB =AC ,∠ABC =15°,CD 是腰AB 上的高, 求证:CD=21四、学习小结:你有哪些收获? 五、夯实基础:(1).等腰三角形的顶角为150°,腰长为10cm ,则这个三角形的面积为_______. (2).若等腰三角形一腰上的高线平分这腰,则这个三角形是______三角形;若等腰三角形底边上的高等于一腰上的高,则这个三角形是____三角形. (3).在△ABC 中,AB =AC ,∠A =60°,则△ABC 是 三角形. (4)、已知:如图,在△ABC 中,∠ACB = 90°,∠A=30°,CD ⊥AB 于D. 求证:BD=41AB六、能力提升1、如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BP=BQ ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论. (2)若PA:PB:PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.作业:P9习题1.3---1、2、4 【评价反思】 :图1-8DB。

北师大版八年级下册1.1《等腰三角形(四)等边三角形的判定》教学设计

北师大版八年级下册1.1《等腰三角形(四)等边三角形的判定》教学设计
3.汇报分享:各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
在课堂练习环节,我将设计具有针对性和层次性的练习题,帮助学生巩固所学知识。
1.基础练习:设计一些简单的等边三角形判定和应用题,让学生独立完成。
2.提高练习:设计一些综合性的几何题目,让学生运用等边三角形的性质解决问题。
3.课堂反馈:针对学生的练习情况,给予及时反馈,指导学生纠正错误,巩固知识。
2.判定方法:
-通过观察法:让学生观察等边三角形的特征,如三边相等、三角相等、三条高相等,引导学生发现等边三角形的判定方法。
-尺规作图法:讲解并演示如何利用尺规作一个等边三角形,让学生在实际操作中掌握等边三角形的性质。
3.性质:讲解等边三角形的性质,如内角均为60度、三条高、中线、角平分线重合等,并结合实例进行说明。
北师大版八年级下册1.1《等腰三角形(四)等边三角形的判定》教学设计
一、教学目标
(一)知识与技能
1.理解等边三角形的定义,知道等边三角形的判定方法。
2.能够运用等边三角形的性质解决实际问题,如计算等边三角形的周长、面积等。
3.掌握等边三角形与等腰三角形的区别与联系,能够灵活运用等腰三角形的性质解决相关问题。
4.学会使用尺规作图,绘制等边三角形,并能够利用等边三角形的特点进行图案设计。
(二)过程与方法
在教学过程中,教师应注重以下过程与方法:
1.采用启发式教学,引导学生通过观察、思考、讨论等途径,发现等边三角形的性质,培养学生自主探究的能力。
2.通过实际操作,如尺规作图、图案设计等,让学生在实践中感受等边三角形的特点,提高学生的动手操作能力。
作业要求:
1.做作业时,注意书写规范,保持卷面整洁。
2.独立思考,认真完成,遇到问题可以与同学讨论或请教老师。

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。

1.1 等腰三角形(4)

1.1 等腰三角形(4)

1.1 等腰三角形(4)【主要内容】直角三角形中,30°所对的直角边是斜边的一半.【复习旧知】1、填空:①∵在△ABC中,∠A=∠B=∠C,②∵在△ABC中,AB=AC∴△ABC是_______________. 又∵∠A=______°∴△ABC是__________________. 2、如果用两个含有30°的全等的三角板,能拼出一个等边三角形吗?请你画出你的画法,并写出简单的思路。

【新课导学】1、从“复习”中我们可以知道,两个含有30°的全等的三角板拼出一个等边三角形,观察你所画的图,我们可以发现命题:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

请你证明这个命题:已知:△ABC是____________,∠B=______°,∠A=______°,求证:____________. 画图:分析:通过“复习”,我们得到这个命题关键是利用两个全等的三角形拼出等边三角形来,因此,此题解决时,同样要构造出相类似的图形。

证明:2、几何描述:(如1图)∵在Rt△ABC中,∠A=30°∴BC=___________.(___________________________________).1.1 等腰三角形(4)【主要内容】直角三角形中,30°所对的直角边是斜边的一半.【复习旧知】1、填空:①∵在△ABC中,∠A=∠B=∠C,②∵在△ABC中,AB=AC∴△ABC是_______________. 又∵∠A=______°∴△ABC是__________________. 2、如果用两个含有30°的全等的三角板,能拼出一个等边三角形吗?请你画出你的画法,并写出简单的思路。

【新课导学】1、从“复习”中我们可以知道,两个含有30°的全等的三角板拼出一个等边三角形,观察你所画的图,我们可以发现命题:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案

北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案

1.1 等腰三角形主要师生活动一、创设情境,导入新知图中有你熟悉的图形吗?它们有什么共同特点?师生活动:教师播放课件,学生独立思考回答问题.问题 1 在八上的“平行线的证明”这一章中,我们学了哪8 条基本事实?1.两点确定一条直线.2. 两点之间线段最短.3. 同一平面内,过一点有且只有一条直线与已知直线垂直.4. 同位角相等,两直线平行.5. 过直线外一点有且只有一条直线与这条直线平行.6. 两边及其夹角分别相等的两个三角形全等.7. 两角及其夹边分别相等的两个三角形全等.8. 三边分别相等的两个三角形全等.二、探究新知二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题2:你能用基本事实及已经学过的定理证明上面的推论吗?师生活动: 教学时应鼓励学生独立完成. 教师要提醒学生首先依据命题画出几何图形,再结合几何图形用数学符号语言写出“已知”“求证”,最后写出证明过程.已知:如图,∠A =∠D,∠B =∠E,BC = EF.求证:△ABC≌△DEF.证明:∵∠A +∠B +∠C = 180°,∠D +∠E +∠F = 180°(三角形的内角和等于180°),∴∠C = 180°-(∠A +∠B),∠F = 180°-(∠D +∠E).∵∠A =∠D,∠B =∠E (已知),∴∠C =∠F (等量代换).∵BC = EF (已知),∴△ABC≌△DEF (ASA).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等.设计意图:学生在七年级下册已经探索并认识了判定三角形全等的“角角边”定理,这里意在让学生根据基本事实证明这一定理.设计意图:七年级下册给出的“全等三角形”的定义是“能够完全重合的两个三角形叫做全等三角形”,“全等三角形的对应边相等、对应角相等”则是由全等三角形的定义推出来的,本章很多证明都会用到它,因此,这里特别提出这一结论,以便后续证明使用.知识点二:等腰三角形的性质及其推论问题3:你还记得我们探索过的等腰三角形的性质吗?定理:等腰三角形的两个底角相等.推论:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一).问题4:你能利用基本事实或已知的定理证明这些结论吗议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形. 由此,你得到了解题什么的启发?已知:如图,在△ABC中,AB = AC.求证:∠B = ∠C.方法一:作底边上的中线证明:如图,取BC的中点D,连接AD.∵AB = AC,BD = CD,AD = AD∴△ABD≌△ACD (SSS).∴∠B =∠C(全等三角形的对应角相等).师:还有其他的证法吗?方法二:作顶角的平分线证明:作顶角的平分线AD,则∠BAD =∠CAD.∵AB = AC,∠BAD = ∠CAD,AD = AD,∴△BAD≌△CAD (SAS).∴∠B =∠C (全等三角形的对应角相等).师生活动:教学时教师要注意引导学生根据条件正确、规范地写出“已知”“求证”,有意识地培养学生对文字语言、符号语言和图形语言的转换能设计意图:这里让学生回忆以前的折纸过程,目的是引导学生发现证明的思路,学生一般可以由折纸确定辅助线的位置,但对于作辅助线的规范叙述仍需教师帮助.设计意图:教学中,应鼓励学生寻求其他证明方法,实际上,除作底边中线外,还可以通过作顶角平分线的方法证明结论,此时证明的依据是基本事实SAS. 这两种证明方法都是受折纸的启发(轴对称),通过作辅助线将图形分成两部分,再证明这两部分全等,教师可以引导学生分析这两种证明方法的共性,加深对等腰三角形性质的认识.教学时,可能会有学生通过作底边上的高并利用勾股定理来证明这一定理,对此,教师一方面要保护学生的学习积极性,另一方面也要引导学生认识力,关注证明过程及其表达的合理性.想一想:由△BAD≌△CAD,图中线段AD还具有怎样的性质?为什么?由此你能得到什么论?由△BAD≌△CAD,可得BD = CD,∠ADB =∠ADC,∠BAD =∠CAD.又∵∠ADB +∠ADC = 180°,∴∠ADB =∠ADC = 90°,即AD⊥BC.故AD是等腰△ABC底边BC上的中线、顶角∠BAC的平分线、底边BC上的高.师生活动: 让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论.定理:等腰三角形的两个底角相等(等边对等角).几何语言:如图,在△ABC中,∵AB = AC (已知),∴∠B =∠C (等边对等角).推论:等腰三角形顶角的平分线、底边上的中线及底边上的高互相重合(三线合一).练一练1. 已知,如图,△ABC≌△ADE,∠BED = 20°,则∠AED的度数为( )A.60°B.90°C. 80°D. 20°到:我们虽然在以前探索并认识了勾股定理,但尚未用基本事实证明过,所以从逻辑上来说,勾股定理不能作为这里证明的依据.设计意图:这一结论通常简述为“三线合一”, 即如果某线段是一个等腰三角形的“三线”(顶角的平分线、底边上的中线、底边上的高) 之一,那么它必定也是这个等腰三角形的另“两线”.设计意图:综合运用全等三角形和等腰三角形的相关知识解决问题,加深学生印象,考察学生对于知识的掌握情况.三、当堂练习,巩固所学师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.典例精析例1 已知点D、E在△ABC的边BC上,AB=AC.(1) 如图①,若AD=AE,求证:BD=CE;(2) 如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.证明:(1) 如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG.∴BG-DG=CG-EG,即BD=CE.(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.三、当堂练习,巩固所学1. 如图,已知AB=AE,∠BAD=∠CAE,要使∠ABC∠∠AED,还需添加一个条件,这个条件可以是________________________.2. (1) 等腰三角形一个底角为75°,它的另外两个角为__________;(2) 等腰三角形一个角为36°,它的另外两个角为设计意图:在定理证明的基础上进行难度更高的推论证明,巩固学生知识的运用,并培养学生发散思维,提高学生解题技巧.设计意图:考查对全等三角形判定的掌握.设计意图:结论:在等腰三教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).全等三角形的对应边相等,对应角相等.。

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。

二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。

2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。

三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。

并通过提问的方式,激发学生对等腰三角形的认知。

步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。

然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。

步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。

学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。

步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。

学生可以在小组内探讨解题思路,并进行展示和讨论。

教师可以通过个别辅导,帮助学生理解和掌握解题方法。

步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。

教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。

步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。

四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。

我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。

我们还学会了如何运用等腰三角形的性质解决问题。

五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。

六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。

北师大版八年级数学下册1.1等腰三角形(教案)

北师大版八年级数学下册1.1等腰三角形(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示等腰三角形的基本性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两边长度相等的三角形?”(如剪刀、自行车架等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指有两边相等的三角形。它的重要性体现在其独特的性质和应用上。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了等腰三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
总的来说,今天的课堂教学有成功之处,也有需要改进的地方。在今后的教学中,我会针对以下几点进行优化:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角形的证明1. 等腰三角形(四)一、学生知识状况分析在前两节课,学生已经经历了独立探索发现定理的过程,并能基本规范地证明相关命题,这些都为本节课进一步探索发现相关定理提供了较好的知识基础和活动经验基础。

二、教学任务分析本节课,学生将探究等边三角形判定定理和含30°角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索。

但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会。

为此,确定本节课的教学目标:1.知识目标理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。

2.能力目标①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.②经历实际操作,探索含有30º角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;③在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力。

3.情感与价值观要求①积极参与数学学习活动,对数学有好奇心和求知欲.②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点①等边三角形判定定理的发现与证明.②含30°角的直角三角形的性质定理的发现与证明.4.教学难点①含30°角的直角三角形性质定理的探索与证明.②引导学生全面、周到地思考问题.三、教学过程分析学具准备:两个带30度角的三角板。

本节课设计了六个教学环节:第二环节:自主探索;第三环节:实际操作提出问题;第四环节:变式训练巩固新知;第五环节:畅谈收获课时小结;第六环节:布置作业。

第一环节:提问问题,引入新课活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。

活动目的:开门见山,引入新课,同时回顾,也为后续探索提供了铺垫。

活动效果:在老师的引导下,一般学生都能得出等边三角形的性质;对于等边三角形的判别,学生可能会出现多种情况,如直接从等边三角形性质出发,当然也可能有学生考虑分步进行,现确定它是等腰三角形,再增补条件,确定它是等边三角形。

这是教师可以适时提出问题:如果已知一个三角形是等边三角形的基础上,如何确定它是等边三角形呢?下面是实际教学中的部分师生活动实况:[生]等腰三角形已经有两边分别相等,所以我认为只要腰和底相等,等腰三角形就成了等边三角形.[生]等边三角形的三个内角都相等,且分别都等于60°.我认为等腰三角形的三个内角都等于60°,等腰三角形就是等边三角形了.(此时,部分同学同意此生的看法,部分同学不同意此生的看法,引起激烈地争论.教师可让同学代表充分发表自己的看法.)[生]我不同意这位同学的看法.因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等.但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费![师]给三个角都是60°,这个条件的确有点浪费,那么给什么条件不浪费呢?下面同学们可在小组内交流自己的看法.(2)你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.(教师应给学生自主探索、思考的时间)第二环节:自主探索活动内容:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:活动目的:经历定理的探究过程,即明确有关定理,同时提高学生的自主探究能力。

活动注意事项与效果:由于有了第1环节的铺垫,学生多能探究出:顶角是60°的等腰三角形是等边三角形;底角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都相等的三角形是等边三角形。

对于前两个定理的形式相近,教师可以进一步提出要求:能否用更简捷的语言描述这个结论吗?从而引导学生得出:有一个角是60°的等腰三角形是等边三角形。

在学生得出这些结论的基础上,教师注意引导学生说明道理,给出证明的思路,选择部分命题,给与严格的证明,由于“有一个角是60°的等腰三角形是等边三角形”的证明需要分类讨论,因此,可以以此问题作为对学生证明的要求,并与同伴交流证明思路.并要求学生思考证明中的注意事项,从而点明其中的分类思想,提请学生注意:思考问题要全面、周到.第三环节:实际操作 提出问题活动内容:教师直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形。

拿出三角板,做一做:用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.活动目的:让学生经历拼摆三角尺的活动,发现结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.活动注意事项与效果:学生一般可以得出下面两种图形:其中第1个图形是等边三角形,对于该图学生也可以得出BD=12 AB ,从而得出:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.注意,教学过程中,教师应注意引导学生说明为什么所得到的三角形是等边三角形。

具体的说明过程可以如下:方法1:因为△ABD ≌ACD ,所以AB=AC .又因为Rt △ABD 中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.方法2:图(1)中,∠B=∠C=60,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC 是等边三角形.如果学生不能很快得出30度所对直角边是斜边一半,教师可以在图上标出各个字母,并要求学生思考其中哪些线段直接存在倍数关系,并在将三角板分开,思考从中可以得到什么结论。

然后在学生得到该结论的基础上,再证明该定理。

定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=12 AB .分析:从三角尺的拼摆过程中得到启发,延长BC 至D ,使CD=BC ,连接AD .D (2)(1)B CA CB A证明:在△ABC 中,∠ACB=90°,∠BAC=30°∠B=60°.延长BC 至D ,使CD=BC ,连接AD(如图所示).∵∠ACB=90°∴∠ACB=90°∵AC=AC ,∴△ABC ≌△ADC(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD 是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC=12 BD=12 AB .第四环节:变式训练 巩固新知活动1:直接提请学生思考刚才命题的逆命题:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°吗?如果是,请你证明它.在师生分析的基础上,给出证明:已知:如图,在Rt △ABC 中,∠C=90°,BC=12 AB .求证:∠BAC=30°证明:延长BC 至D ,使CD=BC ,连接AD.∵∠ACB=90°,∴∠ACD=90°.又∵AC=AC .∴△ACB ≌△ACD(SAS).∴AB=AD .∵CD=BC ,∴BC=12 BD .又∵BC=12 AB ,∴AB=BD .∴AB=AD=BD ,即△ABD 是等边三角形.∴∠B=60°.在Rt △ABC 中,∠BAC=30°.注意事项:该命题的证明中辅助线较复杂,但恰有前面原命题探究活动过程的铺垫,可以给学生一些启示,因此,教学中,教师可以引导学生思考:从前面定理证明的辅助线的作法中能否得到启示?活动2 :呈现例题,在师生分析的基础上,运用所学的新定理解答例题。

[例题]等腰三角形的底角为15°,腰长为2a ,求腰上的高CD 的长.分析:观察图形可以发现在Rt △ADC中,AC=2a 而∠DAC 是△ABC 的一个外角,而∠DAC=×15°=30°,根据在直角三角形中,30°角所对的直角边是斜边的一半,可求出CD .解:∵∠ABC=∠ACB=15°∴∠DAC=∠ABC+∠ACB=15°+15°=30°∴CD=12 AC=12×2a= a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).活动目的:在例题求解中巩固新知。

第五环节:畅谈收获 课时小结让学生对课堂学习进行小结,注意总结具体的知识、结论,以及解决问题的方法和蕴含其中的思想,如分类讨论思想、逆向思维等。

第六环节:布置作业四、教学反思本节课,难点在于探究两个定理:“在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”和“直角三角形中,30°所对的直角边等于斜边的一半”,由于设计了三角板操作的实践活动,有效地突破了难点,因而,课堂学生思维非常灵活,方法多样,取得较好的效果。

B A D。

相关文档
最新文档