2013年春_西南大学《初等数论》作业及答案(共4次_已整理)
02013初等数论试卷及答案

初等数论考试试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗?】C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±±C.00,,0,1,2,;bax x t y y t t d d =+=-=±±D.00,,0,1,2,;bax x t y y t t dd=-=-=±±4.下列各组数中不构成勾股数的是( D )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( D )A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( A ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( ? )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .不超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( C ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为:( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的原根存在,下列数中,m 不可能等于:( D ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是 ( B ) A .322ind = B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( C ) A .茂陛鸟斯(mobius)函数w(a) ; B .欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18.若x 对模m 的指数是ab ,a >0,ab >0,则a χ对模m 的指数是( B ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( A ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = _____21____; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2≥n ,有整数解的充分必要条件是_(1a ,2a ,…,n a ,)︱N_;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_(10,b )=1__; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为2,__;25. 威尔生(wilson )定理:____()1p -!+1()0mod ,p p ≡为素数______; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=___1___; 27. 若)(,1a p =,则a 是模p 欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是___()()m φφ__;29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_g 与g+a p 中的奇数_; 30. ()48ϕ=___16___。
《初等数论》历年考试解答

《初等数论》习题集第1章第 1 节1. 证明定理1.2. 证明:若m-p∣mn+pq,则m-p∣mq+np.3.证明:任意给定地连续39个自然数,其中至少存在一个自然数,使得这个自然数地数字和能被11整除.4. 设p是n地最小素约数,n=pn1,n1>1,证明:若p>,则n1是素数.5. 证明:存在无穷多个自然数n,使得n不能表示为a2+p(a > 0是整数,p为素数)地形式.第 2 节1.证明:12∣n4+2n3+11n2+10n,n∈Z.2. 设3∣a2+b2,证明:3∣a且3∣b.3.设n,k是正整数,证明:n k与n k + 4地个位数字相同.4.证明:对于任何整数n,m,等式n2+ (n+1)2 =m2+ 2不可能成立.5. 设a是自然数,问a4- 3a2+ 9是素数还是合数?6.证明:对于任意给定地n个整数,必可以从中找出若干个作和,使得这个和能被n整除.第 3 节1.证明定理1中地结论(ⅰ)—(ⅳ).2.证明定理2地推论1,推论2和推论3.3.证明定理4地推论1和推论3.4.设x,y∈Z,17∣2x+3y,证明:17∣9x+5y.5. 设a,b,c∈N,c无平方因子,a2∣b2c,证明:a∣b.6.设n是正整数,求地最大公约数.第 4 节1. 证明定理1.2.证明定理3地推论.3. 设a,b是正整数,证明:(a+b)[a, b] = a[b, a+b].4. 求正整数a,b,使得a+b = 120,(a, b) = 24,[a, b] = 144.5.设a,b,c是正整数,证明:.6. 设k是正奇数,证明:1 + 2 + + 9∣1k+ 2k+ + 9k.第 5 节1.说明例1证明中所用到地四个事实地依据.2.用辗转相除法求整数x,y,使得1387x-162y = (1387,162).3.计算:(27090,21672, 11352).4. 使用引理1中地记号,证明:(F n+ 1, F n) = 1.5. 若四个整数2836,4582,5164,6522被同一个大于1地整数除所得地余数相同,且不等于零,求除数和余数各是多少?6.记M n=2n- 1,证明:对于正整数a,b,有(M a, M b)= M(a, b).第 6 节1.证明定理1地推论1.2.证明定理1地推论2.3.写出22345680地标准分解式.4. 证明:在1, 2, , 2n中任取n+ 1数,其中至少有一个能被另一个整除.5.证明:(n≥2)不是整数.6.设a,b是正整数,证明:存在a1,a2,b1,b2,使得a = a1a2,b = b1b2,(a2,b2) = 1,并且[a,b] = a2b2.第7 节1.证明定理1.2.求使12347!被35k整除地最大地k值.3. 设n是正整数,x是实数,证明:= n.4.设n是正整数,求方程x2-[x2] = (x-[x])2在[1,n]中地解地个数.5.证明:方程f(x) = [x] + [2x] + [22x] + [23x] + [24x] + [25x] = 12345没有实数解.6. 证明:在n!地标准分解式中,2地指数h = n-k,其中k是n地二进制表示地位数码之和.第8 节1. 证明:若2n+ 1是素数,则n是2地乘幂.2.证明:若2n- 1是素数,则n是素数.3.证明:形如6n+ 5地素数有无限多个.4.设d是正整数,6d,证明:在以d为公差地等差数列中,连续三项都是素数地情况最多发生一次.5.证明:对于任意给定地正整数n,必存在连续地n个自然数,使得它们都是合数.6. 证明:级数发散,此处使用了定理1注2中地记号.第2章第 1 节1.证明定理1和定理2.2.证明定理4.3.证明定理5中地结论(ⅰ)—(ⅳ).4.求81234被13除地余数.5. 设f(x)是整系数多项式,并且f(1), f(2), ,f(m)都不能被m整除,则f(x) = 0没有整数解.6.已知99∣,求α与β.第 2 节1.证明定理1.2.证明:若2p+ 1是奇素数,则(p!)2+ (-1)p≡ 0(mod 2p+ 1).3.证明:若p是奇素数,N = 1 + 2 + + ( p- 1),则(p- 1)! ≡p- 1(mod N).4.证明Wilson定理地逆定理:若n>1,并且(n- 1)! ≡-1(mod n),则n是素数.5.设m是整数,4∣m,{a1, a2, , a m}与{b1, b2, , b m}是模m地两个完全剩余系,证明:{a1b1,a2b2, , a m b m}不是模m地完全剩余系.6.设m1,m2, ,m n是两两互素地正整数,δi(1≤i≤n)是整数,并且δi≡1 (mod m i),1≤i≤n,δi≡0 (mod m j),i≠j,1≤i, j≤n.证明:当b i通过模m i(1≤i≤n)地完全剩余系时,b1δ1+b2δ2+ +b nδn通过模m =m1m2 m n地完全剩余系.第 3 节1.证明定理1.2.设m1, m2, , m n是两两互素地正整数,x i分别通过模m i地简化剩余系(1 ≤i≤n),m = m1m2 m n,M i =,则M1x1+M2x2+ + M n x n通过模m地简化剩余系.3.设m>1,(a, m) = 1,x1, x2, ⋯, xϕ(m)是模m地简化剩余系,证明:.其中{x}表示x地小数部分.4.设m与n是正整数,证明:ϕ(mn)ϕ((m, n)) = (m, n)ϕ(m)ϕ(n).5.设a,b是任意给定地正整数,证明:存在无穷多对正整数m与n,使得aϕ(m) = bϕ(n).6.设n是正整数,证明:(ⅰ) ϕ(n) >;(ⅱ) 若n是合数,则ϕ(n)≤n-.第 4 节1. 证明:1978103- 19783能被103整除.2.求313159被7除地余数.3.证明:对于任意地整数a,(a, 561) = 1,都有a560≡ 1 (mod 561),但561是合数.4. 设p,q是两个不同地素数,证明:p q- 1+q p- 1≡ 1 (mod pq).5.将612- 1分解成素因数之积.6.设n∈N,b∈N,对于b n+1地素因数,你有甚麽与例6相似地结论?第 5 节1.证明例2中地结论.2.证明定理2.3.求.4.设f(n)是积性函数,证明:(ⅰ)(ⅱ).5.求ϕ(n)地Mobius变换.第3章第 1 节1.证明定理3.2.写出789地二进制表示和五进制表示.3.求地小数地循环节.4.证明:七进制表示地整数是偶数地充要条件是它地各位数字之和为偶数.5.证明:既约正分数地b进制小数(0.a-1a-2a-3 )b为有限小数地充要条件是n地每个素因数都是b地素因数.第 2 节1.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,2.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,k≥ 2.3.求连分数〈 1, 2, 3, 4, 5, 〉地前三个渐近分数.4.求连分数〈 2, 3, 2, 3, 〉地值.5.解不定方程:7x- 9y = 4.第 3 节1.证明定理4.2.求地连分数.3.求地误差≤ 10- 5地有理逼近.4.求sin18︒地误差≤ 10- 5地有理逼近.5.已知圆周率π = 〈 3, 7, 15, 1, 292, 1, 1, 1, 21, 〉,求π地误差≤ 10- 6地有理逼近.6.证明:连分数展开地第k个渐近分数为.此处{F n}是Fibonacci数列.第 4 节1.将方程3x2+ 2x- 2 = 0地正根写成连分数.2.求α = 〈〉之值.3.设a是正整数,求地连分数.4.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,证明:地充要条件是p n = a1q n+q n-1,dq n = a1p n+p n-1.5.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,且正整数n使得p n = a1q n+q n-1,dq n = a1p n+p n-1,证明:(ⅰ) 当n为偶数时,p n,q n是不定方程x2-dy2 = 1地解;(ⅱ) 当n为奇数时,p2n,q2n是不定方程x2-dy2 = 1地解.第4章第 1 节1.将写成三个既约分数之和,它们地分母分别是3,5和7.2.求方程x1+ 2x2+ 3x3 = 41地所有正整数解.3.求解不定方程组:.4.甲班有学生7人,乙班有学生11人,现有100支铅笔分给这两个班,要使甲班地学生分到相同数量地铅笔,乙班学生也分到相同数量地铅笔,问应怎样分法?5. 证明:二元一次不定方程ax+by = n,a > 0,b > 0,(a, b) = 1地非负整数解地个数为+ 1.6.设a与b是正整数,(a, b) = 1,证明:1, 2, , ab-a-b中恰有个整数可以表示成ax+by(x≥ 0,y≥ 0)地形式.第 2 节1.证明定理2推论.2.设x,y,z是勾股数,x是素数,证明:2z-1,2(x+y +1)都是平方数.3.求整数x,y,z,x > y > z,使x-y,x-z,y-z都是平方数.4.解不定方程:x2+3y2 = z2,x > 0,y > 0,z > 0,(x, y ) = 1.5.证明下面地不定方程没有满足xyz ≠0地整数解.(ⅰ)x2+y2+z2 = x2y2;(ⅱ) x2+y2+z2 = 2xyz.6.求方程x2+y2 = z4地满足(x, y ) = 1,2∣x地正整数解.第 3 节1. 求方程x2+xy -6 = 0地整数解.2. 求方程组地整数解.3. 求方程2x-3y = 1地正整数解.4.求方程地正整数解.5.设p是素数,求方程地整数解.6. 设2n+ 1个有理数a1, a2, , a2n+ 1满足条件P:其中任意2n个数可以分成两组,每组n个数,两组数地和相等,证明:a1 = a1 = = a2n+ 1.第5章第 1 节1.证明定理1.2.解同余方程:(ⅰ) 31x≡ 5 (mod 17);(ⅱ) 3215x≡ 160 (mod 235).3.解同余方程组:.4.设p是素数,0<a<p,证明:(mod p).是同余方程ax≡b (mod p)地解.5.证明:同余方程a1x1+a2x2+ +a n x n≡b (mod m)有解地充要条件是(a1, a2, , a n, m) = d∣b.若有解,则恰有d⋅m n-1个解,mod m.6.解同余方程:2x+ 7y≡ 5 (mod 12).第 2 节1. 解同余方程组:2.解同余方程组:3.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人.已知这队士兵不超过170人,问这队士兵有几人?4. 求一个最小地自然数n,使得它地是一个平方数,它地是一个立方数,它地是一个5次方数.5. 证明:对于任意给定地n个不同地素数p1, p2, …, p n,必存在连续n个整数,使得它们中地第k个数能被p k整除.6.解同余方程:3x2+ 11x - 20≡0 (mod 105).第 3 节1.证明定理地推论.2.将例2中略去地部分补足.3.将例4中略去地部分补足.4.解同余方程x2≡-1 (mod 54).5.解同余方程f(x) = 3x2+ 4x-15 ≡ 0 (mod 75).6.证明:对于任意给定地正整数n,必存在m,使得同余方程x2≡1 (mod m)地解数T > n.第 4 节1.解同余方程:(ⅰ)3x11+2x8+ 5x4-1 ≡0 (mod 7);(ⅱ)4x20+3x12+ 2x7+ 3x-2 ≡0 (mod 5).2.判定(ⅰ) 2x3-x2+ 3x-1 ≡0 (mod 5)是否有三个解;(ⅱ) x6+2x5- 4x2+ 3 ≡0 (mod 5)是否有六个解?3.设(a, m) = 1,k与m是正整数,又设x0k≡a (mod m),证明同余方程x k≡a(mod m)地一切解x都可以表示成x≡yx0(mod m),其中y满足同余方程y k≡1 (mod m).4.设n是正整数,p是素数,(n, p-1) = k,证明同余方程x n≡ 1 (mod p)有k个解.5.设p是素数,证明:(ⅰ) 对于一切整数x,x p- 1-1 ≡ (x-1) (x-2) (x-p+ 1) (mod p);(ⅱ) (p-1)! ≡-1 (mod p).6.设p≥ 3是素数,证明:(x-1)(x-2) (x-p+ 1)地展开式中除首项及常数项外,所有地系数都是p地倍数.第 5 节1.同余方程x2≡ 3 (mod 13)有多少个解?2.求出模23地所有地二次剩余和二次非剩余.3.设p是奇素数,证明:模p地两个二次剩余地乘积是二次剩余;两个二次非剩余地乘积是二次剩余;一个二次剩余和一个二次非剩余地乘积是二次非剩余.4.设素数p≡ 3 (mod 4),= 1,证明x≡±(mod p)是同余方程x2≡n (mod p)地解.5.设p是奇素数,(n, p) = 1,α是正整数,证明同余方程x2≡n (mod pα)有解地充要条件是= 1.6.设p是奇素数,证明:模p地所有二次剩余地乘积与对模p同余.第 6 节1.已知769与1013是素数,判定方程(ⅰ) x2≡ 1742 (mod 769);(ⅱ) x2≡ 1503 (mod 1013).是否有解.2.求所有地素数p,使得下面地方程有解:x2≡ 11 (mod p).3.求所有地素数p,使得-2∈QR(p),-3∈QR(p).4.设(x, y) = 1,试求x2- 3y2地奇素数因数地一般形式.5.证明:形如8k+ 5(k∈Z)地素数无穷多个.6.证明:对于任意地奇素数p,总存在整数n,使得p∣(n2+ 1)(n2+ 2)(n2- 2).第7 节1.证明定理地结论(ⅱ),(ⅲ),(ⅳ).2.已知3019是素数,判定方程x2≡ 374 (mod 3019)是否有解.3.设奇素数为p = 4n+ 1型,且d∣n,证明:= 1.4.设p,q是两个不同地奇素数,且p = q+ 4a,证明:.5.设a > 0,b > 0,b为奇数,证明:6.设a,b,c是正整数,(a, b) = 1,2b,b<4ac,求地关系.第6章第 1 节1.设n是正整数,证明:不定方程x2+y2 = z n总有正整数解x,y,z.2.设p是奇素数,(k, p) = 1,则,此处是Legender符号.3.设素数p≡ 1(mod 4),(k, p) = 1,记,则2∣S(k),并且,对于任何整数t,有,此处是Legender符号.4.设p是奇素数,,则构成模p地一个简化剩余系.5.在第3题地条件下,并沿用第2题地记号,有.即上式给出了形如4k+ 1地素数地二平方和表示地具体方法.6.利用题5地结论,试将p = 13写成二平方和.第 2 节1.若(x, y, z) = 1,则不存在整数n,使得x2+y2+ z2 = 4n2.2.设k是非负整数,证明2k不能表示三个正整数平方之和.3.证明:每一个正整数n必可以表示为5个立方数地代数和.4.证明:16k+ 15型地整数至少需要15个四次方数地和表之.5.证明:16k⋅31不能表示为15个四次方数地和.第7章第 1 节2.求模14地全部原根.3.设m> 1,模m有原根,d是ϕ(m)地任一个正因数,证明:在模m 地简化剩余系中,恰有ϕ(d)个指数为d地整数,并由此推出模m地简化剩余系中恰有ϕ(ϕ(m))个原根.4.设m≥ 3,g是模m地原根,x1, x2, , xϕ(m)是模m地简化剩余系,证明:(ⅰ) ≡-1 (mod m);(ⅱ) x1x2 xϕ(m)≡-1 (mod m).5.设p = 2n+ 1是一个奇素数,证明:模p地全部二次非剩余就是模p 地全部原根.6.证明:(ⅰ) 设p奇素数,则M p = 2p- 1地素因数必为2pk+ 1型;(ⅱ) 设n≥ 0,则F n =+ 1地素因数必为2n+ 1k+ 1型.第 2 节1.求模29地最小正原根.2. 分别求模293和模2⋅293地原根.3.解同余方程:x12≡ 16 (mod 17).4.设p和q = 4p+ 1都是素数,证明:2是模q地一个原根.5.设m≥ 3,g1和g2都是模m地原根,则g = g1g2不是模m地原根.6.设p是奇素数,证明:当且仅当p- 1n时,有1n+ 2n+ + (p- 1)n≡0 (mod p).第8章第 1 节1.补足定理1地证明.2.证明定理2.3.证明:有理数为代数整数地充要条件是这个有理数为整数.第 2 节1.证明例中地结论.2.证明连分数是超越数.3.设ξ是一个超越数,α是一个非零地代数数,证明:ξ+α,ξα,都是超越数.第 3 节1.证明引理1.2.证明定理3中地F+F(0)是整数.第9章第 1 节1.问:1948年2月14日是星期几?2.问:1999年10月1日是星期几?第 2 节1.编一个有十个球队进行循环赛地程序表.2.编一个有九个球队进行循环赛地程序表.第 3 节1.利用例1中地加密方法,将“ICOMETODAY”加密.2. 已知字母a,b, ,y,z,它们分别与整数00,01, ,24,25对应,又已知明文h与p分别与密文e与g对应,试求出密解公式:P≡a'E+b' (mod 26),并破译下面地密文:“IRQXREFRXLGXEPQVEP”.第 4 节1.设一RSA地公开加密钥为n = 943,e = 9,试将明文P = 100加密成密文E.2. 设RSA(n A, e A) = RSA(33, 3),RSA(n B, e B) = RSA(35, 5),A地签证信息为M = 3,试说明A向B发送签证M地传送和认证过程.第 5 节1.设某数据库由四个文件组成:F1 = 4,F2 = 6,F3 = 10,F4 = 13.试设计一个对该数据库加密地方法,但要能取出个别地F i(1≤i≤4),同时不影响其他文件地保密.2.利用本节中地秘密共享方案,设计一个由三方共管文件M = 3地方法,要求:只要有两方提供他们所掌握地数据,就可以求出文件M,但是,仅由任何一方地数据,不能求出文件M.(提示:取p = 5,m1 = 8,m2 = 9,m3 = 11)第 6 节1.设明文P地二进制表示是P= (p1p2p3p4p5p6p7p8)2,与P对应地密文是E是E =a1p1+a2p2+ +a8p8,如果这里地超增背包向量(a1, a2, a3, a4, a5, a6, a7, a8) = (5, 17, 43, 71, 144, 293, 626, 1280),并且已知密文E = 1999,求明文P.2.给定超增背包向量(2, 3, 7, 13, 29, 59),试设计一个背包型加密方法,将明文P = 51加密.(提示:取M = 118,k =77).版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.fjnFL。
初等数论习题与答案、及测试卷

初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
初等数论习题解答

《初等数论》习题解答作业3一.选择题1,B 2,C 3,D 4,A二.填空题1,自反律 2,对称性 3,13 4,十进位 5,3 6,2 7,1三.计算题1, 解:由Euler 定理知:(a,m )=1 则 a φ (m)≡1 (modm)∵(3,100)=1. 3φ (100)=340≡13360≡13364=3360×34≡34 (mod 100)∴34≡81 (mod 100)故:3364的末两位数是81.2, 解:132=169≡4 (mod 5)134=16≡1 (mod 5)1316≡1 (mod 5)1332≡1 (mod 5)1348≡1 (mod 5)1350=1348×1321350≡132≡4 (mod 5)3, 解: ∵(7,9)=1. ∴只有一个解7X -5≡9Y (mod 9)7X -9Y ≡5 (mod 9)解之得:X=2,Y=1∴X=2+9≡11=2 (mod 9)4, 解: ∵(24,59)=1 ∴只有一个解24X ≡7 (mod 59)59Y ≡﹣7 (mod 24)11Y=﹣7 (mod 24)24Z=7 (mod 11)2Z=7 (mod 11)11W=﹣7 (mod 2)W =﹣7 (mod 2)W=﹣1 (mod 2)Z=2711+-= -2 Y=117242-⨯-=-5X=247595+⨯-=2288-=-12 =47(mod59)5 解 ∵(45,132)=3,∴同余式有三个解。
45X ≡21(mod32)15x ≡7 (mod44)44y ≡-7 (mod15)14y ≡-7 (mod15)15z ≡-7 (mod14)z ≡7 (mod14) y=147715-⨯=7 x=157744+⨯=21 ∴x=21+31322⨯=109 (mod132) x=21+31321⨯=65 (mod132) x=21 (mod132)6、解 ∵(12,45)=3, ∴同余式有三个解。
初等数论习题答案

初等数论习题答案初等数论习题答案数论作为数学的一个重要分支,研究整数的性质和关系,涉及到许多有趣而复杂的问题。
在初等数论中,我们经常会遇到一些习题,这些习题既能帮助我们巩固数论知识,又能培养我们的逻辑思维和问题解决能力。
下面我将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。
1. 证明:如果一个整数能被4整除,那么它一定能被2整除。
答案:这个问题可以通过数学归纳法来证明。
首先,4能被2整除,显然成立。
假设对于任意的正整数n,如果n能被4整除,那么n也能被2整除。
现在我们考虑n+1能否被4整除。
如果n能被4整除,那么n+1与n相差1,显然n+1不能被4整除。
如果n不能被4整除,那么n+1与n相差1,显然n+1能被4整除。
综上所述,对于任意的正整数n,如果n能被4整除,那么n也能被2整除。
因此,原命题成立。
2. 证明:如果一个整数能被6整除,那么它一定能被2和3整除。
答案:这个问题也可以通过数学归纳法来证明。
首先,6能被2和3整除,显然成立。
假设对于任意的正整数n,如果n能被6整除,那么n也能被2和3整除。
现在我们考虑n+1能否被6整除。
如果n能被6整除,那么n+1与n相差1,显然n+1不能被6整除。
如果n不能被6整除,那么n+1与n相差1,显然n+1能被6整除。
综上所述,对于任意的正整数n,如果n能被6整除,那么n也能被2和3整除。
因此,原命题成立。
3. 证明:如果一个整数的平方是偶数,那么这个整数一定是偶数。
答案:这个问题可以采用反证法来证明。
假设存在一个整数n,它的平方是偶数,但是n本身是奇数。
根据奇数的定义,我们知道奇数可以表示为2k+1的形式,其中k是整数。
那么n的平方可以表示为(2k+1)^2=4k^2+4k+1。
根据整数的性质,4k^2和4k都是偶数,所以4k^2+4k也是偶数。
那么(2k+1)^2就是一个奇数加上一个偶数,根据奇数加偶数的性质,它一定是奇数。
然而,我们已知n的平方是偶数,与(2k+1)^2是奇数的结论相矛盾。
初等数论练习题答案

初等数论练习题答案DOC 格式, 初等数论练习题一一、填空题1、d(2420)=12; ?(2420)=_880_2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t tZ 。
. 6、分母是正整数m 的既约真分数的个数为_(m )_。
7、18100被172除的余数是_256。
8、??10365 =-1。
9、若p 是素数,则同余方程x p1 1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 211x 20 0 (mod 105)。
解:因105 = 357,同余方程3x 211x 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x 211x 38 0 (mod 5)的解为x 0,3 (mod 5),同余方程3x 211x 20 0 (mod 7)的解为x 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x b 1 (mod 3),x b 2 (mod 5),x b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由子定理得原同余方程的解为x 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(()(解:故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数。
初等数论练习题一含答案

《初等数论》期末练习二、单项选择题 1、 (0,b)().A bB bC b D02、如果 (a, b) 1,则(ab, a b )=() A a B b C 1 Dab 3、小于 30的素数的个数( ). A 10 B 9 C 8 D 7二、填空题1、 有理数旦,0 a b,(a,b )1,能写成循环小数的条件是(b2、 同余式12x 15 0(mod45)有解,而且解的个数为 ().3、 不大于545而为13的倍数的正整数的个数为().4、 设n 是一正整数,Euler 函数(n )表示所有()n ,而且与n (5、 设 a,b 整数,则(a,b ) ()= ab.6、 一个整数能被 3整除的充分必要条件是它的()数码的和能被A 3B 3 与 9C 9D 3或9 7、 如果ba , ab ,则().A a bB a bC a bD ab& 公因数是最大公因数的().A 因数B 倍数C 相等D 不确定9、 大于20且小于40的素数有( ).A 4个B 5个C 2个D 3个10、模7的最小非负兀全剩余系是 ().A -3,-2,-1,0,1,2,3B -6, -5,-4,-3,-2,-1 C1,2,3,4,5,6 D 11、因为(),所以不定方程 12x 15y 7没有解. A [12,15]不整除7 B (12,15)不整除 7C 7不整除(12,15)D 7不整除[12,15]12、 同余式 x 438(mod 593)( ).A 有解B 无解C 无法确定D 有无限个解4、 如果a b (modm ) ,c 是任意整数 贝U A ac bc (mod m ) B a b C ac bc (mod m ) D a b5、 不定方程 525x 231y 210(). A 有解 B 无解 C 有正数解D 有负数解6、 整数5874192能被()整除. 0,1,2,3,4,5,6).)的正整数的个数3整除.7、x [x]().8、同余式111x 75(mod321)有解,而且解的个数().9、在176与545之间有()是17的倍数.10、如果ab 0 则[a,b](a,b)=().11、a,b的最小公倍数是它们公倍数的().12、如果(a,b) 1,那么(ab, a b)=().三、计算题1、求24871与3468的最小公倍数?2、求解不定方程107x 37y 25. (8分)4293、求——,其中563是素数.(8分)5634、解同余式111x 75(mod321).(8 分)5、求[525,231]=?6、求解不定方程6x 11y 18.2 __________________________7、判断同余式x 365(mod 1847)是否有解?8、求11的平方剩余与平方非剩余•四、证明题1、任意一个n位数a n a n 1a2a1与其按逆字码排列得到的数a1a2 a n 1a n的差必是9的倍数.(11分)2、证明当n是奇数时,有3(2n1) .(10分)3、一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数•(11分)4、如果整数a的个位数是5,则该数是5的倍数•5、如果a,b是两个整数,b 0,则存在唯一的整数对q, r,使得a bq r,其中0r b .《初等数论》期末练习二答案、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B二、填空题1、有理数-,0 a b,(a,b)1,能写成循环小数的条件是((b,10) 1 ).b2、同余式12x 15 0(mod45)有解,而且解的个数为(3 ).3、不大于545而为13的倍数的正整数的个数为(41 ).4、设n是一正整数,Euler函数(n)表示所有(不大于)n,而且与n (互素)的正整数的个数•5、设a,b 整数,则(a,b)([a,b] )=ab.6、一个整数能被3整除的充分必要条件是它的(十进位)数码的和能被3整除•7、x [x] ({x}).8、同余式111x 75(mod321)有解,而且解的个数(3 ).9、在176与545之间有(12 )是17的倍数.10、如果ab 0 则[a,b](a,b) =( ab ).11、a,b的最小公倍数是它们公倍数的(因数).12、如果(a,b) 1,那么(ab, a b)=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468)=17比24871 3468所以[24871,3468]= =507368417所以24871与3468的最小公倍数是5073684。
(完整版)初等数论练习题答案

初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业1、设n,m为整数,如果3整除n,3整除m,则9()mn。
A:整除B:不整除C:等于D:小于正确答案:A 得分:102、整数6的正约数的个数是()。
A:1B:2C:3D:4正确答案:D 得分:103、如果5|n ,7|n,则35()n 。
A:不整除B:等于C:不一定D:整除正确答案:D 得分:104、如果a|b,b|a ,则()。
A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定正确答案:C 得分:105、360与200的最大公约数是()。
A:10B:20C:30D:40正确答案:D 得分:106、如果a|b,b|c,则()。
A:a=cB:a=-cC:a|cD:c|a正确答案:C 得分:107、1到20之间的素数是()。
A:1,2,3,5,7,11,13,17,19B:2,3,5,7,11,13,17,19C:1,2,4,5,10,20D:2,3,5,7,12,13,15,17正确答案:B 得分:108、若a,b均为偶数,则a + b为()。
A:偶数B:奇数C:正整数D:负整数正确答案:A 得分:109、下面的()是模12的一个简化剩余系。
A:0,1,5,11B:25,27,13,-1C:1,5,7,11D:1,-1,2,-2正确答案:C 得分:1010、下面的()是模4的一个完全剩余系。
A:9,17,-5,-1B:25,27,13,-1C:0,1,6,7D:1,-1,2,-2正确答案:C 得分:1011、下面的()是不定方程3x + 7y = 20的一个整数解。
A:x=0,y=3B:x=2,y=1C:x=4,y=2D:x=2,y=2正确答案:D 得分:1012、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。
A:0B:1C:2D:3正确答案:A 得分:1013、使3的n次方对模7同余于1的最小的正整数n等于()。
A:6B:2D:13正确答案:A 得分:1014、100与44的最小公倍数是()。
A:4400B:2200C:1100D:440正确答案:C 得分:1015、{{1.8}+{2.9}}等于()。
A:0.4B:0.5C:0.6D:0.7正确答案:D 得分:1016、[[4.5]+[3.7]]等于()。
A:3B:4C:7D:8正确答案:C 得分:1017、一个正整数n的各位上的数字是0或1,并且n能被2和3整除,则最小的n 是()。
A:1110B:1101C:1011D:1001正确答案:A 得分:1018、-4除-39的余数是()。
A:3B:2C:1D:0正确答案:C 得分:1019、下面的数是3的倍数的数是()。
A:19C :1119D :11119正确答案:C 得分:1020、小于20的正素数的个数是( )。
A :11B :10C :9D :8正确答案:D 得分:1021、下面的( )是模4的一个简化剩余系。
A :4,17B :1,15C :3,23D :13,6正确答案:B 得分:1022、已知361a 是一个4位数(其中a 是个位数),它能被5整除,也能被3整除,则a 的值是( )。
A :0B :2C :5D :9正确答案:C 得分:10第二次作业填空题1.16除100的余数是 4 _。
2.如果今天是星期一,那么从今天起再过1010天后是星期 四 。
3.{3.2} = 0.2 ;[2.84] = 2 。
4.[{3.6} + {1.7}] = 1 。
5.{{4.2}{2.3}}-+=___0.1___________。
6.15的所有正因数的和是 9 。
7.1260的标准分解式是 222357⨯⨯⨯ 。
8.20!的标准分解式是1884235711131719⨯⨯⨯⨯⨯⨯⨯ 。
9.98!的末尾有______22_________个零。
10.890的标准分解式是 2 ×5×89.11.欧拉函数值(50)ϕ= 20 。
12.7除3301的余数是 4 。
13.不定方程ax + by = c 有解的充要条件是 (,)a b c 。
14.设m 为正整数,a ,b 为两个整数,如果用m 去除a 与b 所得的余数相同,那么就称a ,b 对模m 同余 。
15.一次同余式(mod )ax b m ≡有解的充分必要条件是___(,)a m b __________。
16.模7的最小非负完全剩余系是 {0,1,2,3,4,5,6} 。
17.(1516,600)= 227400 。
18.不定方程ax + by = c (其中a ,b ,c 是整数)有整数解的充要条件是 (,)a b c 。
19.710被11除的余数是 1 。
20.77的个位数是_3______ _第三次作业计算题1.写出400与600的标准分解式,并求出400与600的最大公因数。
解 4240025=⨯,32600235=⨯⨯,32(400,600)25200=⨯=。
2.求128121被11除的余数。
解 因为ϕ(11)=10,而128与11互素,所以12810≡1(mod 11),于是128121≡128≡7(mod 11),所以128121被11除的余数为7。
3.求1050与858的最大公因数。
解:因为1050 = 2⨯3⨯52⨯7,858 = 2⨯3⨯11⨯13,所以(1050,858) = 2⨯3 = 6。
4.求1001!中末尾0的个数。
解:因为10=2⨯5,所以1001!中末尾相当于1001!的质因数分解式中2⨯5的个数。
由于2<5,所以1001!的质因数分解式中2的个数比5的个数要多,因此,只要考察1001!中因子5的个数即可。
因为:1001÷5=200……1,1001÷52=40……1,1001÷53=8……1,1000÷54=1……375,又因为200+40+8+1=249,所以答案为249。
即1001!中末尾0的个数为249个。
5.求不定方程3x + 5y = 20的一切非负整数解。
解:因为(3,5)=1,所以不定方程有整数解。
由观察知x 0 = 0,y 0 = 4是不定方程3x +5y =20的一个整数解,所以不定方程3x +5y =20的一切整数解是543x t y t =⎧⎨=-⎩,其中t 取一切整数。
由00x y ≥⎧⎨≥⎩可解得403t ≤≤,所以0,1t =,故不定方程的一切非负整数解为 04x y =⎧⎨=⎩,51x y =⎧⎨=⎩。
6.求出不定方程7x + 2y = 1的一个整数解,并写出其一切整数解的表达式。
解:因为(7,2)=1,1|1,所以不定方程有解。
观察知其一个整数解是0013x y =⎧⎨=-⎩。
于是其一切整数解为1237x t y t =+⎧⎨=--⎩,t 取一切整数。
7.求不定方程15x + 10y + 6z = 61的一切整数解。
解:不定方程的一切整数解为52653665x u v y u vz v =--⎧⎪=-++⎨⎪=+⎩,其中u ,v 取一切整数。
8.计算欧拉函数值:ϕ(100)。
解:100 = 2252,由公式有(100)=221125(1)(1)25⨯⨯-⨯-= 40。
9.解同余式3x ≡ 8 (mod 10)。
解:因为(3,10)=1,1|8,所以同余式有解,并且只有一个解。
由3108x y -=得一个解0061x y =⎧⎨=⎩,所以同余式的解为6(mod10)x ≡。
10.解同余式组:1(mod 2)1(mod 3)1(mod 5)x x x ≡⎧⎪≡⎨⎪≡⎩。
解:因为2,3,5两两互质,所以由孙子定理该同余式组有一个解。
由孙子定理可得该同余式组的解为x ≡ 1(mod 30)。
11.解同余式28x ≡ 21 (mod 35)。
解 因为(28,35) = 7,而7|21,所以同余式28x ≡ 21(mod 35)有解,且有7个解。
同余式28x ≡ 21(mod 35)等价于4x ≡ 3(mod 5),解4x ≡ 3(mod 5)得x ≡ 2(mod5),故同余式28x ≡ 21(mod 35)的7个解为x ≡ 2,7,12,17,22,27,32(mod35)。
12.解同余式组:1(mod3)2(mod 7)x x ≡⎧⎨≡⎩。
解:由1(mod3)x ≡得1113,x t t Z =+∈,将其代入2(mod7)x ≡得1132(mod 7)t +≡,即131(mod 7)t ≡,解得15(mod 7)t ≡,所以12257,t t t Z =+∈,于是12221313(57)1621,x t t t t Z =+=++=+∈。
所以同余式组的解为16(mod 21)x ≡。
第四次作业证明题1.证明:若)(mod m b a ≡,)(mod m d c ≡,则)(mod m d b c a +≡+。
证明:由)(mod m b a ≡,)(mod m d c ≡得)(|b a m -,)(|d c m -,由整除的性质得)]()[(|d c b a m -+-,即)]()[(|d b c a m +-+,所以)(mod m d b c a +≡+。
2.证明:设m , n 为整数,求证m +n , m -n 与mn 中一定有一个是3的倍数。
证明:若m 或n 为3的倍数,则mn 是3的倍数;若m 是3的倍数加1,n 是3的倍数加1,则m -n 是3的倍数;若m 是3的倍数加1,n 是3的倍数加2,则m +n 是3的倍数;若m 是3的倍数加2,n 是3的倍数加1,则m +n 是3的倍数;若m 是3的倍数加2,n 是3的倍数加2,则m -n 是3的倍数,结论成立。
3.证明:若c a |,d b |,则cd ab |。
证明:由c a |,d b |知存在整数p ,q 使得ap c =,bq d =,所以abpq apbq cd ==,因为pq 为整数,所以由整除的定义知cd ab |。
4.证明:若n 为自然数,求证9n +1≡8n +9(mod 64)。
证明:因为9≡1(mod 8),所以9k ≡1(mod 8),k =2,3,…,n -1,于是9n -1+…+92+9+1≡n (mod 8),所以9(9n -1+…+92+9+1)≡ n (mod 8),从而9(9-1)(9n -1+…+92+9+1)≡ 8n (mod 64),即9(9n -1) ≡ 8n (mod 64),所以 9n +1≡8n +9(mod 64)。
5.若p 为奇质数,证明2p | (22p -1–2)。