实现正弦信号的采样与重构课程设计报告
实验三 信号采样与重建(实验报告)

《信号与系统》实验报告学院 专业 班级姓名 学号 时间实验三 信号采样与重建一、实验目的1、进一步学习MATLAB 的函数及其表示。
2、掌握及验证信号的SHANNON 采样定理。
3、由采样序列重构恢复原信号。
二、实验内容1、对连续时间信号y(t)=sin(24πt)+ sin(40πt),它有12Hz 和20Hz 两个等幅度分量。
用MATLAB 作图求出Nyquist 频率2fmax 。
t in 1/4sec.y (t )Analog Signalt in 1/12sec.s i n (24*p i *t )t in 1/20sec.s i n (40*p i *t )作图法判断频谱法判断2、设连续信号x(t)=exp(-1000|t|)时A、求傅利叶变换X(jw)。
(先书面求出变换公式,可判断出在2000Hz以上,其频谱幅度已经很小,因此,该处频率就可近似当成信号的最高频率)。
B、现在取采样频率fs=5000Hz,可得到信号序列x1[n],求离散DFT频谱X1(e jw)C、减小采样频率至fs=1000Hz,则可得到序列x2[n],求频谱X2(e jw)D、分别针对x1[n]与x2[n],试重建恢复(用三次样条函数或sinc函数)出对应的连续信号x1(t)与x2(t),并与原信号x(t)作对比。
最后根据抽样定理的知识,简单说明采样频率的大小对信号重建质量的影响。
5000Hz采样序列的重构情况 1000Hz采样序列的重构情况三、思考题:①连续时间信号的傅利叶变换matlab求法,这里采用的近似公式是什么?②从序列重构连续信号所采用的matlab函数是什么?采用三次样条内插函数,即利用Xa=spline(nTs,X,t)来实现。
其中X和nTs分包含在nTs 时刻和样本X(n)的数组,但存在一些误差。
③shannon采样定理中的信号Nyquist频率是指什么?与采样频率有什么不同?Nyquist频率是指是指最低允许的抽样率,是带限信号频率宽度的2倍,并且Nyquist 频率信号带宽是采样频率的一半。
通信原理课程设计报告—信号的取样与恢复

题目信号的取样与恢复班级 08电子二班学号姓名时间 2010年12月30日景德镇陶瓷学院《通信原理课程设计》任务书目录一、绪论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1二、SystemView通信仿真软件简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2三、设计的基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3(1)、信号的采样. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 (2)、信号的重构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 四、课题方案设计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7(1)、抽样信号的产生与恢复的原理框图. . . . . . . . . . . . . . . . . . . . . . 7 (2)、抽样信号的产生与恢复的System View仿真电路图. . . . . . . . .7 (3)、信号仿真图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 (4)、系统各项参数的设定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10五、设计心得体会. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12六、五、参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13一、绪论现代通信系统是一个十分复杂的工程系统,通信系统设计研究也是一项十分复杂的技术。
指数衰减正弦信号的采样与恢复数字信号处理课程设计

数字信号处理课程设计
——指数衰减正弦信号的采样与恢复
P01214031 符淑云 P01214066 刘佳慧
设计思路
在开始做课程设计的初期,我们先是对连续信号、 离散信号、抽样定理、仿真重构等一系列概念做 了一个全面的了解与回顾。在做的过程中信号抽 样的奎斯特频率是个很重要的概念,它贯穿整个 课程设计的始终,它是我做的课程设计最基础也 是最基本的原理,它涉及了频谱函数的范围,将 这个范围弄懂之后,其他的内容就好做了。
由采样序列x(n)恢复出连续时间信号x(t)
clc clear all close all A=input('please input the A:') a=input('please input the a:') W0=input('please input the W0:') fs=input('please input the fs:') n=0:50 T=1/fs t0=10/a Dt=1/(5*a) t=0:Dt:t0 xa=A*exp(-a*t).*sin(W0*t) K1=50 k1=0:1:K1 W1max=2*pi*500
W1=W1max*k1/K1 w1=W1/pi Xa=xa*exp(-j*t'*W1) x=A*exp(-a*n*T).*sin(W0*n*T) figure (1) subplot(3,1,1) plot(t*1000,xa) title('连续时间信号x(t)') axis([0 50 -200 400]) grid subplot(3,1,2) stem(x,'.') grid xlabel('n') ylabel('x(n)') title('采样序列x(n)') axis([0 50 -200 400]) x1间信号x(t),离散时间信号x(n)
《信号与分析》连续信号的采样与重构实验报告

axis([-2.5,1.5,-0.1,1.1]);
t=0:0.01:2*pi;
Y=2*t.*sin(t.^2);
subplot(2,1,1);
plot(t,Y);
title('原信号');
xlabel('时间/s');
ylabel('振幅');
axis([0,2*pi,-12,12]);
grid;
ylabel(‘Cn’);
xlabel(‘角频率/rad*s^(-1)’);
title(‘幅度频谱序列‘);
实验心得:
通过本次实验我学会了利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的认识,学会该软件的操作和使用方法。并且我还熟练掌握了利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
%幅度频谱Cn=2[sin(pi*n*t/T)/(pi*n)
N=10;
n=1:N;
C0=0.1; %计算n=0傅里叶级数C0及直流幅度
%计算n=1到10的傅里叶级数系数
Cn=sin(pi*n/5)/pi./n.*2; %T/t=5
CN=[C0 Cn];
nN=0:N;
subplot(1,2,2);
stem(nN,CN);
《信号与分析》连续信号的采样与重构实验报告
实验目的:1)掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
(2)掌握利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
(3)学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。
数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。
(2)通过实验,了解数字信号采样转换过程中的频率特征。
(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。
二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。
Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。
程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。
分别显示输入输出序列在时域和频域中的特性。
程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。
信号取样与恢复实验报告

实验四信号取样与恢复一、实验目的1.了解模拟信号取样及恢复的基本方法。
2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。
3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。
4.熟悉DDS-3X25虚拟信号发生器的使用方法。
二、实验内容1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。
2.有混叠条件下正弦信号的取样与恢复测试分析。
3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。
三、实验仪器1.信号与系统实验硬件平台一台2.信号取样与恢复实验电路板一块3.DSO-3064虚拟示波器一台4.DDS-3X25虚拟信号发生器二台5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台四、实验原理1. 信号取样信号取样与恢复实验电路板,如图4.1所示。
该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。
)()()(t s t f t f s =图4.1 信号取样与恢复实验电路板电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。
在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。
取样信号()s f t 可用(4-1)式来描述(4-1)式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则()0s t =。
电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。
其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。
实现正弦信号的采样与重构课程设计报告

东华理工大雪软件学院课程设计报告课程设计题目:实现正弦信号的采样与重构学生姓名:陈俊学号:08113203专业:信息工程班级:081132指导教师:李金萍2011 年 1 月 6日目录实验目的 (2)实验原理 (2)MATLAB简介 (3)实验步骤 (5)程序代码 (6)实验效果图 (9)心得体会 (10)参考文献 (10)附录 (11)一、试验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、通过实验前对MATLAB软件的学习,更好的掌握MATLAB软件的使用3、验证采样定理。
二、试验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s(t)可以看成连续信号x (t)和一组开关函数s(t)的乘积。
s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s 称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s及其谐波频率2f s、3f s……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
三、MATLAB简介软件的功能特点:在科学研究和工程应用中,往往要进行大量的数学计算,其中包括矩阵运算。
这些运算一般来说难以用手工精确和快捷地进行,而要借助计算机编制相应的程序做近似计算。
Matlab就解决这些问题。
Matlab语言有如下特点:1.编程效率高它是一种面向科学与工程计算的高级语言,允许用数学形式的语言编写程序,且比Basic、Fortran和C等语言更加接近我们书写计算公式的思维方式,用Matlab编写程序犹如在演算纸上排列出公式与求解问题。
数字信号处理课程设计 ——指数衰减正弦信号的采样与恢复

数字信号处理课程设计——指数衰减正弦信号的采样与恢复1理论分析1.1 连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。
严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值来表示,并且可以用这些样本值把信号完全恢复过来。
这样,抽样定理为连续时间信号与离散时间信号的相互转换提供了理论依据。
通过观察采样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,在时域是否也能恢复原信号时,利用频域时域的对称关系,得到了信号。
1.2采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。
时域采样定理从采样信号恢复原信号必需满足两个条件:必须是带限信号,其频谱函数在>各处为零;(对信号的要(1)求,即只有带限信号才能适用采样定理。
)>2(或>2)。
(对取样频率的要(2) 取样频率不能过低,必须求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。
)如图1.1所示,给出了信号采样原理图图1.1 信号采样原理图由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n sT nT t t s )()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为m ω, )(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东华理工大雪软件学院课程设计报告
课程设计题目:实现正弦信号的采样与重构
学生姓名:陈俊
学号:08113203
专业:信息工程
班级:081132
指导教师:李金萍
2011 年 1 月 6日
目录
实验目的 (2)
实验原理 (2)
MATLAB简介 (3)
实验步骤 (5)
程序代码 (6)
实验效果图 (9)
心得体会 (10)
参考文献 (10)
附录 (11)
一、试验目的
1、了解信号的采样方法与过程以及信号恢复的方法。
2、通过实验前对MATLAB软件的学习,更好的掌握MATLAB
软件的使用
3、验证采样定理。
二、试验原理
1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s(t)可以看成连续信号x (t)和一组开关函数s(t)的乘积。
s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s 称采样频率。
图2-5-1 矩形采样信号
对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s及其谐波频率2f s、3f s……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
三、MATLAB简介
软件的功能特点:
在科学研究和工程应用中,往往要进行大量的数学计算,其中包括矩阵运算。
这些运算一般来说难以用手工精确和快捷地进行,而要借助计算机编制相应的程序做近似计算。
Matlab就解决这些问题。
Matlab语言有如下特点:
1.编程效率高
它是一种面向科学与工程计算的高级语言,允许用数学形式的语言编写程序,且比Basic、Fortran和C等语言更加接近我们书写计算公式的思维方式,用Matlab编写程序犹如在演算纸上排列出公式与求解问题。
因此,Matlab语言也可通俗地称为演算纸式科学算法语言由于它编写简单,所以编程效率高,易学易懂。
2.用户使用方便
Matlab语言是一种解释执行的语言,它灵活、方便,其调试程序手段丰富,调试速度快,需要学习时间少。
人们用任何一种语言编写程序和调试程序一般都要经过四个步骤:编辑、编译、连接以及执行和调试。
各个步骤之间是顺序关系,编程的过程就是在它们之间作瀑布型的循环。
具体地说,Matlab运行时,如直接在命令行输入Mailab语句(命令),包括调用M文件的语句,每输入一条语句,就立即对其进行处理,完成绩译、连接和运行的全过程。
又如,将Matlab源程序编辑为M文件,由于Mat1ab 磁盘文件也是M文件,所以编辑后的源文件就可直接运行,而不需进行编译和连接。
在运行M文件时,如果有错,计算机屏幕上会给出详细的出锗信息,用户经修改后再执行,直到正确为止。
所以可以说,Mat1ab语言不仅是一种语言,广义上讲是一种该语言开发系统,即语言调试系统。
3.扩充能力强
高版本的Matlab语言有丰富的库函数,在进行复杂的数学运算时可以直接调用,而且Matlab的库函数同用户文件在形成上一样,所以用户文件也可作为Matlab的库函数来调用。
因而,用户可以根据自己的需要方便地
建立和扩充新的库函数,以便提高Matlab使用效率和扩充它的功能。
MATLAB是矩阵实验室(Matrix Laboratory)之意。
除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用
C,FORTRAN等语言完相同的事情简捷得多.在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持.可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用,非常的方便。
MATLAB的基础是矩阵计算,但是由于他的开放性,并且mathwork也吸收了像maple等软件的优点,使MATLAB成为一个强大的数学软件
四、实验步骤
1、用函数模拟生成正玄信号
此实验使用的是s=s+sin(f(i)*2*pi*(1:N)/f0)函数作为
原始正玄信号
2、设定采样点数等,对正玄信号进行采样
实验的采样点数是由数字信号的采样频率与信号采样频率
的比值得出
3、恢复出方波信号
4、低通滤波恢复出原始信号
期间还要注意一个相位的问题
5对实验结果及函数进行分析,得出结论
五、程序代码:
文件名 main.m
clear;
clc;
f0=10000; %用来模拟模拟信号的数字信号的采样频率fs<<f0
f=[10 50 100];%f是模拟信号的频率表 max(f)<250;
fs=500; %信号的采样频率
N=500;%数字信号的样点数
%模拟信号的生成
s=signal_generate(f,f0,N);
subplot(4,1,1); %波形的输出,做一列输出四个波形
plot(s);
axis([1 N min(s) max(s)]);%axis([xmin xmax ymin ymax]) 分别表示x轴和y轴的坐标的刻度
%采样点数,间隔的计算
deltaN=f0/fs
Ns=N/deltaN
%采样
for i=1:Ns
sd(i)=s((i-1)*deltaN+1);
end
subplot(4,1,2);
stem(sd,'.');% 表示画X与Y的火柴杆的图形
axis([1 Ns min(s) max(s)]);
%恢复出方波信号
sp=[];
for i=1:Ns
sp=[sp sd(i)*ones(1,deltaN)];% ones生成一个单位矩阵end
subplot(4,1,3);plot(sp);axis([1 N min(s) max(s)]); %低通滤波恢复出原始信号
Wm=fs/f0
level=5/Wm
b=low_filter(Wm,level);
delay=level/2;
sp=[sp zeros(1,delay)];
so=filter(b,1,sp);
so=so(delay+1:delay+N)/deltaN;
subplot(4,1,4);plot(so);axis([1 N min(s) max(s)]); 文件1 结束
文件2:文件名 signal_generate.m
function s=signal_generate(f,f0,N)
f0=10000;
num=length(f);
s=zeros(1,N);
for i=1:num
s=s+sin(f(i)*2*pi*(1:N)/f0);
end
文件2 结束
文件3:文件名 low_filter.m
function b=low_filter(Wm,level);
Nm=ceil(Wm/2*level);% ceil(x) : 大于x 的最小整数
H=zeros(1,level);% zero是生成一个零矩阵,用来给变量申请内存,使运算速度快一些
H(1:Nm)=ones(1,Nm);
H(Nm+1)=0.5;
H(level-Nm+1)=-0.5;
H(level-Nm+2:level)=-ones(1,Nm-1);
theta=-(level-1)/level*pi*(0:level-1); %phase(相位)
Hg=H.*exp(j*theta);
b=real(ifft(Hg));% ifft函数是快速傅里叶逆变换,real 函数表示取实数部分
b=b/(sum(b.^2));
六、实验效果图:
图解:
上图中共有四个波形,其中第一个为原始信号波形,第二个为抽样信号波形,其三为恢复出来的方波信号波形,第四个则是恢复出来的原始波形
七、心得体会
通过几天的课程设计,我们通过对模拟出来的正弦信号的抽样,再进行恢复,先恢复出方波信号,之后再恢复出原始信号波形,充分的了解信号的采样方法与过程以及信号恢复的方法,同时也理解了采样定理。
正是如此,使得我们对本学期学的信号系统专业课程有了更清晰的了解及掌握。
不但如此,课程设计前对MATLAB的学习也让我们更好的掌握了一个很好用的软件,很实用的软件。
八、参考文献
《信号与系统实验》(PDF文件)
《信号与系统》(第二版)
《信号与系统(第二版)习题全解与实验指导》
《信号与系统——MATLAB综合实验》
《基于MATLAB7.x的系统分析与设计》
九、附录
东华理工大学软件学院
课程设计评分表
学生姓名:陈俊班级:081132 学号:08113203
课程设计题目:实现正弦信号的采样与重构。