对数及对数运算(1)

合集下载

2.2.1 对数及对数运算(1)

2.2.1 对数及对数运算(1)
2.2.1 对数与对数运算 (1) )
• 截止到 截止到1999年底,我们人口约13亿,如 年底,我们人口约 亿 年底 思 考 果今后能将人口年平均均增长率控制在 1%,那么经过 年后,我国人口数最多 年后, ,那么经过20年后 为多少(精确到亿) 为多少(精确到亿)?
y = 13 ×1.01
x
问:哪一年的人口数可 达到18亿 达到 亿,20亿,30亿? 亿 亿
例1、 将下列指数式化为对数式,对数式化为指数式: 、 将下列指数式化为对数式,对数式化为指数式:
讲 解 例 题
(1)5 = 625 ⇒ log 5 625 = 4 ) 1 1 −6 = −6 (2) 2 = ⇒ log 2 ) 64 m 64
4
1 = 5.13 ⇒ log 1 5.13 = m (3) 3 ) 3
1 (4)log1 16 = −4 ⇒ = 16 ) 2 2 -2 lg (5) 0.01= −2 ⇒ 10 = 0.01 )
(6)ln10 = 2.30= 10
例2 求出下列各式中 x 值:
2 (1)log64 x = − ) 3
(2) )
log x 8 = 6
y x 当 = 18 ,有 = ×1.01 ,求 时 18 13
x
一般地, 一般地,如果a = N ( a > 0, 且a ≠ 1) 叫做以a为底 那么数 x叫做以 为底 的对数, 叫做以 为底N的对数, 对数定义 其中a叫做对数 记作 x = log a N ,其中 叫做对数 底数, 叫做真数。 叫做真数 的底数,N叫做真数。式子log a N 叫做对数式 对数式. 叫做对数式
x
所 上 问 中 由 = ×1.01 , 以 面 题 , 18 13

2.2.1 对数及对数运算(1)

2.2.1 对数及对数运算(1)
2 ln e x 4因为 ln e x, 所以
2
因此e x e2
于是x 2
P64 1,2,3
1 log3 1 0 2 lg1 0 3 log0.5 1 0 4 ln1 0
loga 1 0
a =1
0
1 log3 3 2 lg10 1

2

(2)
log2 log3 log4 x 0
log2 3
7 0.4
aa N
b
a 0, 且a 1
log a N b
(1)负数与零没有对数 (2) loga 1 0 (3) loga a 1
(4)对数恒等式:a
loga N
N
5 loga a
n
n
例3、求 x 的值: (1)
2
log2x 1 3x 2x 1 1
1 6
1 3 6

2 2
1 2
1 log10 10
3
3
2 log10 1
0
以10为底的对数叫做常用对数:
log10 N lg N
3 loge e
1
4 loge 1
0
以e为底的对数叫做自然对数:
loge N ln N
例1:将下列指数式化为对数式,对数式化 为指数式.
1
3 log0.5 0.5 1 4 ln e 1
loga a 1
a =a
1
1 log3 3 4 5 2 log0.9 0.9 5
4
loga a n
n
3 ln e
8

8
4 2 3 log 0.6 0.6 5 7 log 89 89 6 0.4

4.1对数及其运算(一)、(二)解析

4.1对数及其运算(一)、(二)解析

log100.01=-2
思考 (1)式子ab=N和logaN=b(a>0,a≠1,N>0)有 什么关系?
对数式与指数式的关系
指数 对数
ab=N
幂值
logaN=b
真数
底数(a>0,a≠1)
思考 (2)求对数loga1,logaa(a>0,a≠1).
对于a>0,a≠1都有 a0=1,a1=a 所以
loga1=0 logaa=1
讲解范例 例1 将下列指数式写成对数式:
25 32 1 1 ( 2) 2 2 (3) 3 x 81 1 x (4) 4 6
( 1)log2 32Fra bibliotek 51 log2 1 2
log3 81 x
1 l og4 x 6
练习 ( 1) ( 2)
1.把下列指数式写成对数式:
2.对数的运算性质有什么特点?
例1
求下列各式的值.
(1)10lg3- 10× log51+ πlogπ2; (2)alogab· logbc · log c1; (3)lglne; (4)log
2- 1
. 3+2 2
1
【思路点拨】
充分利用对数基本性质及恒等式.
【解】 (1)原式= 3-10× 0+ 2= 5. (2)∵ logc1= 0, ∴原式= a0=1. (3)∵ lne=1, ∴ lglne= lg1= 0. (4)∵ 3+ 2 2= ( 2)2+ 2 2+ 1= ( 2+ 1)2, 1 ∴ log 2- 1 3+2 2 1 = log 2- 1 = log 2- 1( 2- 1)=1. 2+ 1
计算下列各式的值: 1 32 4 (1) lg - lg 8+ lg 245; 2 49 3 2 (2)lg5 2+ lg8 + lg5· lg20+ (lg2) 2; 3 lg 2+ lg3- lg 10 (3) . lg1.8

2.2.1对数与对数运算1

2.2.1对数与对数运算1

自测自评
1.下列各式中正确的有____4____个.
①log4 16 =2;②log16 4 =12; ③lg 100=2;④lg 0.01=-2.
2.已知
1 logx16
=-4,则x=____2____.
3.若logx7 y =z,则____B____.
A.y7=xz
B.y=x7z
C.y=7xz
一、选择填空题
1.将下列指数式写成对数式:
(1)2-6=
1 64
,____________;
(2)___________.
2.将下列对数式写成指数式:
(1)log327=a,______; (2)lg 0.01=-2,________.
1.(1)log2614=-6 (2)log135.73=m 2.(1)3a=27 (2)10-2=0.01
(2)设a>0,a≠1,则有a0=1 ,∴loga1=0,即1的对数 为0;
(3)设a>0,a≠1,则有a1=a ,∴logaa=1,即底数的 对数为1.
4.对数恒等式
(1)如果把ab=N中的 b写成logaN,则有:alogaN=N; (2)如果把x=logaN中的N 写成ax,则有logaax=x.
例如:将指数式化为对数式: ①42=16,________;②102=100,________; ③4=2,________; ④10-2=0.01,________. (1)以10为底的对数叫做常用对数,并把常用对数log10N 简记为lgN; ①log416=2;②log10100=2; ③log42=12;④log100.01=-2
D.y=z7x
1.根据需要可将指数式与对数式相互转化,从而实 现化难为易,化繁为简.

2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)教学目标(一) 教学知识点1. 对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?()x %81+=2⇒x =?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容:定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =⇔=log例如:1642= ⇔ 216log 4=; 100102=⇔2100log 10=;2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-=. 探究:1。

是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.根据对数的定义以及对数与指数的关系,=1log a ? =a a log ? ⑵ 01log =a ,1log =a a ;∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a⑶对数恒等式如果把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN . 例如:5log 10简记作lg5; 5.3log 10简记作lg3.5.⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN . 例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞. 三、讲解范例:例1.将下列指数式写成对数式:(1)62554= (2)64126=- (3)273=a(4)73.531=m )( 解:(1)5log 625=4; (2)2log 641=-6; (3)3log 27=a ; (4)m =73.5log 31. 例2. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.解:(1)16)21(4=- (2)72=128; (3)210-=0.01; (4)303.2e =10.例3.求下列各式中的x 的值: (1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算: ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x, ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x, ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===; ⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`)1.把下列指数式写成对数式(1) 32=8; (2)52=32 ; (3)12-=21; (4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2 ⑵5log 125=3 ⑶2log 41=-2 ⑷3log 811=-4 解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg 0.01 ⑸lg 10000 ⑹lg 0.0001 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg 0.01=-2 (5) lg 10000=4 (6) lg 0.0001=-4 4.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log 6.25 ⑸7log 343 ⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2 (4) 5..2log 6.25=2 (5) 7log 343=3 (6) 3log 243=5 五、课堂小结⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值.2.2.1对数与对数运算(二)教学目标(三) 教学知识点对数的运算性质. (四) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程; 3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值; 5.明确对数运算性质与幂的运算性质的区别. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题.教学重点证明对数的运算性质.教学难点对数运算性质的证明方法与对数定义的联系.教学过程一、复习引入:1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a⑶对数恒等式N aNa =log4.指数运算法则 )()(),()(),(R n b a ab R n m aa R n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =pa ,N =qa . ∴MN = pa qa =qp a+ ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =pa ,N =qa .∴q p q pa aa N M -== ∴p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴nM =npa ∴a log nM =np , 即证得a log nM =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式. ①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+. ③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的. )10(log 2)10(log 10210-=-是不成立的. ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zyx zxya a . 解:(1)zxyalog =a log (xy )-a log z=a log x+a log y- a log z (2)32log zyx a=a log (2x3log )z y a -= a log 2x +a log 3log z y a -=2a log x+z y a a log 31log 21-.例2. 计算(1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg 解:(1)5log 25= 5log 25=2 (2)4.0log 1=0.(3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19.(4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+(3) .18lg 7lg 37lg214lg -+- 说明:此例题可讲练结合.解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2; (3)解法一:lg14-2lg37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二:lg14-2lg37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质. 例4.已知3010.02lg =,4771.03lg =, 求45lg例5.课本P66面例5.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为 M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1); (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).3.课堂练习:教材第68页练习题1、2、3题. 4.课堂小结对数的运算法则,公式的逆向使用.=n a a log n2.2.1对数与对数运算(三)教学目标(五) 教学知识点1. 了解对数的换底公式及其推导;2.能应用对数换底公式进行化简、求值、证明; 3.运用对数的知识解决实际问题。

2.2.1对数与对数运算(1)

2.2.1对数与对数运算(1)

1 log (4) 2 2 4 1 (4) 22 4
lg 0.001 (4 )
(4)-3
16
(3 ) lg100 (3 )2
选做题
3.求下列各式中x的取值范围: (1)log2 x 1 15 (2) log 2 3
x 1
(3 ) log2 ( x 2 3x 2)
(4 ) log2 ( x 2) (4)x 2
探究点二 对数与指数之ቤተ መጻሕፍቲ ባይዱ存在什么样的转化关系?
问题1 将下列指数式表示成对数式。
1 m (1) 5 625 (2) ( ) 5.73 (3) 2 6 1 3 64
4
答: (1) 4 log5 625 ( 2) m log1 5.73
3
(3) 6 log 2
1 64
变式 将下列对数式表示成指数式。
(1) x log2 1
2 求出下式中x的值
(1) x log8 64
(2) logx 27 3
(3) log7 x 2
(1) x 2
.
(2) x 3
(3) x 49
四、引导探究
探究点一 对数的概念
例1 求下列各式中x的值
1 x 2 (1) 2
1 x 2 (2) 4
1 x ,x 0 解:(1) 2
x0 (2 )
x 1或 x 2 (3)
七、强化补清
见清学稿
1.负数和零没有对数(对数的真数大于零)
2.loga 1 0,loga a 1
√ √
小结 3 对数的性质
(1) loga N (a 0, a 1) 中,零和负数没有对数,即
N 0

对数与对数运算(一).

对数与对数运算(一).

(1)1的对数为0: (2)底的对数为1: (3) log a
loga 1 0
a N
N
loga a 1
log a N
(4)对数恒等式
a
N
当堂检测(满分10 分)计分: 1.下列指数式与对数式互化不正确是( c ) 1 1 1 1 0 3 log (A) 10 1 与 lg1 0 (B) 27 与 27 3 3 3 1
5 625
4
m
(2)
2
6
1 64
1 (3) 5.73 3
(4)log 1 16 4
2
(5)log 0.01 2
(6) ln10 2.303
x
关键
当a 0, a 1时,a N x loga N
返回
例题巩固
例2 求下列各式中x的值
(1) log 64
(4)log3 20 b (2) log3 343 (4)log 3 4 625
5
2. 计算:(1)log9 27 (3) log (2
3)
2 3
3m - 2n lg3 m ,lg5 n , 求100 的值 3.设
4.上网查一查皮纳尔与对数的故事
再来回顾一下定义:
一般地,如果a(a>0,a≠1)的b次幂等于N,即ab=N, 那么就称b是以a为底N的对数,记作
loga N b
什么? 1、a的范围是 2、b的范围是 3、N的范围是
其中a叫做对数的底数,N叫做真数. 的取值范围分别是
想想看:在对数式中,a,b,N
a>0,a≠1 R
R+ ,为什么会有这个结论?
(C)log3 9 2 与 9 2 3 (D)

《3.4.1对数及其运算(1)》课件

《3.4.1对数及其运算(1)》课件
过了中后卫布林德的头顶下落就算德罗巴不用跳起不用移动也可以顶到这个球这个球距离球门不到 的向禁区内移动抢点或者解围但是一切都太晚了布隆坎普几步来到底线附近在无人盯防的情况下右脚传出了一记漂亮的弧线球找中路的德罗巴这脚球传的速度奇快又非常舒服越 松的接到皮球把球一磕改变了方向然后快速下底这个时候阿贾克斯的球员发现了布隆坎普的动作顿时大惊失色梅尔奇奥特快速向移向边路防止布隆坎普的传中双方的球员都纷纷 慢慢移动不知不觉的已经到了几乎和禁区平行的位置就在几乎所有人都以为阿尔蒂多雷要远射的时候阿尔蒂多雷却突然把球传到了一个所有人都想不到的地方右边路布隆坎普轻 太阳穴的位置触球球直接飞出了底线顿时眼镜碎了一地谁都想不到在距离球迷 击德罗巴德罗巴庞大的身躯在德波尔有意的撞击之下发生了一点改变这一点改变就是致命的因为布隆坎普的这脚传球太快德罗巴本来是想用额头把球砸进球门这一下却变成了用 有那么强大了早就看到了这个落点却被德罗巴卡住位置的德波尔终于等到了机会老奸巨猾的德波尔也貌似要跳起头球其实他根本就不可能碰到球他只是佯装跳起用身体狠狠的撞 状的看着禁区看着德罗巴希望德罗巴不要抢到点这时候德罗巴却出人意料的起跳了他想微微跳起然后把球砸向球门如果双脚站在地面上德罗巴就是巨人安泰但是跳起之后他就没 被打丢了德罗巴沮丧的跪在草皮上不住的摇头痛骂自己是傻 呼的这时气得狠狠的蹲下捶地他不能想象在这一瞬间德罗巴那浆糊脑袋里想的是什么距离球门这么近怎么顶不不能进非要玩花样尼玛觉得是花样滑冰玩艺术了加分啊一个必进球 略了这是防守失误的起因阿贾克斯逃过一劫但是这样的错误不能再犯下一次阿尔克马尔人海会再给你们机会吗解说员指责阿贾克斯的球员在这个球的处理上太大意竟然没发现移 X啊啊啊不可思议一个必进球被德罗巴打飞这是一个打飞比打进更难的球阿尔克马尔的球员真是奇葩啊布隆坎普被忽 5米的情况下德罗巴把这个球顶飞了阿贾克斯的球迷为德罗巴发
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档