初中数学二次函数综合应用
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
中考数学复习第三单元函数第15课时二次函数的综合应用

的形状为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的
高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的
高度为
米.
图15-7
[答案] 1.95 [解析]如图,以点B为原点,建立直角坐标系. 根据题意,点A(0,1.6),点C(0.8,2.4),则设抛物线解析式为y=a(x-0.8)2+2.4. 将点A的坐标代入上式,得1.6=a(0-0.8)2+2.4,解得a=-1.25. ∴该抛物线的解析式为y=-1.25(x-0.8)2+2.4. ∵点D的横坐标为1.4, ∴y=-1.25×(1.4-0.8)2+2.4=1.95. 故灯罩顶端D距地面的高度为1.95米.
关系式是y=-x2+3x+4.请问:若不计其他因素,
水池的半径至少要
米,
才能使喷出的水流不至于落在池外.
图15-5
[答案]4 [解析]在y=-x2+3x+4中, 当y=0时,-x2+3x+4=0, ∴x1=4,x2=-1, 又∵x>0, ∴x=4, 即水池的半径至少要4米,才能使喷出的水流不至于落在池外.
2
3.[2018·绵阳]图15-4是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下
降2 m,水面宽度增加
m.
图15-4
[答案] (4 2-4)
[解析]如图所示,建立平面直角坐标系,横轴 x 通过 AB,纵轴 y 通过 AB 中点 O 且通过抛物线 顶点 C,O 为原点.则抛物线以 y 轴为对称轴,A(-2,0),B(2,0),C(0,2), 通过以上条件可设抛物线解析式为 y=ax2+2,代入 A 点坐标(-2,0),解得 a=-0.5, 所以抛物线解析式为 y=-0.5x2+2, 当水面下降 2 m 时,水面的宽度即为直线 y=-2 与抛物线相交的两点之间的距离, 把 y=-2 代入抛物线解析式得出:-2=-0.5x2+2, 解得:x=±2 2,故水面此时的宽度为 4 2 m, 比原先增加了(4 2-4)m.故答案为(4 2-4).
二次函数综合应用---含答案

二次函数应用(能力提高)一、选择题:1 . 如果抛物线 y=x 2-6x+c-2 的顶点到 x 轴的距离是 3, 那么 c 的值等于(C)(A) 8 (B) 14 (C)8或 14 (D) -8 或-142 .2当 a>0,b<0 时 , 它的图象经过 ( B)已知抛物线 y=ax+bx,( A)一、二、三象限( B)一、二、四象限( C)一、三、四象限(D)一、二、三、四象限3 . 当 a>0, b<0,c>0 时 , 下列图象有可能是抛物线y=ax2+bx+c 的是( A )(C)(D)第 7题4. 抛物线 y=ax2+bx+c 的图象如图,OA=OC,则( A )( A) ac+1=b ( B) ab+1=c ( C) bc+1=a (D)以上都不是5.若二次函数 y=ax 2+bx+c 的顶点在第一象限,且经过点( 0,1),( -1 ,0),则 S=a+b+c 的变化范围是 ( C )(A)0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<16.将抛物线 y=-2x 2-1 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( A )(A)3个单位(B)1 个单位(C) 1 个单位(D) 2 个单位2 27. 如图,等腰梯形ABCD的底边 AD在 x 轴上,顶点 C 在 y 轴正半轴上, B( 4,2 ),一次函数y=kx-1 的图象平分它的面积,关于2m的值为( D )x 的函数 y=mx -(3m+k)x+2m+k 的图象与坐标轴只有两个交点,则(A) 0 (B)1(C)- 1 (D)0 或1或-12 28.( 2015 浙江)设二次函数y1a( x x1)( xx2 )(a0, x1 x2 ) 的图象与一次函数y2dx e d 0 的图象交于点 ( x1,0) ,若函数y y2y1的图象与 x 轴仅有一个交点,则( B )( A) a( x1x2 ) d ( B)a( x2x1 ) d( C)a( x1x2 )2 d (D) a x12dx2二、填空题:1. 已知二次函数y=-4x2 2y=2m4 的图像在第二象限内的一个交点的横坐标是- 2mx+ m 与反比例函数x- 2,则 m的值是-72. 已知抛物线的顶点坐标为(2,9),且它在 x 轴上截得的线段长为6,则该抛物线的解析式为_y = -(x+1)(x - 5)___1 / 83. 已知二次函数y=ax2( a≥1)的图像上两点 A、 B的横坐标分别是-1、 2,点 O是坐标原点,如果△AOB是直角三角形,则△ OAB的周长为 4 2 + 2 54.老师给出一个函数 , 甲, 乙 , 丙 , 丁四位同学各指出这个函数的一个性质: 甲 : 函数的图像不经过第三象限。
初中数学_《二次函数的应用》(复习)教学设计学情分析教材分析课后反思

《二次函数的应用》教学设计35321212++-=x x y 3532121-2++=x x y 教学环节教学内容 学生活动环节目标 创设情境问题引入 1.已知二次函数 ,求出抛物线的顶点坐标与对称轴。
2.已知二次函数图象的顶点坐标是(6,2.6),且经过点(0,2),求这个二次函数的表达式 。
3.抛物线 c bx x y ++=261-经过点(0,4)经过点(3,217),求抛物线的关系式。
问题:(1)求二次函数顶点坐标的方法 (2)设表达式的思路(3)如何求二次函数与x 轴及y 轴的交点坐标课前布置,独立完成,上课时没完成的继续完成,之后组内批阅,找学生上台板演,并回答老师提出的问题。
这三个小题是后面实际应用问题的答案,学生在复习二次函数基础知识的同时,把后面的计算提到前面来,便于后面把教学重点放在解题思路的分析与掌握上,减少学生的计算量。
探索交流获得新知1例题解析例 1 :这是王强在训练掷铅球时的高度y (m)与水平距离x(m)之间的函数图像,其关系式为 ,则铅球达到的最大高度是_____米,此时离投掷点的水平距离是____米。
铅球出手时的高度是_____米,此次掷铅球的成绩是____米。
2、跟踪练习:如图,排球运动员站在点O 处练习发球,将球从1、学生独立思考后回答问题答案。
2、根据图像回答解题思路。
(前面已经求过前两个空,只计算后面两个即可)引导学生得到解决问题的方法:这四个问题都是求线段的长度,共同点为已知点的一个坐标,可将其代入表达式求另一个坐标,再把坐标转化成线段的长。
O点正上方2 m的A处发出,把球看成点,出手后水平运行6米达到最大高度2.6米,(1) 运行的高度记为y(m),运行的水平距离记为x(m),建立平面平面直角坐标系如图,求y 与x的函数表达式(不要求写出自变量x的取值范围);(2) 若球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m。
《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
中考初中数学一轮复习专题导引40讲-15二次函数的应用

中考初中数学一轮复习专题导引40讲第15讲二次函数的应用☞考点解读:知识点名师点晴二次函数的应用1.实际背景下二次函数的关系会运用二次函数的性质求函数的最大值或最小值来解决最优化问题。
2.将实际问题转化为数学中二次函数问题会根据具体情景,建立适当的平面直角坐标系。
3.利用二次函数来解决实际问题的基本思路(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展。
☞考点解析:考点1:二次函数与几何的综合运用。
基础知识归纳:求点的坐标,求抛物线解析式,求线段长或图形面积的最值,点的存在性。
基本方法归纳:待定系数法、数形结合思想、分类讨论思想。
注意问题归纳:合理使用割补法表达面积,分类讨论要全面。
【例1】(湖北十堰·12分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线的解析式;(2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP 和BC的解析式,k相等则两直线平行;(3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△AB E有可能相似,即△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE的解析式,与抛物线列方程组可得交点D的坐标;C.EABEC.E,C.E中的三点为顶点的三角形相似,如图3,同理可得结论.解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC.△ABE.△ACE.△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,∴E(,0),∵B(0,﹣4),易得BE:y=,则x2﹣x﹣4=x﹣4,x1=0(舍),x2=,∴D;C.EABEC.E,C.E中的三点为顶点的三角形相似,如图3,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,OE=C.EOE= C.E∠AEB是钝角,此时△ABE与以B,C.E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);综上,点D的坐标为或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、一元二次方程、三角形面积以及勾股定理,第3问有难度,确定三角形与△ABE相似并画出图形是关键.【变式1】(四川省攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.(1)求抛物线的解析式;(2)抛物线顶点为D,直线BD交y轴于E点;B.DP为线段BD上一点(点P不与B.D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF 面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线对称轴为直线x=1∴﹣∴b=2由一元二次方程根与系数关系:x1+x2=﹣,x1x2=∴+==﹣∴﹣则c=﹣3∴抛物线解析式为:y=x2﹣2x﹣3(2)由(1)点D坐标为(1,﹣4)当y=0时,x2﹣2x﹣3=0解得x1=﹣1,x2=3∴点B坐标为(3,0)①设点F坐标为(a,b)∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4整理的S=2a﹣b﹣6∵b=a2﹣2a﹣3∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3∵a=﹣1<0∴当a=2时,S最大=﹣4+8﹣3=1②存在由已知点D坐标为(1,﹣4),点B坐标为(3,0)∴直线BD解析式为:y=2x﹣6则点E坐标为(0,﹣6)BC.CDBC.CD,则由勾股定理CB2=(3﹣0)2+(﹣3﹣0)2=18CD2=12+(﹣4+3)2=2BD2=(﹣4)2+(3﹣1)2=20∴CB2+CD2=BD2∴∠BDC=90°∵∠BDC=∠QCE∴∠QCE=90°∴点Q纵坐标为﹣3代入﹣3=2x﹣6∴x=∴存在点Q坐标为(,﹣3)【例2】(云南省曲靖)如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A 的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).【变式2】【例3】(湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为.故(,0);(3,0);.(2)∵点E.点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).【变式3】(辽宁省沈阳市)(12.00分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y 轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q 的坐标.【分析】(1)应用待定系数法;(2)把x=t带入函数关系式相减;(3)根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.(4)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进行计算.解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴解得:∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2(3)共分两种情况①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:易得K(0,3),B.O、N三点共线∵A(﹣2,1)N(1,1)P(0,﹣1)∴点K、P关于直线AN对称设⊙K与y轴下方交点为Q2,则其坐标为(0,2)∴Q2与点P关于直线AN对称∴Q2是满足条件∠KNQ=∠BNP.则NQ2延长线与⊙K交点Q1,Q1.Q2关于KN的对称点Q3.Q4也满足∠KNQ=∠BNP.由图形易得Q1(﹣3,3)设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2由∵⊙K半径为1∴解得,1同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=∴解得,∴满足条件的Q点坐标为:(0,2)、(﹣3,3)、、【点评】本题为代数几何综合题,考查了二次函数基本性质.解答过程中应用了分类讨论、数形结合以及构造数学模型等数学思想.考点2:二次函数与实际应用题的综合运用基础知识归纳:待定系数法求抛物线解析式,配方法求二次函数最值。
中考数学专题复习:二次函数
第三课时 二次函数的综合应用
考点
1.与几何图形有关的线段、周长、面积 的最值问题; 2.特殊三角形、四边形的存在问题; 3.动点产生的角度问题等综合题
教学思路
跨领域复合型综合题涵盖了初中数学几乎所有的数学 思想方法,一般以压轴题的形式出现.在有限的中考复习 时间里,应该做到以下几点,以提升学生的思维高度:
二。抛物线型
例2 (2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面 0.7 m,水柱在距喷水头P水平距离5 m处达到最高,最高点距地面3.2 m;建立如图所示的平面直角坐标系, 并设抛物线的解析式为y=a(x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高 度.
中考ห้องสมุดไป่ตู้学专题复习
二次函数
第一课时二次函数的图像和性质
二
次
函
第二课时二次函数的实际应用
数
复
习
第三课时二次函数的综合应用
第一课时 二次函数的图像和性质
考点
二次函数的图像与性质通常以选择题或填 空题的形式出现,为历年必考题目。题目设计 主要有同一坐标系中多函数像问题、根据图像 做判断的多结论问题、根据表格形式呈现的多 结论问题等,考查a、b、c的符号、对称轴、最 值、大小比较、与一元二次方程的关系(与x轴、 平行于x轴的直线交点个数)、根据图像解不等 式、图像的平移等。
(1)要加强学生的做题意识,树立必胜的信心,教 师要让学生知道综合题常常是“起点低,坡度缓,尾巴略 翘”,要多鼓励学生大敢作答;
(2)是基础知识和基本技能训练要全面,重点内容 适当分类进行专题训练;
(3)是要教会学生一些常用的解题策略,重视数学 思想和方法的提炼,注意知识的迁移,让学生学会融会贯 通.
二次函数应用(拱桥问题)
教学过程一、复习预习平时的时候我们能够看到小船可以从桥的下面通过,但是当夏天雨季到来,水平面上升,这时小船还能从桥的下面通过吗对于这样的问题我们可以利用我们所学的二次函数来解决。
这节我们就看二次函数解决拱桥问题。
?}—二、知识讲解考点/易错点1 :二次函数解析式的形式1、一般式:y=ax2+bx+c(a≠0)2、顶点式:y=a(x-h)2+k(a≠0)顶点坐标(h,k)直线x=h为对称轴,k为顶点坐标的纵坐标,也是二次函数的最值3、双根式:y=a(x-1x )(x-2x )(a ≠0) (1x ,2x 是抛物线与x 轴交点的横坐标)¥并不是什么时候都能用双根式,当抛物线与x 轴有交点时才行 4、 顶点在原点:)0(2≠=a ax y 5、过原点:)0(2≠+=a bx ax y 6、 顶点在y 轴:)0(2≠+=a c ax y…考点/易错点2:建立平面直角坐标系1、在给定的直角坐标系,中会根据坐标描出点的位置2、能建立适当的直角坐标系,描述物体的位置。
"—"三、例题精析【例题1】【题干】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d 表示为h的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.~【答案】(1)设抛物线的解析式为y=ax2,且过点(10,-4)∴-==-4101252a a×,故y x=-1252(2)设水位上升h m时,水面与抛物线交于点(dh24,-)则hd-=-412542×∴d h=-104(3)当d=18时,18104076=-=h h,.0762276..+=∴当水深超过时会影响过往船只在桥下顺利航行。
二次函数新定义型综合问题 中考数学
抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数新定义型综合问题是数学的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 新定义型二次函数之共生或伴随抛物线【例1】(新考法,拓视野)(2024·江西九江·一模)定义:若两条抛物线的顶点关于原点对称,二次函数的二次项系数互为负倒数,这样的两条抛物线称之为“共生抛物线”,如抛物线20.5y x =与22y x =-是共生抛物线,已知抛物线()212:213C y x =-++的顶点是点P ,它的共生抛物线2C 的顶点是Q ;(1)点P 的坐标是 ,点Q 的坐标是_________,抛物线2C 的函数关系式是 .(2)直线y m =与抛物线1C 、2C 均有两个交点,这些交点从左到右分别是A 、B 、C 、D .①求m 的取值范围 ;②若AB CD =,求m 的值;【例2】(2023·江苏泰州·二模)在平面直角坐标系中,对于函数21y ax bx c =++,其中a 、b 、c 为常数,a c ≠,定义:函数22y cx bx a =++是21y ax bx c =++的衍生函数,点(),M a c 是函数21y ax bx c =++的衍生点,设函数21y ax bx c =++与其衍生函数的图象交于A 、B 两点(点A 在点B 的左侧).(1)若函数21y ax bx c =++的图象过点()13C -,、 ()15D -,,其衍生点()1M c ,,求函数21y ax bx c =++的解析式;(2)①若函数21y ax bx c =++的衍生函数为221y x =-,求A 、B 两点的坐标;②函数21y ax bx c =++的图象如图所示,请在图中标出点A 、B 两点的位置;(3)是否存在常数b ,使得无论a 为何值,函数21y ax bx c =++的衍生点M 始终在直线AB 上,若存在,请求出b 的值;若不存在,请说明理由.1.新定义:我们把抛物线2y ax bx c =++(其中0ab ≠与抛物线2y bx ax c =++称为“关联抛物线”,例如,抛物线2231y x x =++的“关联抛物线”为2321y x x =++已知抛物线1C :2443(0)y ax ax a a =++->的“关联抛物线”为2C ,1C 与y 轴交于点E.本题考查了二次函数的新定义,正确利用二次函数的图像与性质是解决问题的关键.(1)若点E 的坐标为()0,1-,求1C 的解析式;(2)设2C 的顶点为F ,若△OEF 是以OF 为底的等腰三角形,求点E 的坐标;(3)过x 轴上一点P ,作x 轴的垂线分别交抛物线1C ,2C ,于点M ,N .①当MN =6时,求点P 的坐标;②当42a x a -≤≤-时,2C 的最大值与最小值的差为2a ,求a 的值.2.(2023·广东广州·一模)定义:在平面直角坐标系中,直线()y a x h k =-+称为抛物线()2y a x h k =-+的伴随直线,如直线()12y x =-+-为抛物线()212y x =-+-的伴随直线.(1)求抛物线2245y x x =-+的伴随直线;(2)无论a 取何值,抛物线1G :()2212y ax a x a =--+-总会经过某定点,抛物线2G :()()13y m x x m =---的伴随直线经过该定点,求m 的值;(3)顶点在第一象限的抛物线()214y a x a =--+与它的伴随直线交于点A ,B (点A 在点B 的左侧),与x 轴负半轴交于点C ,当90BAC ∠=︒时,y 轴上存在点P ,使得APB ∠取得最大值,求此时点P 的坐标.题型二 新定义型二次函数之特殊形状问题【例1】(新考法,拓视野)(23-24九年级上·浙江杭州·期末)定义:由两条与x 轴有相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.【概念理解】(1)抛物线()()1212y x x =--与抛物线2232y x x =-+是否围成“月牙线”?说明理由.【尝试应用】(2)抛物线211(1)22y x =--与抛物线2212y ax bx c a ⎛⎫=++> ⎪⎝⎭组成一个如图所示的“月牙线”,与x 轴有相同的交点M ,N (点M 在点N 的左侧),与y 轴的交点分别为,A B .①求::a b c 的值.②已知点()0,P x m 和点()0,Q x n 在“月牙线”上,m n >,且m n -的值始终不大于2,求线段AB 长的取值范围.【例2】二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ¢,如下表:…()1,3B -()0,0O ()1,1C -A (___,___)()3,3D ……()5,3B '-()4,0O '()3,1C '()2,0A '()1,3D '-…①补全表格;本题考查二次函数综合应用,涉及新定义,二次函数的性质等知识,解题的关键是读懂题意,理解“月牙线”的概念.②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为_______;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L ',都有唯一交点,这条抛物线的解析式可能是______.(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0abc ≠);③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.1.(2023·江西赣州·一模)定义:若直线1y =-与开口向下的抛物线有两个交点,则这两个交点之间的距离叫做这条抛物线的“反碟长”1L :2y x =-与直线1y =-相交于P ,Q .(1)抛物线1L 的“反碟长”PQ =________.(2)抛物线随其顶点沿直线12y x =向上平移,得到抛物线2L .①当抛物线1L 的顶点平移到点()6,3,抛物线2L 的解析式是________.抛物线2L 的“反碟长”是________.②若抛物线2L 的“反碟长”是一个偶数,则其顶点的纵坐标可能是________.(填写所有正确的选项)A .15B .16C .24D .25③当抛物线2L 的顶点A 和抛物线2L 与直线1y =-的两个交点B ,C 构成一个等边三角形时(点B 在点C 左右),求点A 的坐标.题型三 新定义型二次函数与其他函数的综合问题【例1】(新考法,拓视野)(2024·湖南长沙·三模)对某一个函数给出如下定义:如果函数的自变量x 与函数值y 满足:当()()0x m x n --≤时,()()0y m y n --≤(,m n 为实数,且)m n <,我们称这个函数在m n →上是“民主函数”.比如:函数1y x =-+在12-→上是“民主函数”.理由: 由[(1)](2)0x x ---≤,得12x -≤≤. 1x y =-,112y ∴-≤-≤,解得12y -≤≤,[(1)](2)0y y ∴---≤,∴是“民主函数”.(1)反比例函数6y x=是23→上的“民主函数”吗?请判断并说明理由:(2)若一次函数y kx b =+在m n →上是“民主函数”,求此函数的解析式(可用含,m n 的代数式表示);(3)若抛物线2(0,0)y ax bx c a a b =++>+>在13→上是“民主函数”,且在13x ≤≤上的最小值为4a ,设抛物线与直线3y =交于,A B 点,与y 轴相交于C 点.若ABC 的内心为G ,外心为M ,试求MG 的长.【例2】(2023·江苏南通·一模)定义:若函数图象上存在点()1M m n ,,()21M m n '+,,且满足21n n t -=,则称t 为该函数的“域差值”.例如:函数23y x =+,当x m =时,123n m =+;当1x m =+时,221252n m n n =+-=,则函数23y x =+的“域差值”为2(1)点12'1M m n M m n +(,),(,)在4y x =的图象上,“域差值”4t =-,求m的值;本题是二次函数综合题,主要考查了一次函数、反比例函数、二次函数的性质,三角形外心和内心的性质等知识,理解新定义,得出抛物线的解析式从而得出的顶点坐标是解题的关键.ABC(2)已知函数220y x x =-(>),求证该函数的“域差值”2t <-;(3)点A a b (,)为函数22y x =-图象上的一点,将函数22y x x a =-≥()的图象记为W 1,将函数22y x x a =-≤()的图象沿直线y b =翻折后的图象记为2W 当12W W ,两部分组成的图象上所有的点都满足“域差值”1t ≤时,求a 的取值范围.1.(2023·江苏南通·一模)定义:若函数1G 的图象上至少存在一个点,该点关于x 轴的对称点落在函数2G 的图象上,则称函数1G ,2G 为关联函数,这两个点称为函数1G ,2G 的一对关联点.例如,函数2y x =与函数3y x =-为关联函数,点()1,2和点()1,2-是这两个函数的一对关联点.(1)判断函数2y x =+与函数y =-3x是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k ,函数2y x b =+与5y kx k =++始终为关联函数,求b 的值;(3)若函数21y x mx =-+与函数224n y x =-(m ,n 为常数)为关联函数,且只存在一对关联点,求2226m n m -+的取值范围.2.(2024·浙江湖州·一模)定义:对于y 关于x 的函数,函数在 ()1212x x x x x ≤≤<范围内的最大值,记作 []12,M x x 如函数2y x =,在13x -≤≤范围内,该函数的最大值是6, 即,[]1,36M -=.请根据以上信息,完成以下问题:已知函数 ()22141y a x x a =--+-(a 为常数)(1)若2a =.①直接写出该函数的表达式,并求 []1,4M 的值;②已知 5,32M p ⎡⎤=⎢⎥⎣⎦,求p 的值.(2)若该函数的图象经过点()0,0, 且[]3,M k k -=, 求k 的值.题型四 新定义型二次函数与几何图形的综合问题【例1】(新考法,拓视野)(2023·江苏南通·二模)定义:在平面直角坐标系中,点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足11y kx b ≤+且22y kx b ≥+(或满足11y kx b ≥+且22y kx b ≤+),则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“界线”.例如:直线4y x =-+是函数4(0)y x x=>的图象与抛物线2y x =-的一条“界线”.已知点(,2),(,2),(4,2),(4,2)A m B m C m D m -+-+.(1)若2m =-,在直线①3y x =+,②4y x =-+,③27y x =-+中,是函数6(0)y x x=>的图象与正方形ABCD 的“界线”的有______(填序号);(2)若点E 的坐标是(0,4),E的半径为E 与正方形ABCD 的“界线”有且只有一条,求“界线”l 的函数关系式;(3)若存在直线2y x b =+是函数223(22)y x x x =++-≤≤的图象与正方形ABCD 的“界线”,求m 的取值范围.【例2】(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q为平面内不重合的两个点,其本题考查二次函数的图象及性质,反比例函数的性质,一次函数的性质,熟练掌握二次函数的图象及性质,弄清“界线”的定义与图形之间的关系,数形结合、分类讨论是解题的关键.中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.1.(2023·江苏扬州·一模)对于二次函数给出如下定义:在平面直角坐标系xOy 中,二次函数2(y ax bx c a =++,b ,c 为常数,且0)a ≠的图象顶点为P (不与坐标原点重合),以OP 为边构造正方形OPMN ,则称正方形OPMN 为二次函数2y ax bx c =++的关联正方形,称二次函数2y ax bx c =++为正方形OPMN 的关联二次函数.若关联正方形的顶点落在二次函数图象上,则称此点为伴随点.(1)如图,直接写出二次函数2(1)2y x =+-的关联正方形OPMN 顶点N 的坐标___,并验证点N 是否为伴随点___(填“是”或“否”):(2)当二次函数24y x x c =-++的关联正方形OPMN 的顶点P 与N 位于x 轴的两侧时,请解答下列问题:①若关联正方形OPMN 的顶点M 、N 在x 轴的异侧时,求c 的取值范围:②当关联正方形OPMN 的顶点M 是伴随点时,求关联函数24y x x c =-++的解析式;③关联正方形OPMN 被二次函数24y x x c =-++图象的对称轴分成的两部分的面积分别为1S 与2S ,若1213S S ≤,请直接写出c 的取值范围.2.(2024·江西九江·一模)定义概念:在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++的“衍生直线”.如图1,抛物线2y x bx c =-++与其“衍生直线”交于A ,B 两点(点B 在x 轴上,点A 在点B 的左侧),与x 轴负半轴交于点()3,0C -.(1)求抛物线和“衍生直线”的表达式及点A 的坐标;(2)如图2,抛物线2y x bx c =-++的“衍生直线”与y 轴交于点1D ,依次作正方形111DEFO ,正方形2221D E F F ,…,正方形1n n n n D E F F -(为正整数),使得点1D ,2D ,3D ,…,n D 在“衍生直线”上,点1F ,2F ,3F ,…,n F 在x 轴负半轴上.①直接写出下列点的坐标:1E ______,2E ______,3E ______,n E ______;②试判断点1E ,2E ,…,n E 是否在同一条直线上?若是,请求出这条直线的解析式;若不是,请说明理由.3.(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______ .【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
初中复习方略数学第十三讲 二次函数的应用
第十三讲 二次函数的应用知识清单·熟掌握抛物线型问题应用二次函数解决抛物线型实际问题的思路1.建立平面直角坐标系:根据题意,建立适当的坐标系,建系的原则一般是把顶点作为坐标原点.2.设函数解析式:根据所建立的坐标系,设出解析式.3.求解析式:将题中所给的数据转化为点的坐标,代入函数解析式,求出待定系数,确定函数解析式.4.解决实际问题:把问题转化为已知抛物线上点的横坐标(或纵坐标),求其纵坐标(或横坐标),再转化为线段的长,解决实际问题.1.飞机着陆后滑行的距离y(单位:m)与滑行时间t(单位:s)的函数关系式满足y =-65 t 2+60t ,则飞机着陆至停下来滑行的距离是25 m .(×) 2.小强在一次训练中,掷出的实心球飞行高度y(米)与水平距离x(米)之间的关系大致满足二次函数y =-112 x 2+23 x +53,则小强此次成绩为10米.(√)利润最大化问题应用二次函数性质解决最优化问题的思路1.分析题中数量关系,确定变量.2.根据等量关系,构建二次函数模型.3.根据函数性质,确定最值.在实际问题中二次函数的最值不一定是顶点的纵坐标,要注意自变量的取值的限制对最值的影响.考点一应用二次函数解决抛物线型实际问题类型一:隧道和拱桥问题【典例1】(2021·衢州中考)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5 m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【思路点拨】根据题意设出适当的二次函数表达式,利用待定系数法求出表达式,再结合图形进行求解即可.【自主解答】(1)根据题意可知点F 的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为:y 1=a 1x 2.将F(6,-1.5)代入y 1=a 1x 2有:-1.5=36a 1,求得a 1=-124 , ∴y 1=-124x 2, 当x =12时,y 1=-124×122=-6, ∴桥拱顶部离水面高度为6 m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y 2=a 2(x -6)2+1,将H(0,4)代入其表达式有:4=a 2(0-6)2+1,求得a 2=112 , ∴右边钢缆所在抛物线表达式为:y =112(x -6)2+1, ②设彩带的长度为L m ,则L =y 2-y 1=112 (x -6)2+1-⎝ ⎛⎭⎪⎫-124x 2 =18 x 2-x +4=18 (x -4)2+2, ∴当x =4时,L 最小值=2,答:彩带长度的最小值是2 m .类型二:运动轨迹问题【典例2】(2021·北部湾中考)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线C 1:y =-112 x 2+76x +1近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线C 2:y =-18x 2+bx +c 运动. (1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线C 2的函数解析式(不要求写出自变量x 的取值范围).(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【思路点拨】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b ,c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:-18 m 2+32 m +4-⎝ ⎛⎭⎪⎫-112m 2+76m +1 =1,解出m 即可; (3)求出山坡的顶点坐标为⎝⎛⎭⎪⎫7,6112 ,根据题意即-18 ×72+7b +4>3+6112,再解出b 的取值范围即可. 【自主解答】(1)由题意可知抛物线C 2:y =-18x 2+bx +c 过点(0,4)和(4,8),将其代入得:⎩⎪⎨⎪⎧4=c 8=-18×42+4b +c ,解得:⎩⎪⎨⎪⎧b =32c =4 ,∴抛物线C 2的函数解析式为:y =-18 x 2+32 x +4. (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:-18 m 2+32 m +4-⎝ ⎛⎭⎪⎫-112m 2+76m +1 =1, 整理得:(m -12)(m +4)=0,解得:m 1=12,m 2=-4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.(3)C 1:y =-112 x 2+76 x +1=-112 (x -7)2+6112, 当x =7时,运动员到达坡顶,即-18 ×72+7b +4>3+6112, 解得:b >3524.此类问题一般涉及抛球、投篮、隧道、拱桥、喷泉水柱等.解决此类问题的关键是理解题目中的条件所表示的几何意义.最高点为抛物线的顶点,抛出点为抛物线中的c 值,落地点为抛物线与x 轴的交点,落地点到抛出点的水平距离是此落地点横坐标的绝对值.(1)投篮判断是否能投中即判断篮网是否在球的运动轨迹所在的抛物线图象上;(2)判断货车是否能通过隧道即判断两端点的坐标是否在抛物线的下方;(3)判断船是否能通过拱桥即判断船的高度是否比船自身的宽度对应的y 值小;(4)判断人是否会被喷泉淋湿即判断人所处位置的水的高度是否比人的身高低.(2021·台州中考)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t (单位:s)之间的关系式是h=vt-4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2, 则t1∶t2=__ 2 __.考点二利润最大化问题类型一:顶点处取最值【典例3】(2021·达州中考)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9 750元,并让利于民,则定价应为多少元?【解析】(1)由题意得:W=(48-30-x)(500+50x)=-50x2+400x+9 000,x=2时,W=(48-30-2)(500+50×2)=9 600(元),答:工厂每天的利润W元与降价x元之间的函数关系为W=-50x2+400x +9 000,当降价2元时,工厂每天的利润为9 600元;(2)由(1)得:W=-50x2+400x+9 000=-50(x-4)2+9 800,∵-50<0,∴x=4时,W最大为9 800,即当降价4元时,工厂每天的利润最大,最大为9 800元.(3)-50x2+400x+9 000=9 750,解得:x1=3,x2=5,∵让利于民,∴x1=3不合题意,舍去,∴定价应为48-5=43(元),答:定价应为43元.类型二:不在顶点处取最值【典例4】(2021·鄂州中考)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y(元)与种植面积x(亩)之间满足一次函数关系,且当x=160时,y=840;当x=190时,y=960.(1)求y与x之间的函数关系式(不求自变量的取值范围).(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2 160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【思路点拨】(1)根据已知条件用待定系数法求一次函数的解析式即可.(2)根据题意写出利润关于种植面积的解析式,然后根据x≤240和二次函数的性质求出利润的最大值.【自主解答】(1)设y 与x 之间的函数关系式y =kx +b(k≠0),依题意得:⎩⎪⎨⎪⎧840=160k +b 960=190k +b ,解得:⎩⎪⎨⎪⎧k =4b =200 , ∴y 与x 之间的函数关系式为y =4x +200;(2)设老张明年种植该作物的总利润为W 元,依题意得: W =[2 160-(4x +200)+120]·x=-4x 2+2 080x =-4(x -260)2+270 400,∵-4<0,∴当x<260时,W 随x 的增大而增大,由题意知: x≤240,∴当x =240时,W 最大,最大值为-4(240-260)2+270 400=268 800(元), 答:种植面积为240亩时总利润最大,最大利润268 800元. 类型三:在自变量不同取值范围上求最值【典例5】(2020·荆门中考)2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x 为正整数)的销售价格p(元/千克)关于x(天)的函数关系式为p =⎩⎪⎨⎪⎧25x +4(0<x≤20)-15x +12(20<x≤30) ,销售量y(千克)与x 之间的关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)当月第几天,该农产品的销售额最大?最大销售额是多少?(销售额=销售量×销售价格)【思路点拨】(1)根据函数图象中的数据,可以得到y 与x 之间的函数关系式,并写出x 的取值范围;(2)根据题意和(1)中的结果,可以得到利润与x 之间的函数关系,然后根据二次函数的性质,即可得到当月第几天,该农产品的销售额最大,最大销售额是多少.【解析】(1)当0<x≤20时,设y 与x 的函数关系式为y =ax +b ,则⎩⎪⎨⎪⎧b =8020a +b =40 ,解得⎩⎪⎨⎪⎧a =-2b =80 , 即当0<x≤20时,y 与x 的函数关系式为y =-2x +80,当20<x≤30时,设y 与x 的函数关系式为y =mx +n ,则⎩⎪⎨⎪⎧20m +n =4030m +n =80 ,解得⎩⎪⎨⎪⎧m =4n =-40 , 即当20<x≤30时,y 与x 的函数关系式为y =4x -40,由上可得,y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-2x +80(0<x≤20)4x -40(20<x≤30) . (2)设当月第x 天的销售额为w 元,当0<x≤20时,w =⎝ ⎛⎭⎪⎫25x +4 ×(-2x +80) =-45(x -15)2+500,∴当x =15时,w 取得最大值,此时w =500,当20<x≤30时,w =⎝ ⎛⎭⎪⎫-15x +12 ×(4x-40)=-45 (x -35)2+500, ∴当x =30时,w 取得最大值,此时w =480,由上可得,当x =15时,w 取得最大值,此时w =500.答:当月第15天,该农产品的销售额最大,最大销售额是500元.1.求关于利润的二次函数解析式的两种思路(1)若题目给出销售量与单价之间的函数解析式,以及销售单价与进价之间的关系时,则可直接根据:销售利润=销售总额-成本=销售量×销售价-销售量×进价=销售量×(销售价-进价)来解决;(2)若题目中未给出销售量与单价之间的函数解析式,则要先求出销售量与单价之间的函数解析式,解析式一般是一次函数关系,再根据销售利润=销售量×(销售价-进价)来解决.2.求二次函数的最值的两种方法(1)可直接利用公式法求顶点的纵坐标,即y =ax 2+bx +c 的最大值为4ac -b 24a (a <0)或最小值为4ac -b 24a(a >0). (2)若顶点在已知给定的自变量取值范围内,则函数在顶点处取得最大值或最小值;若顶点不在已知给定的自变量取值范围内,则根据二次函数的性质判断所给自变量取值范围的两端点处对应的函数值大小,从而确定最值.1.(2021·连云港中考)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是__1__264__元.2.(2021·南充中考)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=-1100 x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)【解析】(1)设苹果的进价为x元/千克,根据题意得:300x+2=200x-2,解得:x=10,经检验x=10是原方程的根,且符合题意,答:苹果的进价为10元/千克.(2)当0≤x≤100时,y=10x;当x >100时,y =10×100+(x -100)(10-2)=8x +200;∴y =⎩⎪⎨⎪⎧10x (0≤x≤100)8x +200(x >100). (3)当0≤x≤100时,w =(z -10)x=⎝ ⎛⎭⎪⎫-1100x +12-10 x =-1100(x -100)2+100, ∴当x =100时,w 有最大值为100;当100<x≤300时,w =(z -10)×100+(z -8)(x -100)=⎝ ⎛⎭⎪⎫-1100x +12-10 ×100+⎝ ⎛⎭⎪⎫-1100x +12-8 (x -100) =-1100x 2+4x -200 =-1100(x -200)2+200, ∴当x =200时,w 有最大值为200;∵200>100,∴一天购进苹果数量为200千克时,超市销售苹果利润最大,为200元. 答:一天购进苹果数量为200千克时,超市销售苹果利润最大. 考点三 几何图形面积问题【典例6】 (2020·孝义市质检)如图所示,正方形区域ABCD 是某公园健身广场示意图,公园管理处想在其四个角的三角形区域内种植草皮加以绿化(阴影部分),剩余部分安装健身器材作为市民健身活动场所(四边形EFGH),其中AB=100米,且AE=AH=CF=CG.则当AE的长度为多少时,市民健身活动场所的面积达到最大?【解析】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°.∵AE=AH=CF=CG,∴BE=BF=DG=DH,∴△AHE,△BEF,△CGF,△DGH都是等腰直角三角形;设AE=x米,则BE=(100-x)米.设四边形EFGH的面积为S,则S=100×100-2×12 x2-2×12(100-x)2=-2x2+200x(0<x<100).∵S=-2(x-50)2+5 000.∵-2<0,∴当x=50时,S有最大值为5 000.答:当AE=50米时,市民健身活动场所的面积达到最大.解决此类问题一般是根据几何图形的性质,先找变量,再确定变量与该图形周长或面积之间的关系,用变量表示出其他边的长,从而确定二次函数的解析式,再根据题意及二次函数的性质解题即可.(2019·连云港中考)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是(C)A .18 m 2B .18 3 m 2C .24 3 m 2D .4532 m 2人教版九年级下册 P29 练习 T2某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?【思路点拨】设出每间房的定价,从而利用租房利润减去维护费,可得利润函数,利用配方法,即可求得结论.【自主解答】设房价为(180+10x)元,则定价增加了10x 元,此时空闲的房间为x ,由题意得,y =(180+10x)(50-x)-(50-x)×20=-10x 2+340x +8000=-10(x -17)2+10890故可得当x =17,即房间定价为180+170=350元的时候利润最大. 答:房间定价为350元时,利润最大.(变换条件与问法)(2021·济宁中考)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【解析】(1)设甲种商品每箱盈利x 元,则乙种商品每箱盈利(x -5)元, 根据题意得:900x +400x -5=100, 整理得:x 2-18x +45=0,解得:x =15或x =3(舍去),经检验,x =15是原分式方程的解,符合实际,∴x -5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元.(2)设甲种商品降价a 元,则每天可多卖出20a 箱,利润为w 元,由题意得:w =(15-a)(100+20a)=-20a 2+200a +1 500=-20(a -5)2+2 000,∵-20<0,∴当a =5时,函数有最大值,最大值是2 000元.答:当降价5元时,该商场利润最大,最大利润是2 000元.(变换条件与问法)(2021·黄冈中考)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.【解析】(1)由题知,y=5-(x-50)×0.1,整理得y=10-0.1x(40≤x≤100);(2)设月销售利润为z,由题知,z=(x-40)y=(x-40)(10-0.1x)=-0.1x2+14x-400=-0.1(x-70)2+90,∴当x=70时,z有最大值为90,即当月销售单价是70元时,月销售利润最大,最大利润是90万元;(3)由(2)知,当月销售单价是70元时,月销售利润最大,即(70-40-a)×(10-0.1×70)=78,解得a=4,∴a的值为4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题
1、已知,在平面直角坐标系xoy 中,二次函数y= -1/3x 2+bx+c 的图像经过点A (-1,1)和点B (2,2),该函数图像的对称轴与直线OA 、OB 分别交于点C 和点D. (1)求这个二次函数的解析式和它的对称轴 (2)求证: = (3)如果点P 在直线AB 上,且△POB 与△BCD 相似,求点P 的坐标
2、如图,一次函数y= -
1
2
x+2分别交y 轴、x 轴于A 、B 两点,抛物线y=-x 2+bx+c 过A 、B 两点. (1)求这个抛物线的解析式;
(2)作垂直x 轴的直线x=t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?
(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.
CBO
∠ABO ∠
3、已知二次函数y=mx 2+5x-4,它的图像开口向下,且与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为D 。
(1)求m 的取值范围;
(2)如果△ABC 的面积为6,试求m 的值;
(3)若直线x=k 将第(2)题中的四边形ACBD 的面积平分,则直线x=k 截四边形ACBD 所得的线段的长为多少?
4、已知:M ,N 两点关于y 轴对称,且点M 在双曲线1
2y x
=上,点N 在直线y=x+3上,设点M 的坐标为(a ,b ),则二次函数y= -abx 2+(a+b )x 的最值情况是( )
A .有最大值,最大值为92-
B .有最大值,最大值为92
C .有最小值,最小值为92
D .有最小值,最小值为9
2
-
课堂练习
1、如图1,在平面直角坐标系xoy 中,顶点为M 的抛物线2
(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,
AO OB == 2,0
120AOB ∠=.
(1)求这条抛物线的表达式;
(2)联结OM ,求AOM ∠的大小;
(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. M
A
B O
x
y
图1
2、如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B .
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x-2)2+m 的x 的取值范围.
3、若关于x 的一元二次方程(x-2)(x-3)=m 有实数根x 1、x 2,且x 1≠x 2,有下列结论:①x 1=2,x 2=3;②m >1
4
-
;③二次函数y=(x-x 1)(x-x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是( )
A .0
B .1
C .2
D .3
4、如图,已知抛物线y=ax 2+bx+c (a≠0)的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,3-). (1)求抛物线的函数解析式及点A 的坐标; (2)在抛物线上求点P ,使S △POA =2S △AOB ;
(3)在抛物线上是否存在点Q ,使△AQO 与△AOB 相似?如果存在,请求出Q 点的坐标;如果不存在,请说明理由.
A
B C O
x
y
5、如图,在平面直角坐标系xOy 中,已知点A ⎝⎛⎭⎫-9
4,0,点C (0,3),点B 是x 轴上的一点(位于点A 右侧),以AB 为直径的圆恰好经过点C .
(1)求∠ACB 的度数;
(2)已知抛物线y =ax 2+bx +3经过A ,B 两点,求抛物线的解析式;
(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形?若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.
6、如图,抛物线y =x 2-2x +c 的顶点A 在直线l ∶y =x -5上.
(1)求抛物线顶点A 的坐标;
(2)设抛物线与y 轴交于点B ,与x 轴交于点C ,D (点C 在点D 的左侧),试判断△ABD 的形状;
(3)在直线l 上是否存在一点P ,使以点P ,A ,B ,D 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.。