最新高考不等式知识点总结
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高考不等式知识点汇总

高考不等式知识点汇总不等式是高考数学中的重要知识点,是解决数学问题中常用的一种工具。
它不仅涉及到基本的不等式性质,还包括不等式的求解、图像表示以及应用等方面。
下面将对高考中常见的不等式知识点进行汇总。
一、不等式的基本性质1. 不等式的传递性:若a < b,且b < c,则有a < c。
传递性是不等式推导中常用的重要性质。
2. 不等式的加减性:若a < b,则有a±c < b±c,其中c为实数。
加减性运算是在不等式两边同时加减一个数时成立的性质。
3. 不等式的倍乘性:若a < b,且c > 0,则有ac < bc;若a < b,且c < 0,则有ac > bc。
倍乘性是在不等式两边同时乘以一个正数或负数时成立的性质。
二、不等式的求解1. 一元一次不等式:例如ax + b < c或ax + b > c,其中a、b、c 为已知实数,x为未知数。
求解一元一次不等式时,可以采用移项和分段讨论等方法。
2. 一元二次不等式:例如ax^2 + bx + c < 0或ax^2 + bx + c > 0,其中a、b、c为已知实数,x为未知数。
求解一元二次不等式时,可以利用函数图像、判别式、因式分解等方法来进行求解。
3. 绝对值不等式:例如|ax + b| < c或|ax + b| > c,其中a、b、c为已知实数,x为未知数。
求解绝对值不等式时,可以利用绝对值的性质,将其转化为对应的复合不等式进行求解。
三、不等式的图像表示1. 不等式的区间表示:例如a < x < b或a ≤ x ≤ b,其中a、b为已知实数,x为未知数。
不等式的区间表示可以通过画数轴,标示出解集所在的区间。
2. 不等式的图像表示:例如y < ax + b或y > ax + b,其中a、b 为已知实数,x、y为未知数。
高考不等式知识点总结

高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。
下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。
当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。
2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。
3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。
4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。
5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。
二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。
在解过程中,可以通过加减法、乘除法保持不等式不变。
2.不等式组:由多个不等式组成的方程组,称为不等式组。
求解不等式组的关键是确定每个不等式的集合和并集。
三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。
可以根据系数的正负、零点的位置和变号法等来确定解的范围。
2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。
四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。
2.解绝对值不等式的关键是分情况讨论。
将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。
不等式知识点及题型总结

不等式一、知识点:1. 实数的性质:0>-⇔>b a b a ;0<-⇔<b a b a ;0=-⇔=b a b a .2. 不等式的性质:性 质内 容对称性 a b b a >⇔<,a b b a <⇔>. 传递性 a b >且b c a c >⇒>.加法性质 a b a c b c >⇒+>+;a b >且c d a c b d >⇒+>+.乘法性质 ,0a b c ac bc >>⇒>;0a b >>,且00c d ac bd >>⇒>>. 乘方、开方性质 0,n n a b n N a b *>>∈⇒>;0,n n a b n N a b *>>∈⇒>.倒数性质 11,0a b ab a b>>⇒<.3. 常用基本不等式:条 件结 论 等号成立的条件a R ∈20a ≥ 0a = ,a R b R ∈∈ 222a b ab +≥,2()2a b ab +≤,222()22a b a b ++≥ a b =0,0>>b a基本不等式: 2a b ab +≥常见变式:2≥+b a a b ; 21≥+aa ab =0,0>>b a2211222b a b a ab b a +≤+≤≤+ a b =4.利用重要不等式求最值的两个命题:命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b=时,和a +b 有最小值2.命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2s时,积ab 有最大值42s .注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积为定值,取最值时等号能成立,以上三个条件缺一不可.5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有结论:ax 2+bx+c>0⇔2040a ab ac >⎧=⎨-<⎩或检验;ax 2+bx+c<0⇔2040a ab ac <⎧=⎨-<⎩或检验 6. 绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。
高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点总结
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
高中不等式知识点总结(最新最全)
高中不等式知识点总结(最新最全)不等式的定义a^2+b^2≥2ab,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
1.不等式的解法(1)同解不等式((1)与同解;(2)与同解,与同解;(3)与同解);2.一元一次不等式情况分别解之。
3.一元二次不等式或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。
4.分式不等式分式不等式的等价变形:>0f(x)·g(x)>0,≥0。
5.简单的绝对值不等式解绝对值不等式常用以下等价变形:|x|0),|x|>ax2>a2x>a或x<-a(a>0)。
一般地有:|f(x)|g(x)f(x)>g(x)或f(x)6.指数不等式;;8.线性规划(1)平面区域一般地,二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域。
我们把直线画成虚线以表示区域不包括边界直线。
当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。
说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。
特别地,当时,通常把原点作为此特殊点。
(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。
由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。
由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。
高中不等式知识点归纳总结
高中不等式知识点总结1. 不等式的定义和基本性质不等式是数学中用来表示大小关系的符号。
一般地,设a、b是实数,可以有以下四种不等式关系:•$ a < b $ :表示a小于b,即a严格小于b;•$ a > b $ :表示a大于b,即a严格大于b;•$ a b $ :表示a小于等于b,即a小于或等于b;•$ a b $ :表示a大于等于b,即a大于或等于b。
基本性质:•对于不等式的加减运算:若a小于等于b,则a+c小于等于b+c,a-c小于等于b-c(c为实数);•对于不等式的乘法运算:若a小于等于b且c大于0,则ac小于等于bc,若c小于0,则ac大于等于bc;•对于不等式的除法运算:若a小于等于b且c大于0,则a/c小于等于b/c,若c小于0,则a/c大于等于b/c(c不等于0)。
2. 一元一次不等式2.1 不等式的解集表示一元一次不等式的解集可以用数轴上的区间表示。
对于形如ax+b>0或ax+b<0的一元一次不等式,可以先求出方程的零点x=-b/a,再根据a的正负判断不等式的解集:•当a>0时,不等式的解集为x<−b/a或x>−b/a;•当a<0时,不等式的解集为x>−b/a或x<−b/a。
2.2 一元一次不等式的性质•当且仅当不等式两边同时加上(或减去)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个负数时,不等号的方向改变。
3.1 不等式的解集表示一元二次不等式的解集可以用数轴上的区间表示。
对于形如ax2+bx+c>0或ax2+bx+c<0的一元二次不等式,可以先求出抛物线的顶点和判别式D的值,再根据D的正负判断不等式的解集。
•当a>0时,不等式的解集为抛物线顶点的左右两侧;•当a<0时,不等式的解集为抛物线顶点的外侧。
高中不等式知识点总结
高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。
平均不等式常用于综合法的标度。
分析方法:不等式两边的关系不够清晰。
通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。
4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。
同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现
视
正
)
(
。
因
原
的
生
产
折
挫
剖
解
和
析
分
真
认
)
(
。
标
目
和
想
理
的
确
正
立
树
)
(
。
气
勇
强
增
,
心
信
立
树
)
(
次
一
有
只
命
生
美
之
命
生
采
风
绚
么
那
了
现
展
中
限
己
自
在
间
世
些
这
荣
枯
木
草
衰
繁
花
鲜
同
如
头
尽
向
走
会
。
赞
去
法
无
们
我
但
完
不
并
时
有
然
虽
正
真
,
的
丽
美
是
命
生
。
丽
美
的
正
真
拜
崇
为
因
,
命
生
惜
珍
我
”
决
解
“
谓
所
题
问
取
换
命
己
自
用
会
往
折
挫
严
到
实
后
先
曾
,
时
灯
电
明
发
生
迪
爱
?
么
什
了
明
说
料
材
段
这
:
一
想
。
果
结
致
导
会
又
度
态
有
人
的
同
不
,
折
挫
待
对
究
探
课
新
、
二
度
态
在
键
关
)
?
待
确
正
样
怎
(
果
结
么
什
来
带
会
态
心
的
同
不
,
折
挫
对
面
、
。
倒
压
所
被
终
最
协
妥
者
或
避
回
缩
退
是
总
遇
面
一
暗
灰
和
望
失
、
观
悲
到
看
能
只
,
折
挫
待
对
度
态
的
极
消
用
们
我
当
。
者
强
活
生
为
成
境
困
出
走
终
最
法
办
决
解
找
寻
因
原
析
效
有
(
。
诉
倾
人
他
向
,
助
帮
求
请
)
法
方
要
主
(
。
力
竭
不
的
动
行
为
化
转
愁
忧
苦
痛
、
折
挫
将
,
华
升
神
精
华
升
标
目
情
移
泄
宣
理
合
、
导
疏
我
自
:
有
体
具
。
法
方
的
折
挫
胜
战
握
掌
果
结
,
态
心
的
同
不
业
事
就
,
功
成
得
取
:
态
心
极
积
成
无
事
一
,
望
失
观
悲
:
态
心
极
消
进
改
何
如
?
式
方
理
处
和
度
态
的
折
挫
待
对
往
以
你
思
反
法
方
的
折
挫
出
走
极
积
、
。
态
心
端
避
回
不
,
折
挫
和
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分
类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比
较法的一般步骤是:作差(商)→变形→判断符号(值)。
次
一
有
只
命
生
度
态
在
键
关
】
标
目
学
教
【
。
略
策
应
时
到
遇
握
掌
;
果
结
来
带
度
态
的
同
不
折
挫
对
面
道
知
、
待
善
性
重
命
使
习
学
过
通
,
因
原
理
心
要
主
的
生
轻
年
少
青
解
了
、
】
授
讲
课
新
【
:
课
新
入
导
、
一
已
而
丝
做
合
适
证
是
只
我
错
答
回
”
!
起
不
真
你
“
:
道
叹
赞
对
人
有
。
次
八
败
失
料
材
种
多
百
六
千
七
了
验
分
考
思
静
冷
能
面
一
上
向
步
进
、
观
乐
到
看
会
就
,
折
挫
待
对
态
心
的
极
积
用
们
我
当
)
(
)
点
几
哪
到
做
要
需
向
胜
战
极
积
为
认
你
(
?
功
成
的
业
事
得
取
,
折
挫
出
走
何
如
、
)
提
前
(
。
态
心
端
,
折
挫
视
正
)
证
保
本
根
(
。
气
勇
强
增
,
心
信
立
树
)
础
基
(
。
因
原
的
生
产
折
挫
析
分
观
客
,
待
对
静
冷
)
力
动
(
。
标
目
和
想
理
的
当
恰
定
确
)
法
方
要
主
(
。
解
排
,
导
疏
我
自
)
法
方
运用图解法可以使得分类标准明晰。
2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。
方程的根、函数的性质和图象都与不等式的解密切相关,要
善于把它们有机地联系起来,相互转化和相互变用。
最终都可归结为不等式的求解或证明。
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,
遇
旦
一
们
他
。
好美Leabharlann 乐快了视
忽
辛
艰
程
和
的
标
目
重
看
地
分