最新高中数学不等式知识点总结
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高中数学不等式知识点

高中数学不等式知识点在高中数学的学习中,不等式是一个重要的内容板块,它不仅在数学领域有着广泛的应用,也对我们培养逻辑思维和解决实际问题的能力有着重要的作用。
下面我们就来详细梳理一下高中数学不等式的相关知识点。
一、不等式的基本性质1、对称性:若 a > b,则 b < a 。
2、传递性:若 a > b 且 b > c ,则 a > c 。
3、加法法则:若 a > b ,则 a + c > b + c 。
4、乘法法则:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。
这些基本性质是我们解决不等式问题的基础,需要牢记并能熟练运用。
二、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (a ≠ 0)的不等式称为一元一次不等式。
解一元一次不等式的一般步骤为:1、去分母(若有分母)。
2、去括号。
3、移项,将含未知数的项移到一边,常数项移到另一边。
4、合并同类项。
5、系数化为 1 ,注意当系数为负数时,不等号方向要改变。
例如,解不等式 2x + 5 > 7 ,移项得到 2x > 7 5 ,即 2x > 2 ,系数化为 1 得 x > 1 。
三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (a ≠ 0)的不等式称为一元二次不等式。
解一元二次不等式的关键是求出其对应的二次方程的根。
通过判断二次函数图象的开口方向以及与x 轴的交点情况来确定不等式的解集。
例如,对于不等式 x² 2x 3 < 0 ,先求出方程 x² 2x 3 = 0 的根,即(x 3)(x + 1) = 0 ,解得 x = 3 或 x =-1 。
因为二次函数开口向上,所以不等式的解集为-1 < x < 3 。
四、简单的绝对值不等式1、当|x| < a (a > 0)时,a < x < a 。
高一基本不等式知识点总结

高一基本不等式知识点总结基本不等式是高中数学中的重要内容,它在解决最值问题、证明不等式以及优化问题中有着广泛的应用。
在高一阶段,我们主要学习了以下几种基本不等式:1. 算术平均数-几何平均数不等式(AM-GM不等式):对于任意非负实数a和b,有\(\frac{a+b}{2} \geq \sqrt{ab}\),当且仅当a=b时取等号。
这个不等式说明了两个非负数的算术平均数总是大于或等于它们的几何平均数。
2. 柯西-施瓦茨不等式(Cauchy-Schwarz Inequality):对于任意实数序列\(a_1, a_2, ..., a_n\)和\(b_1, b_2, ..., b_n\),有\((a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)\geq (a_1b_1 + a_2b_2 + ... + a_nb_n)^2\)。
这个不等式在处理向量和序列问题时非常有用。
3. 三角不等式:对于任意实数a和b,有\(|a+b| \leq |a| + |b|\)。
这个不等式说明了两个数的和的绝对值不会超过它们绝对值的和。
4. 绝对值不等式:对于任意实数a和b,有\(|a| - |b| \leq |a-b| \leq |a| + |b|\)。
这个不等式描述了两个数的差的绝对值与它们绝对值之间的关系。
5. 伯努利不等式:对于任意实数x > -1和任意正整数n,有\((1+x)^n \geq 1+nx\)。
当x=0时等号成立。
这个不等式在处理指数增长问题时非常有用。
6. 均值不等式:对于任意正实数a和b,有\(\frac{a+b}{2} \geq\sqrt{ab}\),当且仅当a=b时取等号。
这个不等式是AM-GM不等式的特例,但它在处理两个变量的最值问题时更为直观。
掌握这些基本不等式,可以帮助我们更好地理解和解决数学问题。
在实际应用中,我们需要注意不等式成立的条件,以及如何灵活运用这些不等式来简化问题。
高中不等式知识点归纳总结

高中不等式知识点归纳总结一、基本概念不等式是数学中的一种关系式,表示两个数或两个式子之间的大小关系。
不等式中包含了大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
二、解不等式的方法1.加减法原理:将同一个数加减到不等式的两边,不等式仍然成立。
2.乘除法原理:将同一个正数或同一个负数乘除到不等式的两边,不等式的方向不变;将同一个正数乘除到不等式的两边,不等式方向不变;将同一个负数乘除到不等式两边,不等式方向改变。
3.平方差公式:a²-b²=(a+b)(a-b)。
用平方差公示来解决有些带有平方项的二次函数。
4.配方法:通过添加适当的常量或因子使得方程左右完全匹配。
然后可以使用因子分解法或其他方法进行求解。
三、常见类型1.一元一次不等式:形如ax+b>c(x∈R),其中a≠0。
可使用加减法和乘除法原理进行求解。
2.二元一次不等式组:形如{ax+by>c,dx+ey>f}(x,y∈R)。
可使用代数法或图象法进行求解。
3.绝对值不等式:形如|ax+b|>c(x∈R)。
可使用分段函数法进行求解。
4.二次不等式:形如ax²+bx+c>0(x∈R)。
可使用配方法、因式分解和图象法进行求解。
四、常见应用1.经济学中的应用:在生产和消费中,需要考虑成本和收益之间的关系,可以通过不等式来表示。
2.几何学中的应用:在三角形或四边形中,需要考虑各边长之间的大小关系,可以通过不等式来表示。
3.物理学中的应用:在力学问题中,需要考虑物体的速度、加速度等与时间相关的因素,可以通过不等式来表示。
4.竞赛数学中的应用:许多数学竞赛都会涉及到不等式问题,需要灵活运用各种方法进行求解。
五、注意事项1.注意符号方向:在使用乘除法原理时要注意符号方向是否改变。
2.注意取值范围:在解二次不等式时要注意判别式大于0或小于0的情况,以确定其根的取值范围。
3.注意绝对值问题:在解绝对值不等式时要注意分段函数的定义域和取值范围。
高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
高中《不等式》知识点总结

《不等式》知识点一、不等式及其解法:1.一元二次不等式: 化标准式(即二次项系数为正)⇒“大于取两边,小于取中间”如:解不等式(1)0322≤-+x x ; (2)0122≤++-x x解:(1)原不等式等价于 0)1)(3(≤-+x x , 方程0)1)(3(=-+x x 的根为3-,1故解集为}{}13≤≤-x x .(2)原不等式等价于0122≥--x x , 方程0122=--x x 的根为21+,21-, 故解集为}{}2121+≥-≤x x x 或. 2.高次不等式:“穿根法”. 化标准式(即每一项的x 系数为都为正)⇒穿根(从右上方出发,依次穿过每个根,如遇“重根”,奇穿偶回)如:解不等式(1)0)1)(1(≤-+x x x ; (2)0)1)(2(≥-+x x ; (3)0)1(2<-x解:(1)解集为{}101≤≤-<x x x 或; (2)解集为{312>≤≤-x x x 或; (3)解集为]1,2[--3.分式不等式:移项⇒通分.如:解不等式12≤x . 解:移项后012≤-x ,通分后02≤-x x ,化标准式为02≥-xx ,故解集为{}20≥<x x x 或 4.绝对值不等式:a x <)0(>a 的解集为{}a x a x <<-; a x >)0(>a 的解集为{}a x a x x -<>或 二、1.重要不等式:),(222Rb a ab b a ∈≥+,当且仅当b a =时,等号成立 变形:222b a ab +≤ 应用:22b a +为定值时,求ab 的最大值. 2.基本不等式:)0,0(2>>+≤b a b a ab 当且仅当b a =时,等号成立 变形一:ab b a 2≥+ 应用:ab 为定值时,求b a +的最小值.变形二:2)2(b a ab +≤ 应用:b a +为定值时,求ab 的最大值. 注:利用基本不等式求最值的条件:一正、二定、三相等.三、线性规划问题1.能画出二元一次不等式组表示的平面区域.2.相关概念:约束条件、目标函数、可行域、可行解、最优解.3.目标函数常见类型:(1)求线性目标函数By Ax z +=的最值时,先令0=z ,画出直线l :0=+By Ax ,①若0>B ,则l 向上平移,z 变大,向下平移,z 变小;②若0<B ,则l 向上平移,z 变小,向下平移,z 变大(2)“斜率型”目标函数ax b y z --=,z 表示可行域内动点),(y x 与定点),(b a 连线的斜率. (3)“距离型”目标函数22222))()(()()(b y a x b y a x z -+-=-+-=,z 表示可行域内动点),(y x 到定点),(b a的距离的平方.。
高三数学不等式知识点总结

高三数学不等式知识点总结不等式是数学中的一个重要概念,广泛应用于各个领域。
在高三数学学习中,掌握不等式的相关知识点对于理解和解决问题至关重要。
本文将对高三数学中的不等式知识点进行总结。
1. 不等式的基本性质不等式的基本性质包括:- 加法性质:如果a > b,那么a + c > b + c。
- 减法性质:如果a > b,那么a - c > b - c。
- 乘法性质:如果a > b,c > 0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 除法性质:如果a > b,c > 0,那么a/c > b/c;如果a > b,c < 0,那么a/c < b/c。
2. 不等式的解集表示法解不等式时常常需要表示出解集,常见的表示方法有:- 图形表示法:将不等式的解集在数轴上用图形表示出来,例如用方向箭头表示不等式的解集。
- 区间表示法:使用区间表示法表示解集,例如(a, b)表示开区间,[a, b]表示闭区间,(a, b]表示半开半闭区间,等等。
- 集合表示法:使用集合的符号表示解集,例如{x | a < x < b}表示大于a小于b的x的集合。
3. 一元一次不等式一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法与解方程类似,不同的是在解的过程中需要注意保持不等式的方向性。
- 加减法解不等式:通过加减同一个数使得不等式简化,确定不等式的方向。
- 乘除法解不等式:通过乘除同一个正数或负数使得不等式简化,确定不等式的方向。
4. 一元二次不等式一元二次不等式是指含有一个未知数的二次方程。
解一元二次不等式的关键是确定二次函数的图像与x轴的位置关系。
- 求解不等式组:将二次不等式转化为不等式组的形式,通过观察二次函数的变化趋势求解。
- 图像法求解:绘制二次函数的图像,根据图像与x轴的位置关系得出解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性学制数学讲义不等式(4课时)★知识梳理1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131 ()();242a a++>+②将分子或分母放大(缩小),如211,(1)k k k<-211,(1)k k k>+=⇒<*,1)k N k>∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c++><或2(0,40)a b ac≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()()0()f xf xg xg xf xg xf xg xg x>⇔⋅>⋅≥⎧≥⇔⎨≠⎩(<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f xa af x a≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。