《导数及其应用》文科单元测试题(详细答案)

合集下载

高中数学选修第三章《导数及其应用》知识点归纳及单元测试

高中数学选修第三章《导数及其应用》知识点归纳及单元测试
2、当 由单调性知: ,化简得: ,解得
不合要求;综上, 为所求。
20.<1)解法1:∵ ,其定义域为 ,
∴ .
∵ 是函数 的极值点,∴ ,即 .
∵ ,∴ .
经检验当 时, 是函数 的极值点,
∴ .
解法2:∵ ,其定义域为 ,
∴ .
令 ,即 ,整理,得 .
∵ ,
∴ 的两个实根 <舍去), ,
当 变化时, , 的变化情况如下表:
<A) <B) <C) <D)
5.若曲线 的一条切线 与直线 垂直,则 的方程为< )
A. B. C. D.
6.曲线 在点 处的切线与坐标轴所围三角形的面积为< )
A. B. C. D.
7.设 是函数 的导函数,将 和 的图象画在同一个直角坐标系中,不可能正确的是< )
8.已知二次函数 的导数为 , ,对于任意实数 都有 ,则 的最小值为< )A. B. C. D. b5E2RGbCAP
A
如图所示,切线BQ的倾斜角小于
直线AB的倾斜角小于 Q
切线AT的倾斜角
O 1 2 3 4 x
所以选B
11.
12.32
13.
14. (1>
三、解答题
15. 解:设长方体的宽为x<m),则长为2x(m>,高为
.
故长方体的体积为
从而
令V′<x)=0,解得x=0<舍去)或x=1,因此x=1.
当0<x<1时,V′<x)>0;当1<x< 时,V′<x)<0,
17.设函数 分别在 处取得极小值、极大值. 平面上点 的坐标分别为 、 ,该平面上动点 满足 ,点 是点 关于直线 的对称点,.求(Ⅰ>求点 的坐标; (Ⅱ>求动点 的轨迹方程. RTCrpUDGiT

导数及其应用习题

导数及其应用习题

《导数及其应用》练习题(文科)命题人:赵红艳 审核人:朱效利 日期:2012-2-17一、选择题(本大题共12小题,共60分,只有一个答案正确)1.一个物体的运动方程为S=1+t+t 2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒B 6米/秒C 5米/秒D 8米/秒2.函数()22)(x x f π=的导数是( )(A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 3.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A ()f x =2()g xB ()f x -()g x 为常数函数C ()f x =()0g x =D ()f x +()g x 为常数函数 4.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 5.使函数x e x x f -⋅=)(为增函数的区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,06.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )7.若()d cx bx ax x f +++=23在R 上为增函数,则一定有 ( )A.042≤-ac b B 032≤-ac b C 042≥-ac b D 032≤-ac b 8.已知函数()()1623++++=x m m x f x x既存在极大值又存在极小值,则实数m 的取值范围是( )A.(-1,2)B. (-∞,-3)∪(6,+∞)C. (-3,6)D. (-∞,-1)∪(2,+∞)9. 若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( )(A ) 10<<b (B ) 1<b (C ) 0>b (D ) 21<b 10.函数)(x f 的图像如图所示,下列数值排序正确的是( )(A ))2()3()3()2(0//f f f f -<<< (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<< (D ))3()2()2()3(0//f f f f <<-< 11.函数x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e12.设()12ln 2+++=mx x x x f 在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件二.填空题(本大题共4小题,共16分)13.函数()ln (0)f x x x x =>的单调递增区间是____.14.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__.15.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________. 16.已知函数53123-++=ax x x y 在),1[+∞上总是单调函数,则a 的取值范围 .一.选择题二.填空题13. ; 14. 15. ; 15. 三.解答题17.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程18.用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?19.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.20.设函数()()113223+--=x x a x f ,其中a ≥1.(1)求f(x)的单调区间; (2)讨论f(x)的极值。

人教A版高中数学选修1-1第三章《导数及其应用》单元检测题(含答案).docx

人教A版高中数学选修1-1第三章《导数及其应用》单元检测题(含答案).docx

第三章《导数及其应用》检测题一、选择题(每小题只有一个正确答案)1.已知曲线y = |x2-2上一点P(屈一$,则过点P切线的倾斜角为()乙乙A.30°B. 45°C. 60°D. 120°2.设P为曲线C: y = F+2x + 3上的点,且曲线c在点P处切线倾斜角的取值范围7T 7T为则点P横坐标的取值范围为()4 2( JiA. —co,—B. [—1,0]1D. , + 823.定义在(0, +8)上的函数f(x)的导函数为广(无),且对VxG (0,+oo)都有c. [0,1]/z(x)lnx<^/'(x),则(A. 4/(e) > e3/(e4) > 2e/(e2) C. e3/(e4) > 4/(e) > 2e/(e2) )(其中e«2. 7)B.e3/(e4) > 2e/(e2) > 4/(e) D. 4/(e) > 2e/(e2) > e3/(e4)4.曲线/(x) = (x + l)e x在点(0, f(0))处的切线方程为()A. y = % 4- 1B. y = 2x 4- 1C. y = + 1D.y 弓x+15.对于函数/(x)=—,下列说法正确的有()①f(兀)在x = €处取得极大值》②f(x)有两个不同的零点;③门4) < f (兀)< /(3); @7T4 < 4兀.A.4个B.3个C.2个D. 1个6.定义在R上的奇函数f (x)满足f (・1)=0,且当x>0时,f (x) >xf (x),则下列关系式中成立的是()A. 4f (i) >f (2)B. 4f (2) <f (2)C. f (i) >4f (2)D. f (i) f (2) > 2 2 2 27.定义在[0, +oo)的函数fO)的导函数为f(x),对于任意的%>0,恒有/Xx) </(%),m = n = 则m, zi的大小关系是()・e e zA. m > nB. m < nC. m = nD.无法确定&函数/(x) = e x + x3 - 2在区间(0,1)内的零点个数是().A. 0B. 1C. 2D. 39 .在平面直角坐标系xOy中,已知好一In%! - = 0 , x2 - y2 ~ 2 = 0 ,则(%i -x2)2 +(7i -y2)2的最小值为()A. 1B. 2C. 3D. 410.已知直线2是曲线y = e x与曲线y = e2x-2的一条公切线,2与曲线y =/x 一2切于点(a,b),且a是函数£仗)的零点,贝”仗)的解析式可能为()A. /(%) = e2x(2x + 21n2 -1)-1B. f(x) = e2x(2x + 21n2 -1)-2C.f(x) = e2x(2x一21n2 -1)-1D. /(x) = e2x(2x一21n2 -1)-2二、填空题设函数fd)的导数为f f (x),且f(x)=f‘(^sinx + cosx,则f' (? = _____________________ 12.如图,函数y = f(x)的图象在点P处的切线方程是y = -兀+ 5,则/'⑶+厂⑶=_. Array13._____ 函数y=f (x)的导函数y = f(jc)的图象如图所示,则函数y=f (x)的图象可能是_________ (填序号).(D ②③④14.已知函数/(x)=xlnx + i%2, %是函数f(x)的极值点,给出以下几个命题:乙@0 < %0 < -;②尢o>2;+ X o < 0;④fOo) + Xo>0;e e其中正确的命题是______________ •(填出所有正确命题的序号)、215 .已知函数/(X)= X3 +OT2 +/?JC+C在X =——与兀=1时都取得极值,若对xe[-l,2],不等式f(x)<c2恒成立,则c的取值范围为___________________________ o三、解答题16.求下列函数的导函数®y = X4—3x2—5x + 6 ③y = x2cos x ②y二x+古@y = tan x17.已知函数/'(兀)=|%2一(a + l)x + a\nx.(1)当a VI时,讨论函数f(x)的单调性;(2)若不等式f(X) + (a + l)x n牛+対+ 1 一对于任意x G [e~1,e]成立,求正实数a 的取值范围.18.已知函数f (尤)=^x3— ax1 2 + l(a 6 /?).(1)若曲线y = /(%)在(l,f(l))处的切线与直线x-y + l = 0垂直,求a的值.(2)若a>0,函数y = /(%)在区间(a,a2 - 3)±存在极值,求a的取值范圉.(3)若a >2,求证:函数y = f(x)在(0,2)上恰有一个零点.19.已知函数f^x) = a x^-x2-x\na (a>0,且aHl).(I )求函数/(兀)的单调区间;(II)求函数/(兀)在[-2,2]上的最大值.20.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P~A\B\G从, 下部的形状是正四棱柱ABCD-A限Cd (如图所示),并要求正四棱柱的高"0是正以棱锥的高%的4倍.1 若AB=6 m, n =2 m,则仓库的容积是多少?2 若正四棱锥的侧棱长为6 m,则当〃为多少时,仓库的容积最大?参考答案I.C2. D3. D4・ B5. C6. A7. B8. B9. B10・ BII.- A/212. 113.④14.①③15.(-00,-1) U(2,4-oo)16.解析:(l)y z = 4x3— 6x — 5(2)y‘ = % 4- x~2(3)y‘ = (x2ycosx + x2(cosx)f = 2xcosx-x2sinx, sinx , (sinx),cosx — sinx(cosx)' cos2% + sin2% 1(4)-------------- y =( ----------------- )= ----- = = :—cos2%cosx cos2%cos2% cos2%17.(1)当a<0时,函数门切在(1,+8)上单调递增,在(0,1)上单调递减;当ova VI时, 函数f(x)在@,1)上单调递减,在(0卫)和(1,+8)上单调递增.(2) (0,1]解析:(1)函数/'仗)的定义域为(0,+s),广(%)=兀 _ @ + 1)+ 兰=*一@+1央+。

高三上学期文科数学单元测试导数及其应用

高三上学期文科数学单元测试导数及其应用

高三上学期文科数学单元测试(3)导数及其应用(选修1-1第三章)(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2010届高考导航系列试题高三上学期文科数学单元测试(3)[新课标人教版] 命题范围 导数及其应用(选修1-1第三章)注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。

2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。

考试结束,试题和答题卡一并收回。

3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。

1.函数y=x+2cos x 在[0,2π]上取得最大值时,x的值为( )A . 0B . 6πC . 3πD . 2π2.函数x x y ln =的单调递减区间是( )A .),(1+∞-eB .),(1--∞eC .),0(1-eD .),(+∞e3.若函数c bx x x f ++=2)(的图象的顶点在第四象限,则函数)(x f '的图象是( )4.点P 在曲线323+-=x x y 上移动,设点P 处切线倾斜角为α,则α的取值范围是( )A .[0,2π]B .[0,2π)∪[43π,π) C .[43π,π)D .(2π,43π]5.已知f x x x m ()=-+2632(m 为常数)在[]-22,上有最大值3,那么此函数在[]-22, 上的最小值为( ) A .-5B .-11C .-29D .-376.(09广东)函数x e x x f )3()(-=的单调递增区间是 ( )A . )2,(-∞B .(0,3)C .(1,4)D . ),2(+∞7.已知函数)2,2(),()()(πππ-∈-=x x f x f x f 且当满足时,,sin )(x x x f +=则( ) A .)3()2()1(f f f << B .)1()3()2(f f f <<C .)1()2()3(f f f <<D .)2()1()3(f f f <<8.设函数ax x x f m +=)(的导函数12)(+='x x f ,则数列*)}()(1{N n n f ∈的前n 项和是 ( )A .1+n nB .12++n nC .1-n nD .nn 1+9.设f(x)=31x 3+ax 2+5x+6在区间[1,3]上为单调函数,则实数a 的取值范围为( )A . [-5,+∞]B . (-∞ ,-3)C . (-∞ ,-3)∪[-5,+∞]D . [-5,5]10.函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x-1))(x f '<0,设a=f(0),b= f(21),c= f(3),则 ( ) A .a <b <c B .c <a <b C .c <b <a D .b <c <a11.曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形面积为( )A .19B .29C .13D .2312.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32B .34C .38D .316第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。

导数及其应用》文科单元测试题(详细答案)

导数及其应用》文科单元测试题(详细答案)

《导数及其应用》单元测试题(文科)(满分:150分 时间:120分钟)一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()22)(x x f π=的导数是( )(A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数xex x f -⋅=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( ) (A ) 10<<b (B ) 1<b (C ) 0>b (D ) 21<b 5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )8.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .329.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件10. 函数)(x f 的图像如图所示,下列数值排序正确的是( )(A ))2()3()3()2(0//f f f f -<<< (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<< (D ))3()2()2()3(0//f f f f <<-< O 1 2 3 4 x二.填空题(本大题共4小题,共20分)11.函数()ln (0)f x x x x =>的单调递增区间是____.12.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__.13.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是 14.已知函数53123-++=ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+∞上总是单调函数,则a 的取值范围 .(3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 .三.解答题(本大题共6小题,共12+12+14+14+14+14=80分)15.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大最大体积是多少16.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.17.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =u u u r u u u r,点Q 是点P 关于直线2(4)y x =-的对称点,.求 (Ⅰ)求点A B 、的坐标; (Ⅱ)求动点Q 的轨迹方程.18. 已知函数32()23 3.f x x x =-+(1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.19.已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。

高中数学选修2-2第一章《导数及其应用》单元测试(一)

高中数学选修2-2第一章《导数及其应用》单元测试(一)

A. y 2x 1
B. y 3x 2
C. y 2x 3
D. y x 2
7.函数 f (x) e ln x x 在 (0, 2e] 上的最大值为
A.1 e C. e
B. 1 D. 0
8.若函数 f (x) x(x c) 2 在 x 2 处取得极大值,则常数 c
A. 2 C. 2 或 6
数学选修 2-2 第一章《导数及其应用》单元测试
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
是符合题目要求的)
1.定积分 2 (ex 2x)dx 的值为 0
A.1
B. e2
C. e2 3
D. e2 4
2.某物体的位移 s (米)与时间 t (秒)的关系式为 s t 2 t ,则该物体在 t 2 时的瞬时速度为
A. 2 米/秒 C. 5 米/秒
B. 3 米/秒 D. 6 米/秒
3.已知曲线 y x2 上一点 P 处的切线与直线 2x y 1 0 平行,则点 P 的坐标为
A. (1,1)
B. (1,1)
C. (2, 4)
D. (3, 9)
4.已知 f (x) x2 2x f (1) ,则 f (3)
11.若函数 f (x) lnx ax 1 在[1, ) 上是单调函数,则实数 a 的取值范围为 x
A. (, 0] [1 , ) 4
B. (, 1 ] [0, ) 4
C.[ 1 , 0] 4
D. (,1]
12.已知函数 f (x) ax 1 (a 1) ln x 1 在 (0,1] 上的最大值为 3 ,则实数 a x
即 2x y 1 0 .(6 分)

高二文科导数及其应用测试题

高二文科导数及其应用测试题

导数章末检测题(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.(海南、宁夏文,10)曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为 ( ) A.49e2B.2e2C.e2D.2e 22.(福建文,11)如果函数y=f(x)的图象如图所示,那么导函数y=)(x f 的图象可能是 ( )3.设f(x)=x 2(2-x),则f(x)的单调增区间是( )A.(0,)34B.(,34+∞)C.(-∞,0)D.(-∞,0)∪(34,+∞)4.(广东文,9)设a ∈R ,若函数y=e x+ax,x ∈R 有大于零的极值点,则 ( ) A.a<-1B.a>-1C.a<-e1 D.a>-e15.已知函数y=f(x)=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p 、q 的值分别为 ( )A.6,9B.9,6C.4,2D.8,66.已知x ≥0,y ≥0,x+3y=9,则x 2y 的最大值为( ) A.36 B.18 C.25 D.427.下列关于函数f(x)=(2x-x 2)e x的判断正确的是( ) ①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值; ③f(x)没有最小值,也没有最大值.A.①③B.①②③C.②D.①②8.若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围为 ( )A.a ≥3B.a=3C.a ≤3D.0<a<39.函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为 ( ) A.a=3,b=-3,或a=-4,b=11 B.a=-4,b=11 C.a=3,b=-3 D.以上都不正确10.使函数f(x)=x+2cosx 在[0,2π]上取最大值的x 为 ( ) A.0 B.6π C.3πD.2π 11.若函数f(x)=x 3-3bx+3b 在(0,1)内有极小值,则 ( ) A.0<b<1B.b<1C.b>0D.b<21二、填空题 (本大题共4小题,每小题4分,共16分)12.若f(x)=x 3+3ax 2+3(a+2)x+1没有极值,则a 的取值范围为 . 13.如图是y=f(x)导数的图象,对于下列四个判断: ①f(x )在[-2,-1]上是增函数; ②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数; ④x=3是f(x)的极小值点. 其中判断正确的是 .14.函数f(x)的导函数y=)(x f '的图象如右图,则函数f(x)的单调递增区间为 .15.已知函数f(x)的导函数为)(x f ',且满足f(x)=3x 2+2x )2('f ,则)5('f = .三、解答题 (本大题共6小题,共74分)16.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x+y-1=0相切于点(1,-11). (1)求a ,b 的值;(2)讨论函数f (x )的单调性.17.(12分)已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f(x)在x=1处取得极值,且x ∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围.18.(12分)设p:f(x)=(x 2-4)(x-a)在(-∞,-2)和(2,+∞)上是单调增函数;q:不等式x 2-2x >a 的解集为R .如果p 与q 有且只有一个正确,求a 的取值范围.19.(12分)已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.20.(12分)已知定义在R 上的函数f(x)=-2x 3+bx 2+cx(b,c ∈R ),函数F(x)=f(x)-3x 2是奇函数,函数f(x)在x=-1处取极值. (1)求f(x)的解析式;(2)讨论f(x)在区间[-3,3]上的单调性.21.(14分)已知某质点的运动方程为s(t)=t 3+bt 2+ct+d ,下图是其运动轨迹的一部分,若t ∈[21,4]时,s(t)<3d 2恒成立,求d 的取值范围.22. (安徽文,20)已知函数f(x)=23233x x a -+(a+1)x+1,其中a 为实数.(1)已知函数f(x)在x=1处取得极值,求a 的值;(2)已知不等式)(x f '>x 2-x-a+1对任意a ∈(0,+∞)都成立,求实数x 的取值范围.23.设a >0,函数f(x)=12++x b ax ,b 为常数.(1)证明:函数f(x)的极大值点和极小值点各有一个; (2)若函数f(x )的极大值为1,极小值为-1,试求a 的值.24.已知函数f(x)=x 3-ax 2-3x.(1)若f(x)在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x=-31是f(x)的极值点,求f (x )在[1,a ]上的最大值;(3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,若存在,请求出实数b 的取值范围;若不存在,试说明理由.。

导数及其应用文科章末检测卷含答案

导数及其应用文科章末检测卷含答案

章末检测卷(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列导数运算正确的是( ) A .(x +1x )′=1+1x 2B .(2x )′=x 2x -1C .(cos x )′=sin xD .(x ln x )′=ln x +1 答案 D解析 根据导数的运算公式可得:(x +1x )′=1-1x 2,故A 错误.(2x )′=2x ln2,故B 错误.(cos x )′=-sin x ,故C 错误.(x ln x )′=ln x +1,故D 正确.2.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为( ) A .10 B .5 C .-1 D .-37答案 D解析 ∵f (x )=x 3+4x +5,∴f ′(x )=3x 2+4, ∴f ′(1)=7,即切线的斜率为7, 又f (1)=10,故切点坐标为(1,10), ∴切线的方程为y -10=7(x -1),当y =0时,x =-37,切线在x 轴上的截距为-37,故选D.3.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是( ) A .3 B .0 C .-2 D .3-2t 答案 A解析 ∵位移s 与时间t 的关系是s =s (t )=3t -t 2, ∴s ′(t )=3-2t ,∴s ′(0)=3,故物体的初速度为3. 4.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A .e 2 B .ln2 C.ln22D .e答案 D解析 ∵f ′(x )=ln x +1,∴f ′(x 0)=2可化为ln x 0+1=2,∴x 0=e ,故选D. 5.设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数 答案 B解析 由于f (x )=x -sin x 的定义域为R ,且满足f (-x )=-x +sin x =-f (x ),可得f (x )为奇函数.再根据f ′(x )=1-cos x ≥0,可得f (x )为增函数,故选B.6.设三次函数f (x )的导函数为f ′(x ),函数y =x ·f ′(x )的图象的一部分如图所示,则有( )A .f (x )的极大值为f (3),极小值为f (-3)B .f (x )的极大值为f (-3),极小值为f (3)C .f (x )的极大值为f (-3),极小值为f (3)D .f (x )的极大值为f (3),极小值为f (-3) 答案 D解析 观察图象知,x <-3时,y =x ·f ′(x )>0, ∴f ′(x )<0.-3<x <0时,y =x ·f ′(x )<0,∴f ′(x )>0. 由此知极小值为f (-3).0<x <3时,y =x ·f ′(x )>0,∴f ′(x )>0. x >3时,y =x ·f ′(x )<0,∴f ′(x )<0. 由此知极大值为f (3),故选D.7.若函数f (x )=ax -ln x 在[12,+∞)内单调递增,则a 的取值范围为( )A .[2,+∞)B .(-∞,2]C .(-∞,0]D .(-∞,0]∪[2,+∞)答案 A解析 f ′(x )=(ax -ln x )′=a -1x (x >0),由已知,得f ′(x )≥0在[12,+∞)上恒成立,即a ≥1x在[12,+∞)上恒成立,又∵当x ∈[12,+∞)时,1x ≤2,∴a ≥2,即a 的取值范围为[2,+∞).故选A.8.把一个周长为24cm 的长方形围成一个圆柱(即作为圆柱的侧面),当圆柱的体积最大时,该圆柱底面周长与高的比为( ) A .π∶1 B .2∶1 C .1∶2 D .2∶π答案 B解析 设圆柱高h 为x ,即长方形的宽为x , 则圆柱底面周长即长方形的长为24-2x 2=12-x ,∴圆柱底面半径:R =12-x2π,∴圆柱的体积V =πR 2h =π(12-x 2π)2x=x 3-24x 2+144x ,∴V ′=3x 2-48x +1444π=3(x -4)(x -12)4π.当x <4或x >12时,V ′>0,函数单调递增; 当4<x <12时,V ′<0,函数单调递减; 又当x >12时,函数无实际意义.∴x =4时体积最大,此时底面周长为12-x =8, 该圆柱底面周长与高的比为8∶4=2∶1.9.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A .25 B .18 C .20 D .0 答案 C解析 对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t , ∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1), ∵x ∈[-3,2],∴函数在[-3,-1],[1,2]上单调递增,在[-1,1]上单调递减.∴f (x )max =f (2)=f (-1)=1, f (x )min =f (-3)=-19, ∴f (x )max -f (x )min =20,∴t ≥20,∴实数t 的最小值是20.10.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集为( )A .{x |-1<x <1}B .{x |x <-1}C .{x |x <-1或x >1}D .{x |x >1}答案 D解析 设g (x )=f (x )-x 3-23,则函数g (x )的导数g ′(x )=f ′(x )-13,∵f (x )的导函数f ′(x )<13,∴g ′(x )=f ′(x )-13<0,则函数g (x )单调递减,∵f (1)=1,∴g (1)=f (1)-13-23=1-1=0,则不等式f (x )<x 3+23,等价为g (x )<0,即g (x )<g (1),则x >1,即f (x )<x 3+23的解集为{x |x >1}.故选D.二、填空题(本大题共5小题,每小题5分,共25分)11.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________. 答案 -5解析 f ′(x )=(x 2+c )+(x -2)×2x .∵函数f (x )=(x -2)(x 2+c )在x =2处有极值, ∴f ′(2)=0,∴(c +4)+(2-2)×2=0, ∴c =-4,∴f ′(x )=(x 2-4)+(x -2)×2x ,∴函数f (x )的图象在x =1处的切线的斜率为f ′(1)=(1-4)+(1-2)×2=-5. 12.函数y =12x -sin x ,x ∈[0,2π]的单调增区间为________________.答案 (π3,5π3)解析 ∵y ′=12-cos x ,令y ′>0,∴cos x <12,解得π3<x <5π3,故答案为(π3,5π3).13.如图,直线l 是曲线y =f (x )在x =5处的切线,则f (5)+f ′(5)=________.答案 7解析 由题意,f ′(5)=5-(-5)5=2,f (5)=5,所以f (5)+f ′(5)=7.14.已知函数f (x )=-x 3+ax -4(a ∈R ),若函数y =f (x )的图象在点P (1,f (1))处的切线垂直于y 轴,则f (x )在[-2,2]上的最大值与最小值之和为________. 答案 -8解析 ∵f (x )=-x 3+ax -4,∴f ′(x )=-3x 2+a ,∵函数y =f (x )的图象在点P (1,f (1))处的切线垂直于y 轴,∴-3+a =0, ∴a =3,∴f (x )在[-2,-1]单调递减,在[-1,1]单调递增,在[1,2]单凋递减. ∴最大值为f (-2)=f (1)=-2, 最小值为f (-1)=f (2)=-6. ∴最大值与最小值之和为-8.15.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且g (x )≠0,当x <0时,f ′(x )g (x )>f (x )g ′(x ),且f (-3)=0,则不等式f (x )g (x )<0的解集是________________________.答案 (-∞,-3)∪(0,3).解析 ∵f (x )和g (x )(g (x )≠0)分别是定义在R 上的奇函数和偶函数, ∴f (-x )=-f (x ),g (-x )=g (x ). ∵当x <0时,f ′(x )g (x )>f (x )g ′(x ), ∴f ′(x )g (x )-f (x )g ′(x )>0.当x <0时,[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,令h (x )=f (x )g (x ),则h (x )在(-∞,0)上单调递增,∵h (-x )=f (-x )g (-x )=-f (x )g (x )=-h (x ),∴h (x )为奇函数,根据奇函数的性质可得函数h (x )在(0,+∞)单调递增,∵f (-3)=-f (3)=0, ∴h (-3)=-h (3)=0, ∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3). 三、解答题(本大题共6小题,共75分)16.(12分)已知函数y =x 3-3x ,过点A (0,16)作曲线y =f (x )的切线,求此切线方程. 解 曲线方程为y =x 3-3x ,点A (0,16)不在曲线上. 设切点为M (x 0,y 0),则点M 的坐标满足y 0=x 30-3x 0.因为f ′(x 0)=3(x 20-1),故切线的方程为y -y 0=3(x 20-1)(x -x 0). 点A (0,16)在切线上,则有16-(x 30-3x 0)=3(x 20-1)(0-x 0).化简得x 30=-8,解得x 0=-2.所以,切点为M (-2,-2),切线方程为9x -y +16=0. 17.(12分)已知函数f (x )=12ax 2+2x -ln x .(1)当a =0时,求f (x )的极值;(2)若f (x )在区间[13,2]上是增函数,求实数a 的取值范围.解 (1)函数的定义域为(0,+∞). 因为f (x )=12ax 2+2x -ln x ,当a =0时,f (x )=2x -ln x ,则f ′(x )=2-1x ,令f ′(x )=0得x =12,所以x ,f ′(x ),f (x )的变化情况如表:所以当x =12时,f (x )的极小值为1+ln2,无极大值.(2)由已知,得f (x )=12ax 2+2x -ln x ,且x >0,则f ′(x )=ax +2-1x =ax 2+2x -1x.若a =0,由(1)知f ′(x )≥0得x ≥12,显然不符合题意;若a ≠0,因为函数f (x )在区间[13,2]上是增函数,所以f ′(x )≥0对x ∈[13,2]恒成立,即不等式ax 2+2x -1≥0对x ∈[13,2]恒成立,即a ≥1-2x x 2=1x 2-2x =(1x -1)2-1对x ∈[13,2]恒成立,故a ≥[(1x -1)2-1]max .而当x =13时,函数(1x -1)2-1的最大值为3,所以实数a 的取值范围为a ≥3.18.(12分)已知A ,B 两地相距100km.按交通法规规定:A 、B 两地之间的公路上车速要求不低于60km /h 且不高于100 km/h.假设汽车以x km/h 速度行驶时,每小时耗油量为(4+1128000x 3-180x )升,汽油的价格是6元/升,司机每小时的工资是24元.(1)若汽车从A 地以64km/h 的速度匀速行驶到B 地,需耗油多少升? (2)当汽车以多大的速度匀速行驶时,从A 地到B 地的总费用最低? 解 (1)当x =64时,总耗油量为:(4+643128000-6480)·10064=415=8.2.即当汽车从A 地以64km/h 的速度匀速行驶到B 地时,共耗油8.2升. (2)设总费用为y 元,则y =[24+(4+1128000x 3-180x )×6]×100x=4800x +3x 2640-152,60≤x ≤100,则y ′=-4800x 2+3x 320=3(x 3-803)320x 2,由y ′=0得x =80, 当x ∈(60,80)时,y ′<0, 当x ∈(80,100)时,y ′>0,所以当x =80时,y 取得极小值,且是最小值.即当汽车以80km/h 的速度匀速行驶时,从A 地到B 地的总费用最低. 19.(12分)已知函数f (x )=x 3+32(a -1)x 2-3ax +1,x ∈R .(1)讨论函数f (x )的单调区间;(2)当a =3时,若函数f (x )在区间[m,2]上的最大值为28,求m 的取值范围.解 (1)由f (x )=x 3+32(a -1)x 2-3ax +1,得f ′(x )=3x 2+3(a -1)x -3a =3(x -1)(x +a ). 令f ′(x )=0,得x 1=1,x 2=-a .①当-a =1,即a =-1时,f ′(x )=3(x -1)2≥0, f (x )在(-∞,+∞)内单调递增;②当-a <1,即a >-1时,当x <-a 或x >1时, f ′(x )>0,f (x )在(-∞,-a ),(1,+∞)内单调递增; 当-a <x <1时,f ′(x )<0,f (x )在(-a,1)内单调递减; ③当-a >1,即a <-1时, 当x <1或x >-a 时,f ′(x )>0,f (x )在(-∞,1),(-a ,+∞)内单调递增.当1<x <-a 时,f ′(x )<0,f (x )在(1,-a )内单调递减.综上,当a <-1时,f (x )在(-∞,1),(-a ,+∞)内单调递增,f (x )在(1,-a )内单调递减; 当a =-1时,f (x )在(-∞,+∞)内单调递增;当a >-1时,f (x )在(-∞,-a ),(1,+∞)内单调递增,f (x )在(-a,1)内单调递减. (2)当a =3时,f (x )=x 3+3x 2-9x +1,x ∈[m,2], f ′(x )=3x 2+6x -9=3(x +3)(x -1), 令f ′(x )=0,得x 1=1,x 2=-3. 将x ,f ′(x ),f (x )变化情况列表如下:极大值f (x )极小值=f (1)=-4.又f (2)=3<28,故区间[m,2]内必须含有-3, 即m 的取值范围是(-∞,-3]. 20.(13分)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. (1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )单调递增区间是(k ,+∞). f (x )在x =k 处取得极小值f (k )=k (1-ln k )2,无极大值. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减, 且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 21.(14分)已知函数f (x )=-13x 3+a2x 2-2x (a ∈R ).(1)若函数f (x )在点P (2,f (2))处的切线的斜率为-4,求a 的值;(2)若过点(0,-13)可作函数y =f (x )图象的三条不同切线,求实数a 的取值范围.解 (1)f (x )=-13x 3+a2x 2-2x 的导数为f ′(x )=-x 2+ax -2,因为函数f (x )在点P (2,f (2))处的切线的斜率为-4,所以-4+2a -2=-4,解得a =1.(2)设点A (t ,-13t 3+a2t 2-2t )是函数f (x )图象上的切点,则过点A 的切线斜率k =-t 2+at -2,所以过点A 的切线方程为y +13t 3-a 2t 2+2t =(-t 2+at -2)(x -t ),因为点(0,-13)在该切线上,所以-13+13t 3-a2t 2+2t =(-t 2+at -2)(0-t ),即23t 3-12at 2+13=0, 若过点(0,-13)可作函数y =f (x )图象的三条不同切线,则方程23t 3-12at 2+13=0有三个不同的实数根,令g (t )=23t 3-12at 2+13=0,则函数y =g (t )的图象与x 轴有三个不同的交点, 令g ′(t )=2t 2-at =0,解得t =0或t =a2,因为g (0)=13,g (a 2)=-124a 3+13,所以令g (a 2)=-124a 3+13<0,即a >2,所以实数a 的取值范围是(2,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数及其应用》单元测试题(文科)
(满分:150分时间:120分钟)一、选择题(本大题共10小题,共50分,只有一个答案正确)1.函数的导数是()
(A)(B)(C)
(D)
2.函数的一个单调递增区间是()
(A) (B) (C) (D)
3.已知对任意实数,有,且时,,则时()
A.B.
C.D.
4.若函数在内有极小值,则()
(A)(B)(C)(D)
5.若曲线的一条切线与直线垂直,则的方程为()
A. B. C. D.
6.曲线在点处的切线与坐标轴所围三角形的面积为()
A.B.C.D.
7.设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是()
8.已知二次函数的导数为,,对于任意实数都有,则的最小值为()
A.B.C.D.
9.设在内单调递增,,则是的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
10.函数的图像如图所示,下列数值排序正确的是()(A)y
(B)
(C)
(D)O 1 2 3 4 x
二.填空题(本大题共4小题,共20分)
11.函数的单调递增区间是____.
12.已知函数在区间上的最大值与最小值分别为
,则__.
13.点P在曲线上移动,设在点P处的切线的倾斜角为为,则的取值范围是
14.已知函数
(1)若函数在总是单调函数,则的取值范围是.
(2)若函数在上总是单调函数,则的取值范围.
(3)若函数在区间(-3,1)上单调递减,则实数的取值范围是.
三.解答题(本大题共6小题,共12+12+14+14+14+14=80分)15.用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
16.设函数在及时取得极值.
(1)求a、b的值;
(2)若对于任意的,都有成立,求c的取值范围.
17.设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求
(Ⅰ)求点的坐标;
(Ⅱ)求动点的轨迹方程.
18.已知函数
(1)求曲线在点处的切线方程;
(2)若关于的方程有三个不同的实根,求实数的取值范围.
19.已知
(1)当时,求函数的单调区间。

(2)当时,讨论函数的单调增区间。

(3)是否存在负实数,使,函数有最小值-3?
20.已知函数,,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
【文科测试解答】
一、选择题
1.;
2.,选(A)
3.(B)数形结合
4.A由,依题意,首先要求b>0, 所以
由单调性分析,有极小值,由得.
5.解:与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为,故选A
6.(D)
7.(D)
8.(C)
9.(B)
10.B设x=2,x=3时曲线上的点为AB,点A处的切线为AT
点B处的切线为BQ,T
B
y
A
如图所示,切线BQ的倾斜角小于
直线AB的倾斜角小于Q
切线AT的倾斜角
O 1 2 3 4 x
所以选B
11.
12.32
13.
14. (1)
三、解答题
15. 解:设长方体的宽为x(m),则长为2x(m),高为
.
故长方体的体积为
从而
令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.
当0<x<1时,V′(x)>0;当1<x<时,V′(x)<0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。

从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.
答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。

16.解:(1),
因为函数在及取得极值,则有,.

解得,.
(2)由(Ⅰ)可知,,

当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.则当时,的最大值为.
因为对于任意的,有恒成立,
所以,
解得或,
因此的取值范围为.
17.解:(1)令解得
当时,, 当时,,当时,
所以,函数在处取得极小值,在取得极大值,故,
所以, 点A、B的坐标为.
(2) 设,,
,所以,又PQ的中点在上,所以
消去得.
另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q
的轨迹为以(a,b),为圆心,半径为3的圆,由,得a=8,b=-2
18.解(1)………………………2分∴曲线在处的切线方程为,即
;……4分
(2)记
令或
1. …………………………………………………………6分
则的变化情况如下表
极大极小
有极大值有极小值
. ………………………10分
由的简图知,当且仅当
即时,
函数有三个不同零点,过点可作三条不同切线.
所以若过点可作曲线的三条不同切线,的范围是.…………14分
19.(1)或递减;递增; (2)1、当
递增;2、当递增;3、当或
递增; 当递增;当或
递增;(3)因由②分两类(依据:单调性,极小值点是否在区间[-1,0]上是分类“契机”:
1、当递增,,解得
2、当由单调性知:,化简得:,
解得
不合要求;综上,为所求。

20.(1)解法1:∵,其定义域为,∴.
∵是函数的极值点,∴,即.
∵,∴.
经检验当时,是函数的极值点,
∴.
解法2:∵,其定义域为,
∴.
令,即,整理,得.
∵,
∴的两个实根(舍去),,当变化时,,的变化情况如下表:
—0 +
极小

依题意,,即,
∵,∴.
(2)解:对任意的都有≥成立等价于对任意的都有≥.
当[1,]时,.
∴函数在上是增函数.
∴.
∵,且,.
①当且[1,]时,,
∴函数在[1,]上是增函数,
∴.
由≥,得≥,
又,∴不合题意.
②当1≤≤时,
若1≤<,则,
若<≤,则.
∴函数在上是减函数,在上是增函数.∴.
由≥,得≥,
又1≤≤,∴≤≤.
③当且[1,]时,,
∴函数在上是减函数.
∴.
由≥,得≥,
又,∴.
综上所述,的取值范围为.。

相关文档
最新文档