静电场和高斯定理71页PPT
合集下载
1静电场高斯定理PPT课件

kx.
4πx
2
dx
ε E´=
kR4
4
r2
0
习题: 如图所示,一厚度为a的无限大带电平板,其电荷体
密度分布为 kx (0 x a)式中k 为正常数,试证明:
(1) 平板外空间的场强为均匀电场,大小为 ka 2
2
4 0
(2)
平板内 x
a 2
处E=0.
解(1) 据分析可知平板外的电场是均
匀电场,作如图封闭圆柱面为高斯面
++
rr
+ +q
+
+
+
+
+
+++ +
(2)r > R
. sE
dS = E 4π r 2
q
ε = 0
得:
q
E = 4επ0 r 2
E
q
ε 4π
R2
0
0
++ + + E
+
+
+R
r
+
+
+
q+
+++ +
∝
1 r2
高斯面
r
R
例2. 均匀带电球体的电场。体电荷密度为 ρ
(1)r < R
sE . dS = E 4π r 2
+ E
一对等量正点电荷的电场线
+
+
+
+
E
一对异号不等量点电荷的电场线
E
+2q
q
静电场-高斯定理

感谢观看
电容器极板间电场分布
极板间相互作用力计算
理介
第 推质
四 章
广中 及高 应斯用定Fra bibliotek电介质极化现象及极化强度矢量引入
为了描述电介质极化 的程度和方向,引入 极化强度矢量P,其 大小与电偶极矩成正 比,方向由负电荷指 向正电荷。
在电场作用下,电介质内部正负电荷中心发生相对 位移,形成电偶极子,从而产生宏观上的电极化现 象。
高斯定理是电磁学中的基本定理之一,它表述了静电场中电场强度与电荷分布之间的关系。
高斯面选取原则及技巧
高斯面选取应遵循简单、对称、便于计算等原则。
02
在实际问题中,常根据电荷分布和电场强度的对称性来选取高斯面,以便简化计算。
03
高斯面的形状和大小应根据具体问题灵活选择,可以是平面、球面、柱面等。
高斯定理物理意义阐释
高斯定理反映了静电场的空间分布特性,即电场 强度与电荷分布之间的定量关系。
高斯定理为求解复杂静电场问题提供了一种有效 的方法,即通过选取适当的高斯面来简化计算。
高斯定理揭示了静电场的有源性,即静电场是由 电荷产生的。
高斯定理在电磁学中的地位
高斯定理是电磁学四大基本定理之一,是静 电场理论的基础。 高斯定理在电磁学中具有重要的地位,它不 仅适用于静电场,还可推广应用于恒定电场、 恒定磁场以及时变电磁场等领域。
要点一
麦克斯韦方程组
麦克斯韦方程组是描述电磁场基本规律的方程组,包括高斯定理、 安培环路定律、法拉第电磁感应定律和麦克斯韦-安培定律。
要点二
高斯定理在麦克斯韦方程组中的地 位
高斯定理是麦克斯韦方程组中的重要组成部分,它描述了电荷分 布与电场之间的关系,为电磁场理论奠定了基础。
电容器极板间电场分布
极板间相互作用力计算
理介
第 推质
四 章
广中 及高 应斯用定Fra bibliotek电介质极化现象及极化强度矢量引入
为了描述电介质极化 的程度和方向,引入 极化强度矢量P,其 大小与电偶极矩成正 比,方向由负电荷指 向正电荷。
在电场作用下,电介质内部正负电荷中心发生相对 位移,形成电偶极子,从而产生宏观上的电极化现 象。
高斯定理是电磁学中的基本定理之一,它表述了静电场中电场强度与电荷分布之间的关系。
高斯面选取原则及技巧
高斯面选取应遵循简单、对称、便于计算等原则。
02
在实际问题中,常根据电荷分布和电场强度的对称性来选取高斯面,以便简化计算。
03
高斯面的形状和大小应根据具体问题灵活选择,可以是平面、球面、柱面等。
高斯定理物理意义阐释
高斯定理反映了静电场的空间分布特性,即电场 强度与电荷分布之间的定量关系。
高斯定理为求解复杂静电场问题提供了一种有效 的方法,即通过选取适当的高斯面来简化计算。
高斯定理揭示了静电场的有源性,即静电场是由 电荷产生的。
高斯定理在电磁学中的地位
高斯定理是电磁学四大基本定理之一,是静 电场理论的基础。 高斯定理在电磁学中具有重要的地位,它不 仅适用于静电场,还可推广应用于恒定电场、 恒定磁场以及时变电磁场等领域。
要点一
麦克斯韦方程组
麦克斯韦方程组是描述电磁场基本规律的方程组,包括高斯定理、 安培环路定律、法拉第电磁感应定律和麦克斯韦-安培定律。
要点二
高斯定理在麦克斯韦方程组中的地 位
高斯定理是麦克斯韦方程组中的重要组成部分,它描述了电荷分 布与电场之间的关系,为电磁场理论奠定了基础。
电磁场——高斯定理PPT课件

E和D的分布都与介质有关。但是穿过闭合曲面的D通 量仅与该闭合面所包围的自由电荷有关,而与介质中 的束缚电荷无关。
20
第20页/共44页
点电荷的电场中置入任意一块介质
D 通量只取决于高斯面内 的自由电荷,而高斯面上的 D 是由高斯面内、外的系统 所有电荷共同产生的。
S1 D1 • dS q
(c)无限大平面电荷:包括无限大的均匀带电平面,平板等。
(a)
试问:
(b)
(c)
图3. 平行平面场的高斯面
能否选取底面为方型的封闭柱面为高斯面?
27
第27页/共44页
例1 真空中有两个同心金属球壳,内球壳半径R1,带电q1,外球 壳半径R2,壳厚R2,带电q2,求场中各处电场及电位。
解: ① 分析电荷分布情况 :
正、负感应电荷分布在 B 的内、外 表面上。
+++-+--+- -+++++++-A+++-+++++-+-+-++---++
4
第4页/共44页
3.导体表面电荷密度 与该处 E表的大小成正比。
在导体外紧靠导体表面的一点 P :
E表
0
P E表
4.孤立带电导体表面电荷分布处在静电 平衡时,在导体表面凸出的尖锐部分电荷 面密度 较大;在比较平坦部分电荷面密 度较小。
有机玻璃 石腊 聚乙烯
1.0 2.3 1.3~4.0 2.6~3.5 2.1 2.3
石英 云母 陶瓷 纯水 树脂 聚苯乙烯
3.3 6.0 5.3~6.5 81 3.3 2.6
20
第20页/共44页
点电荷的电场中置入任意一块介质
D 通量只取决于高斯面内 的自由电荷,而高斯面上的 D 是由高斯面内、外的系统 所有电荷共同产生的。
S1 D1 • dS q
(c)无限大平面电荷:包括无限大的均匀带电平面,平板等。
(a)
试问:
(b)
(c)
图3. 平行平面场的高斯面
能否选取底面为方型的封闭柱面为高斯面?
27
第27页/共44页
例1 真空中有两个同心金属球壳,内球壳半径R1,带电q1,外球 壳半径R2,壳厚R2,带电q2,求场中各处电场及电位。
解: ① 分析电荷分布情况 :
正、负感应电荷分布在 B 的内、外 表面上。
+++-+--+- -+++++++-A+++-+++++-+-+-++---++
4
第4页/共44页
3.导体表面电荷密度 与该处 E表的大小成正比。
在导体外紧靠导体表面的一点 P :
E表
0
P E表
4.孤立带电导体表面电荷分布处在静电 平衡时,在导体表面凸出的尖锐部分电荷 面密度 较大;在比较平坦部分电荷面密 度较小。
有机玻璃 石腊 聚乙烯
1.0 2.3 1.3~4.0 2.6~3.5 2.1 2.3
石英 云母 陶瓷 纯水 树脂 聚苯乙烯
3.3 6.0 5.3~6.5 81 3.3 2.6
静电场的高斯定理

i (内) S
i(外) S
q1 qk 0 0
ε0
ε0
1
ε0
Φe
qi (内)
E dS
S
1 ε0
qi (内)
面外电荷
qk 1
q1 qi
q2 qn
dS
E
qi(内) 是指面内电荷代数和
34
高斯定理
(Gauss’ Law)
Φe SE dS
23
带电平行板电容器的电场线
24
2.电通量(electric flux)
S
定义:通过电场中某一曲面
的电场线的条数称为通过该
E
面的电通量,用Φe 表示。
①均匀 电场,平面S 与 E垂直。
e ES
②法线均方匀电向与场,E 成平面角S的。
Φe ES ES cosθ E S
求解的关键是选取适当的高斯面。
常见的具有对称性分布的源电荷有:
40
常见的对称性电荷分布类型:
球对称分布: 均匀带电的球面,球体和多层
同心球壳等
轴对称分布: 无限长均匀带电的直线,圆柱面,
圆柱壳等;
平面对称分布: 无限大的均匀带电平面,平板等。
R (x2 R2 ห้องสมุดไป่ตู้1/2
zR0
o
x
P
dE
x
dR q π R02
11
dEx
2 0
xRdR (x2 R2)3
2
E dEx
x R0
RdR
2 0 0 ( x2 R 2 )3/ 2
y
zR0
R o
大学物理 高斯定理PPT课件

由于电场线的连续性可知,穿 入与穿出任一闭合曲面的电通 量应该相等。所以当闭合曲面 无电荷时,电通量为零。
q
④点电荷系的电通量等于在高斯 面内的点电荷单独存在时电通量 的代数和。
设 闭合曲面S包围多个电荷q1-qk,
同时面外也有多个电荷qk+1-qn 利用场强叠加原理
n
E =
E精选PiPT课件
i1
2
电场线密度:经过电场中任一点, 作一面积元dS,并使它与该点的 场强垂直,若通过dS面的电场线 条数为dN,则电场线密度
E= dN dS
可见,电场线密集处电场强度大,电场线稀疏处电 场强度小
精选PPT课件
3
2、几种典型的电场线分布 负点电荷
正点电荷
+
+
精选PPT课件
等量异号点电荷
4
+2q q
精选PPT课件
17
高斯定理的应用
例1. 求球面半径为R,带电为q的均匀带电球面的电场的
空间分布。
解: 电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面.
SE d S E 4r2
q
0
q
E 4 0 r 2
rR时,高斯面无电荷,
E=0
++ + + q
+ +
Rr
•通过任意闭合曲面的总通量只取决于面内电荷的代数和,而
与面外电荷无关,也与电荷如何分布无关.但电荷的空间分布
会影响闭合面上各点处的场强大小和方向;
•高斯定理中的电场强度是封闭曲面内和曲面外的电荷共同产
生的,并非只有曲面内的电荷确定;
•当闭合曲面上各点 E =时0,通过闭合曲面的电通量
静电场中的高斯定理PPT课件

情况一:S为以点电荷为中心半径
为r的球面
E dS
S
S
q 4 0r 2
rˆ
dS
若包围点电荷的是
(dS的方向是外法向方向与r同方向) 任意形状的的闭合
面,结果应该如何
结果 只4与qq0有r 2关 与S rd无S通关过!根q任0 源意是形电状场的线包的围呢连点?续电性荷!的闭
合面的电通量都是q /ε0
取Gass面为半径为r<R
的球面
S E dS E4r2
1 V 1 4r3
0
0 3
Q rR
E内
r 30
Qr 4 0R3
r E
均匀带电的球壳内场强为零
壳外场强
E外
Q 4 0r 2
R
r
总结:
•电荷分布的对称性与场强分布的对称性相同
E 2 0r
无限大均匀带电体平板.
E
2 0
无限长均匀带电直线(或圆柱).
结论一:通过任意形状的包围点电荷的闭合面 的情电况通二量:都假是如q 闭/ε0合面不包围点电荷
结点论电二荷:若通在过S不外包,则围穿点出电的荷电的力任线意=形状的闭合
面穿的入电的通电量力都线是,0 =0
2) 源电荷是由n个点电荷组成的点电荷系
由叠加原理
E Ei
S
i
E dS
S
(E1 E2 E5 ) dS
S
E1 dS E2 dS
E5 dS
S
S
S
q1 q2 q5
0
高斯定理:任意的静电场中通过任意封闭曲面的通量,等
于该曲面内电荷量代数和除以0 .
说明:
1.闭合面内、外电荷的贡献 对 E 都有贡献
大学物理静电场的高斯定理

高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。
《静电场高斯定理》课件

及电场强度在不同区域的变化规律。
REPORT
CATALOG
DATE
ANALYSIS
用微积分的知识
总结词:数学推导
详细描述:通过微积分的知识,对电场E进行积分,利用矢量场的散度性质,推导出高斯定理。
证明方法二:利用电通量概念
总结词
物理概念理解
详细描述
详细描述
高斯定理是静电场的基本定理之一, 它表述了电场强度E的闭合曲面积分等 于被包围的电荷量Q除以真空电容率 ε₀。数学公式表示为∮E·dS = Q/ε₀。
高斯定理的应用场景
总结词
高斯定理的应用场景包括计算电场分布、确定电荷分布、解决静电场问题等。
详细描述
高斯定理在静电场理论中具有广泛的应用,它可以用于计算电场分布、确定电荷分布以及解决各种静电场问题。 通过高斯定理,我们可以求解电场中任意区域的电场强度,进而分析电场对电荷的作用力以及能量等物理量。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
在静电屏蔽中的应用
静电屏蔽原理
高斯定理可以用来解释静电屏蔽原理,当一 个带电体被导体外壳包围时,由于导体的静 电感应作用,带电体会在导体外壳内表面感 应出等量异种电荷,根据高斯定理,导体外 壳外部的电场线数为零,因此带电体被完全 屏蔽在导体外壳内部。
静电屏蔽的应用
高斯定理在静电屏蔽中有广泛的应用,如电 子设备、仪器仪表、输变电设备等需要防止 外界电场干扰的场合,通过采用静电屏蔽措 施来降低外界电场对设备的干扰。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
REPORT
CATALOG
DATE
ANALYSIS
用微积分的知识
总结词:数学推导
详细描述:通过微积分的知识,对电场E进行积分,利用矢量场的散度性质,推导出高斯定理。
证明方法二:利用电通量概念
总结词
物理概念理解
详细描述
详细描述
高斯定理是静电场的基本定理之一, 它表述了电场强度E的闭合曲面积分等 于被包围的电荷量Q除以真空电容率 ε₀。数学公式表示为∮E·dS = Q/ε₀。
高斯定理的应用场景
总结词
高斯定理的应用场景包括计算电场分布、确定电荷分布、解决静电场问题等。
详细描述
高斯定理在静电场理论中具有广泛的应用,它可以用于计算电场分布、确定电荷分布以及解决各种静电场问题。 通过高斯定理,我们可以求解电场中任意区域的电场强度,进而分析电场对电荷的作用力以及能量等物理量。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
在静电屏蔽中的应用
静电屏蔽原理
高斯定理可以用来解释静电屏蔽原理,当一 个带电体被导体外壳包围时,由于导体的静 电感应作用,带电体会在导体外壳内表面感 应出等量异种电荷,根据高斯定理,导体外 壳外部的电场线数为零,因此带电体被完全 屏蔽在导体外壳内部。
静电屏蔽的应用
高斯定理在静电屏蔽中有广泛的应用,如电 子设备、仪器仪表、输变电设备等需要防止 外界电场干扰的场合,通过采用静电屏蔽措 施来降低外界电场对设备的干扰。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03