人教版高中数学必修四任意角和弧度制

合集下载

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

教学设计4:任意角、弧度制及任意角的三角函数

教学设计4:任意角、弧度制及任意角的三角函数

4.1 任意角、弧度制及任意角的三角函数【教学目标】1.考查三角函数的定义及应用. 2.考查三角函数值符号的确定.【复习指导】从近几年的高考试题看,这部分的高考试题大多为教材例题或习题的变形与创新,因此学习中要立足基础,抓好对部分概念的理解.【基础梳理】 1.任意角 (1)角的概念的推广①按旋转方向不同分为 、 、 . ②按终边位置不同分为 和 . (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角: 叫做1弧度的角.②规定:正角的弧度数为 ,负角的弧度数为 ,零角的弧度数为 ,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小 ,仅与角的大小有关.④弧度与角度的换算:360°= 弧度;180°= 弧度. ⑤弧长公式: ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=yx ,它们都是以角为 ,以比值为 的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的 .由三角函数的定义知,点P 的坐标为 ,即P ,其中cos α= ,sin α= ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α= .我们把有向线段OM 、MP 、AT 叫做α的 、 、 .三角函数线有向线段 为正弦线有向线段为余弦线有向线段 为正切线考向分析考向一 角的集合表示及象限角的判定【例1】►(1)写出终边在直线y =3x 上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】 角α与角β的终边互为反向延长线,则( ). A .α=-β B .α=180°+β C .α=k ·360°+β(k ∈Z ) D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ).A .-45B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】 已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】 求下列函数的定义域: (1)y =2cos x -1; (2)y =lg(3-4sin 2x ).提升演练1.下列与9π4的终边相同的角的表达式中正确的是( ).A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )2.若α=k ·180°+45°(k ∈Z ),则α在( ). A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限3.若sin α<0且tan α>0,则α是( ). A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角 4.已知角α的终边过点(-1,2),则cos α的值为( ). A .-55 B.255 C .-255 D .-125.已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.答案【基础梳理】 1.(1)①正角、负角、零角 ②象限角和轴线角. (3)弧度制①把长度等于半径长的弧所对的圆心角 ②正数 负数 零 ③无关 ④2π π ⑤ l =|α|r2.自变量 函数值3.正射影 (cos α,sin α) P (cos α,sin α) OM MP AT 余弦线、正弦线、正切线.MPOMAT【例1】►[审题视点] 利用终边相同的角进行表示及判断. 解: (1)在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=π3+k π,k ∈Z .(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ).依题意0≤2π7+2k π3<2π⇒-37≤k <187,k ∈Z .∴k =0,1,2,即在[0,2π)内终边与θ3相同的角为2π7,20π21,34π21.(3)∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°,k ∈Z . ∴2k ·360°+180°<2α<2k ·360°+360°,k ∈Z .∴2α是第三、第四象限角或角的终边在y 轴非正半轴上. ∵k ·180°+45°<α2<k ·180°+90°,k ∈Z ,当k =2m (m ∈Z )时,m ·360°+45°<α2<m ·360°+90°;当k =2m +1(m ∈Z )时,m ·360°+225°<α2<m ·360°+270°;∴α2为第一或第三象限角. 方法总结: (1)相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.(2)角的集合的表示形式不是唯一的,如:终边在y 轴非正半轴上的角的集合可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪ x =2k π-π2,k ∈Z ,也可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π+3π2,k ∈Z .【训练1】【解析】对于角α与角β的终边互为反向延长线,则α-β=k ·360°±180°(k ∈Z ). ∴α=k ·360°±180°+β(k ∈Z ). 【答案】D【例2】► [审题视点] 根据三角函数定义求m ,再求cos θ和tan θ. 解 由题意得,r =3+m 2,∴m 3+m 2=24m ,∵m ≠0, ∴m =±5,故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角, ∴cos θ=x r =-322=-64,tan θ=y x =5-3=-153.当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角. ∴cos θ=x r =-322=-64,tan =y x =-5-3=153.方法总结: 任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的. 【训练2】【解析】 取终边上一点(a,2a ),a ≠0,根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.【答案】 B 【例3】►[审题视点] (1)由已知条件可得△AOB 是等边三角形,可得圆心角α的值;(2)利用弧长公式可求得弧长,再利用扇形面积公式可得扇形面积,从而可求弓形的面积. 解: (1)由⊙O 的半径r =10=AB ,知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·1032=12×10×1032=5032,∴S =S 扇形-S △AOB =50⎝⎛⎭⎫π3-32.方法总结: 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式. 【训练3】解: 设圆心角是θ,半径是r ,则2r +rθ=40, S =12lr =12r (40-2r )=r (20-r )≤⎝⎛⎭⎫2022=100. 当且仅当r =20-r ,即r =10时,S max =100.∴当r =10,θ=2时,扇形面积最大,即半径为10,圆心角为2弧度时,扇形面积最大. 【例4】►[审题视点] 作出满足sin α=32,cos α=-12的角的终边,然后根据已知条件确定角α终边的范围. 解:(1)作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角α的终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π3≤α≤2k π+23π,k ∈Z .(2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .方法总结: 利用单位圆解三角不等式(组)的一般步骤是: (1)用边界值定出角的终边位置; (2)根据不等式(组)定出角的范围; (3)求交集,找单位圆中公共的部分; (4)写出角的表达式. 【训练4】解 (1)∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示).∴定义域为⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ). (2)∵3-4sin 2x >0, ∴sin 2x <34,∴-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴定义域为⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ).提升演练 1.【解析】与9π4的终边相同的角可以写成2k π+94π(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确. 【答案】C 2.【解析】当k =2m +1(m ∈Z )时,α=2m ·180°+225°=m ·360°+225°,故α为第三象限角; 当k =2m (m ∈Z )时,α=m ·360°+45°,故α为第一象限角. 【答案】A 3.【解析】由sin α<0知α是第三、四象限或y 轴非正半轴上的角,由tan α>0知α是第一、三象限角.∴α是第三象限角. 【答案】C 4.【解析】由三角函数的定义可知,r =5,cos α=-15=-55.【答案】A 5.【解析】根据正弦值为负数且不为-1,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角,∴y <0,sin θ=y 16+y 2=-255⇒y =-8.【答案】-8。

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

高中数学人教A版必修4课件:1.1.2弧度制

高中数学人教A版必修4课件:1.1.2弧度制
(2)将下列各弧度角化为角度:①-51π2 rad;②139π.
思路点拨:
解:(1)①∵1°=1π80 rad, ∴112°30′=1π80×112.5 rad=58π rad. ②-315°=-315×1π80=-74π. (2)①∵1 rad=1π80°, ∴-51π2 rad=-51π2×1π80°=-75°. ②139π=139π×1π80°=1 140°.
(2) 的面积.
思路点拨:(1) 设出圆心角为θ → 建方程组 → 解方程组得解 (2) 化度为弧度 → 求弧长 → 求扇形面积
解:(1)设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l, 半径为 r,
依题意有
l+2r=10,

12lr=4.
进行角度制与弧度制的互化的策略以及注意点 (1)原则:牢记 180°=π rad,充分利用 1°=1π80 rad 和 1 rad =1π80°进行换算. (2)方法:设一个角的弧度数为 α,角度数为 n,则 α rad=α·1π80°;n°=n·1π80.
(3)注意点 ①用“弧度”为单位度量角时,“弧度”二字或“rad” 可以省略不写. ②用“弧度”为单位度量角时,常常把弧度数写成多少π 的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
3.解析弧度制下弧长公式、扇形的面积公式 在弧度制下,弧长公式和扇形的面积公式分别为: l=|α|R,S=12lR=12|α|R2(其中 α 为圆心角的弧度数,R 为扇 形的半径). 要把握好上述公式,需注意以下三个方面: (1)由上述公式可知,由 α、l、R、S 中的两个量可以求出 另外的两个量,即“知二求二”.
【即时演练】
-247π 是第________象限的角. 解析:∵-247π=-6π-34π,而-34π 是第三象限的角, ∴-247π 是第三象限的角. 答案:三

人教版高二数学必修四《任意角和弧度制》评课稿

人教版高二数学必修四《任意角和弧度制》评课稿

人教版高二数学必修四《任意角和弧度制》评课稿一、引言《任意角和弧度制》是人教版高中数学必修四教材中的一章内容。

本评课稿旨在对该章节进行全面的评价,并提出一些建议与改进之处。

二、教材内容概述《任意角和弧度制》是高中数学中的重要概念之一。

本章主要介绍了任意角的概念,介绍了弧度制以及角度和弧度之间的相互转化等内容。

该章节主要内容包括: 1. 角的概念与表示方式; 2. 角的度量单位:弧度制; 3. 角度与弧度的转换; 4. 弧长与角度的关系; 5. 三角函数中的角度单位转换。

三、教学目标分析1.知识目标:–掌握任意角的概念和表示方式;–理解角的度量单位弧度制;–能够进行角度与弧度的相互转换;–理解弧长与角度的关系;–了解三角函数中的角度单位转换。

2.能力目标:–能够正确使用各种符号表示角度大小;–能够灵活运用弧度制进行角度单位转换;–能够运用所学知识解决实际问题。

3.情感目标:–培养学生对数学的兴趣和好奇心;–增强学生解决问题的能力;–培养学生对数学的认真态度和严谨思维。

四、教学重点和难点分析1.教学重点:–任意角的概念和表示方式;–弧度制的概念及其应用。

2.教学难点:–角度与弧度的相互转换;–弧长与角度的关系的理解。

五、教学方法1.演绎法:通过具体例子引导学生从观察实例中归纳出规律。

2.归纳法:通过总结归纳的方式帮助学生理解概念和定理。

3.实践活动法:通过实际问题解决的活动,培养学生的动手能力和创新思维能力。

4.讨论法:通过小组讨论、互动交流的方式激发学生思考和独立思维能力。

六、教学流程1.导入:通过展示一些实际生活中的角度,引起学生的兴趣,激发他们对该内容的探索欲望。

2.概念讲解:介绍任意角的概念和表示方式,引导学生认识角度的度量单位。

3.弧度制讲解:引导学生理解弧度制的定义,并通过具体例子说明弧度与角度的转换方法。

4.练习与讨论:提供多种角度单位转换的练习题,通过小组合作和全班讨论的方式,帮助学生巩固所学知识。

1.1_任意角与弧度制

1.1_任意角与弧度制
150 的角与210 的角终边相同, 是第三象限角
(3)
990 15 ( 3) 360 89 45 是第一象限角
990 15的角与89 45的角终边相同,
RTX3:
如何判断一个给定角所在象限?
只需把它们写成:k 360 (0 360 ) 即可
k 180 120 (k Z ) 2
是第二或第四象限角 2

变:判断 2是第几象限角呢?
课堂练习:
1.一角为30°,其终边按逆时针方向旋转 三周后的 角度数为____,若按顺时针方向旋转呢? 2.在0度到360度范围内,找出与下列各角终边相同 的角,并分别判断它们是哪个象限的角? ① -55º ② 395º8′ ③ 1563º
( 3 )角 的 终 边 在 坐 标 轴 上 , 就 说 这 个 角 不 属 于 任 何 象 限.
RTX2:
锐角是第几象限的角?第一象限的角都是锐角吗? 直角和钝角呢?小于90°的角是锐角吗?
锐角是第一象限角 直角不是象限角 第一象限的角不都是锐角 钝角是第二象限角
小于90°的角不都是锐角
集体探究学习活动2
第二象限的角表示为
{|k360+90<<k360+180,(kZ)}
第三象限的角表示为
{|k3,(kZ)}
第四象限的角表示为
{|k360+270<<k360+360,(kZ)} 或{|k36090<<k360,(kZ)}
( 2 )范 围 都 在 : 0 0 ~ 3 6 0 0.
实际使用中的角 :既要知道旋转量,又要知道旋 转 方 向.
集体探究学习活动1
1.任意角的概念是什么? 2.角是怎样分类的?

第四章 §4.1 任意角和弧度制、三角函数的概念

第四章 §4.1 任意角和弧度制、三角函数的概念

题型二 弧度制及其应用
例 2 (1)已知一扇形的圆心角 α=π3,半径 R=10 cm,则此扇形的弧积为____3____ cm2.
由已知得 α=π3,R=10 cm, 所以 l=αR=π3×10=130π(cm), S 扇形=12αR2=12×π3×102=530π(cm2).
√C.第三、四象限
D.第一、四象限
因为cos α·tan α<0,所以cos α,tan α的值一正一负,所以角α的终边 在第三、四象限.
返回
课时精练
知识过关
一、单项选择题 1.给出下列四个命题,其中正确的是 A.-34π是第四象限角 B.43π是第二象限角 C.-400°是第一象限角
√D.-315°是第一象限角
思维升华
(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三 角函数值;已知角α的三角函数值,也可以求出点P的坐标. (2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽 略角的终边在坐标轴上的情况.
跟踪训练 3 (1)已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=
A.2kπ-45°(k∈Z)
B.k·360°+94π(k∈Z)
√C.k·360°-315°(k∈Z)
D.kπ+54π(k∈Z)
自主诊断
与94π的终边相同的角可以写成 2kπ+94π(k∈Z),但是角度制与弧度制 不能混用,所以只有 C 正确.
自主诊断
3.(必修第一册P180T3改编)已知角θ的终边过点P(-12,5),则sin θ+cos θ
题型三 三角函数的概念
例 3 (1)(2023·北京模拟)在平面直角坐标系中,角 α 以 x 轴的非负半轴为

高中数学5.1任意角和弧度制

高中数学5.1任意角和弧度制

高中数学5.1 任意角和弧度制一、概述高中数学中,三角函数是一个重要内容。

而在学习三角函数之前,我们需要先了解一些基本概念,比如任意角和弧度制。

本文将围绕着这两个概念展开讲解,帮助读者更好地理解和掌握这些内容。

二、任意角的概念1. 任意角是指不限制在0°到360°之间的角。

在平面直角坐标系中,任意角可以被表示为一个终边落在坐标轴上的角。

这意味着任意角可以包括整个360°的范围。

2. 我们通常用θ来表示任意角,其实任意角可以被表示为θ=360k +α,其中k是整数,α是小于360°的正角,它是唯一的。

三、弧度制的概念1. 弧度制是另一种角度的度量方式,它是以圆的半径长为单位进行度量的。

一个圆的全周长为2πr,所以一个圆的一周等于2π弧度。

2. 我们知道360°等于2π弧度,所以1°等于π/180弧度。

角度和弧度之间可以通过π进行转换。

3. 弧度制适合用于求解圆的性质问题,因为它更直接地与圆的半径有关,可以简化很多计算,并且更具有普适性。

四、任意角与弧度的转换1. 已知一个角的度数,求其对应的弧度。

我们可以根据1°等于π/180弧度的关系,进行计算转换。

30°对应的弧度是30°×π/180=π/6弧度。

2. 已知一个角的弧度,求其对应的度数。

同样可以根据π弧度等于180°进行转换计算。

π/3弧度对应的度数是π/3÷π×180°=60°。

五、扩展知识1. 在解决某些三角函数的问题时,可能会遇到弧度制和角度制混用的情况。

在这种情况下,我们需要先将角度统一转换为弧度,然后再进行计算。

2. 在高等数学中,弧度制被广泛应用于导数、积分和微分等计算中。

了解弧度制可以为后续高等数学的学习奠定坚实基础。

六、总结任意角和弧度制是高中数学中一个基础而重要的知识点,它为后续学习三角函数和高等数学打下了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角和弧度制__________________________________________________________________________________ __________________________________________________________________________________1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式3.熟记特殊角的弧度数(一)角的概念: 1 任意角正角:按顺时针方向形成的角 负角:按逆时针方向形成的角 2 象限角定义:角的顶在原点始边与x 轴重合,终边在第几象限此角就是第几象限角。

与角α有相同终边所有角表示为:α+2kπ(k 为任意整数) (1)在直角坐标系内讨论角:注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或 (3)区间角的表示: ①象限角:象限角 象限角的集合表示第一象限角的集合 o o o {|360<<36090,x k k k α⋅⋅+∈Z } 第二象限角的集合 o o o o {|36090<<360180,x k k k α⋅+⋅+∈Z } 第三象限角的集合 o o o o {|360180<<360270,x k k k α⋅+⋅+∈Z } 第四象限角的集合o o o o {|360270<<360360,x k k k α⋅+⋅+∈Z }②写出图中所表示的区间角: 由α的终边所在的象限, 来判断2α所在的象限,来判断3α所在的象限(二)弧度制1 弧度角的规定.它的单位是rad 读作弧度如图:∠AOB=1rad∠AOC=2rad周角=2πrad定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

与圆的半径无关以弧度为单位来度量角的制度叫弧度制。

(1)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0(2)角α的弧度数的绝对值rl=α(l为弧长,r为半径)(3)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)弧度制与角度制的换算公式:弧度制=角度制*π/180o角度制=弧度制*180o/π2π=360o弧度数α与弧长L与半径R的关系:L=Rα(可用来求弧长与半径)(4)弧长公式:L=Rα;扇形面积公式:221RSα=弧长公式:180rnlπ=,扇形面积公式:3602RnSπ=扇(初中)2 弧度制与角度制的换算:因为周角的弧度数是2π,角度是360°,所以有radradradrad01745.018011802360≈===ππποοο把上面的关系反过来写οο1803602==radradππ815730.57)180(1'=≈=οοοradradποο360~0之间的一些特殊角的度数与弧度数的互化必需熟练掌握.度0°30°45°60°90°120°135°150°180°270°360°弧度06π4π3π2ππ32π43π65ππ232π类型一:角的概念问题orC2rad1rad rl=2roAAB1. 终边相同的角的表示例1 若角α是第三象限的角,则角α-的终边在第______象限. 答案:二.解析:因为α是第三象限的角,故oooo360270<<360180,k k k α-⋅---⋅-∈Z ,则o 360k ⋅o o o 270<<360180,k k α--⋅-∈Z ,故α-的终边在第二象限.练习:与o 610角终边相同的角可表示为_____________. 2. 象限角的表示例2 已知角α是第二象限角,问(1)角2α是第几象限的角?(2)角2α终边的位置. 思路:先根据已知条件得出角的范围,再通过讨论k 值来确定象限角.解析:(1)因为α是第二象限的角,故oooo36090<<360180(k k k α⋅+⋅+∈Z ),故︒︒︒︒+⋅<<-⋅45180245180k k αo 180k ⋅o o o 45<<18090(2k k α+⋅+∈Z ).当k 为偶数时,2α在第一象限;当k 为奇数时,2α在第三象限,故2α为第一或第三象限角.(2)由oooo36090<<360180(k k k α⋅+⋅+∈Z ),得o o o 2360180<2<2360k k α⋅+⋅+ o 360(k ∈Z ),故角2α终边在下半平面.点评:已知α所在象限,求(n nα∈N *)所在象限的问题,一般都要分几种情况进行讨论.结论:类型二:弧度制与弧长公式 1.角度制与弧度制的互化例3 把下列各角的度数化为弧度数:⑴ο150 ⑵'3037ο ⑶'3022ο- ⑷ο315-解 因为1801π=οrad ,所以⑴ rad rad 65180150150ππ=⨯=ο ⑵ rad rad 245180213721373037'ππ=⨯=⎪⎭⎫⎝⎛=οο⑶ rad rad 8180212221223022'ππ-=⨯-=⎪⎭⎫ ⎝⎛-=-οο⑷ rad rad 47180315315ππ-=⨯-=-ο练习:把下列各角的弧度数化为度数: ⑴rad 43π ⑵rad 5.3 ⑶rad 35π ⑷rad 49π- 例4 (1)设o 750α=,用弧度制表示α,并指出它所在的象限;(2)设35βπ=,用角度制表示β,并在o 720-~o 0内找出与它有相同终边的所有角. 导思:(1)角度与弧度应如何进行互化?(2)确定角为第几象限角的依据是什么?(3)怎样找终边相同的角?依据是什么?解析:(1)257502218066ππαππ=⨯==⨯+,故α在第一象限. (2)o o 31803()10855πππ=⨯=,与它终边相同的角可表示为o o 360180(k k ⋅+∈Z ),由o 720-≤o o o 360180<0k ⋅+,得332<1010k --≤,故2k =-或1k =-,即在o 720-~o 0范围内与β有相同终边的所有角是o 612-和o 252-.点评:角度与弧度进行互化,关键是对转化公式的理解和应用;判断一个角所在的象限,关键是在[0,2]π内找到与该角终边相同的角.练习:(1)设o 570α=-,用弧度制表示α,并指出它所在的象限; (2)设73βπ=,用角度制表示β,并在o 720-~o 0内找出与它有相同终边的所有角. 2.求弧长与扇形面积例5 已知一扇形中心角为α,所在圆半径为R .(1)若3πα=,10R =cm ,求扇形的弧长及该弧所在弓形的面积;(2)若扇形的周长为一定值(>0)C C ,当α为何值时,该扇形面积最大,并求此最大值. 导思:(1)扇形的弧长公式是什么?(2)怎样由扇形面积来求弓形的面积?(3)如何用扇形的周长C 表示扇形面积?(4)怎样求最大值?能用二次函数来求吗?能用基本不等式来求吗?解析:(1)设弧长为l ,弓形面积为S 弓,则10(3l π=cm ),故110110232S S S π∆=-=⨯⨯-⨯弓扇210sin 50(332ππ⨯=-cm 2). (2)由扇形周长2C R l =+,得2l C R =-,故211=(2)22S Rl R C R R =-=-扇221()2416C C RC R +=--+.当4C R =时,S 扇有最大值且最大值为216C .此时22Cl C R =-=,故422l C R Cα==⋅=.故当2α=时,该扇形有最大面积. 点评:在应用扇形弧长和面积公式时,如果圆心角用角度表示,则应先化为弧度;注意不要把弓形面积与扇形面积相混淆.练习:设扇形的周长为8cm ,面积为4cm 2,则扇形的圆心角的弧度数是________.1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、写出-720°到720°之间与-1068°终边相同的角的集合___________________.5、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C7、下列结论正确的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|οοαα={}Z k k ∈+⋅=,90180|οοαα8、若α是第四象限的角,则α-ο180是 .A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角9、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________. 10、若角α的终边为第二象限的角平分线,则α的集合为______________________._________________________________________________________________________________ _________________________________________________________________________________高中数学必修四三角函数讲义基础巩固一、选择题1.已知α=-3,则角α 的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.与-13π3终边相同的角的集合是( )A .⎩⎨⎧⎭⎬⎫-π3B .⎩⎨⎧⎭⎬⎫5π3C .⎩⎨⎧⎭⎬⎫α|α=2k π+π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=2k π+5π3,k ∈Z3.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B =( ) A .∅B .{α|0≤α≤π|C .{α|-4≤α≤4|D .{α|-4≤α≤-π或0≤α≤π}4.一条弧所对的圆心角是2rad ,它所对的弦长为2,则这条弧的长是( ) A .1sin1B .1sin2C .2sin1D .2sin25.某扇形的面积为1cm 2,它的周长为4 cm ,那么该扇形的圆心角等于( ) A .2° B .2 C .4°D .46.如图中,圆的半径为5,圆内阴影部分的面积是( )A .175π36B .125π18C .75π18D .34π9二、填空题7.若两个角的差是1°,它们的和是1弧度,则这两个角的弧度数分别是__________. 8.正n 边形的一个内角的弧度数等于__________. 三、解答题9.已知α1=-570°、α2=750°,β1=3π5,β2=-7π3.(1)将α1、α2用弧度制表示出来,并指出它们各自所在象限;(2)将β1、β2用角度制表示出来,并在-720°~0°范围内找出与β1、β2有相同终边的角.能力提升一、选择题1.扇形的一条弦长等于半径,则这条弦所对的圆心角是 ____弧度.( ) A .π B .π2C .π3D .π42.在直角坐标系中,若角α与角β终边关于原点对称,则必有( ) A .α=-β B .α=-2k π±β(k ∈Z ) C .α=π+βD .α=2k π+π+β(k ∈Z )3.在半径为3cm 的圆中,60°的圆心角所对的弧的长度为( ) A .π3cmB .πcmC .3π2cmD .2π3cm4.下列各组角中,终边相同的角是( ) A .(2k +1)π与(4k ±1)π,k ∈Z B .k π2与k π+π2,k ∈ZC .k π+π6与2k π±π6,k ∈ZD .k π±π3与k π3,k ∈Z二、填空题5.把-11π4写成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是________.6.用弧度表示终边落在y 轴右侧的角的集合为________. 三、解答题7.x 正半轴上一点A 绕原点依逆时针方向做匀速圆周运动,已知点A 每分钟转过θ角(0<θ≤π),经过2min 到达第三象限,经过14min 回到原来的位置,那么θ是多少弧度?8.设集合A ={α|α=32k π,k ∈Z },B ={β|β=53k π,|k |≤10,k ∈Z },求与A ∩B 的角终边相同的角的集合.9.已知扇形AOB 的周长为8cm.(1)若这个扇形的面积为3cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的弧度数和弦长AB .。

相关文档
最新文档