高中数学必修四练习手册:1-1-1任意角Word版含答案

合集下载

高一数苏教必修四讲义:第1章 1.1 1.1.1 任 意 角 Word含答案

高一数苏教必修四讲义:第1章 1.1 1.1.1 任 意 角 Word含答案

任意角、弧度1.1.1任意角预习课本P5~7,思考并完成下列问题1.在初中,角是怎样定义的?2.如果角按旋转的方向来进行分类,可分为哪三类?3.如果把角放入平面直角坐标系中,象限角和轴线角的规定是怎样的?4.如何表示终边相同的角?[新知初探]1.任意角(1)角的概念一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.射线的端点称为角的顶点,射线旋转的开始位置和终止位置称为角的始边和终边.(2)角的分类正角:按逆时针方向旋转所形成的角;负角:按顺时针方向旋转所形成的角;零角:射线没有作任何旋转所形成的角.[点睛]对角的理解关键是抓住旋转二字(1)要明确旋转的方向;(2)要明确旋转量的大小;(3)要明确旋转的开始位置.2.象限角、轴线角以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,称这个角为轴线角.[点睛](1)角的顶点要与坐标原点重合;(2)角的始边要与x轴的正半轴重合.3.终边相同的角一般地,与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.[点睛]终边相同的角与相等的角是两个不同的概念,两角相等,终边一定相同,但是两角终边相同时,两角不一定相等,它们相差360°的整数倍.[小试身手]1.下列命题正确的是____________(填序号).①-30°是第一象限角;②750°是第四象限角;③终边相同的角一定相等;④-950°12′是第二象限的角.★答案★:④2.-1 120°角所在象限是____________.★答案★:第四象限3.与405°角终边相同的角的集合是____________.★答案★:{α|α=k·360°+45°,k∈Z}4.在-180°到360°范围内,与2 000°角终边相同的角为____________.★答案★:-160°,200°角的概念辨析[典例]有下列说法:①相差360°整数倍的两个角,其终边不一定相同;②{α|α是锐角}{β|0°≤β<90°};③第一象限角都是锐角;④小于180°的角是钝角、直角或锐角.其中正确说法的序号是________.[解析]①不正确.终边相同的两个角一定相差360°的整数倍,反之也成立;②∵α是锐角,即0°<α<90°,故{α|0°<α<90°}{β|0°≤β<90°},故②正确;③第一象限角不一定都是锐角,如380°是第一象限角,但它不是锐角,故③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.[★答案★]②有关角的概念辨析的解题策略(1)正确理解象限角及锐角、直角、钝角、平角、周角等概念.(2)可通过举出反例来进行判断.下列命题是真命题的序号是________.①三角形的内角必是一、二象限内的角;②第二象限角是钝角; ③不相等的角终边一定不同;④{α|α=k ·360°±90°,k ∈Z}={α|α=k ·180°+90°,k ∈Z}. 解析:①90°不是象限角;②如-240°是第二象限角,但不是钝角; ③如0°和360°不相等,但终边相同;④k ·360°±90°=2k ·180°±90°=2k ·180°+90°或(2k -1)·180°+90°,k ∈Z. ★答案★:④象限角及终边相同的角[典例] 在0°到360°的范围内,求出与下列各角终边相同的角,并判断是第几象限角. (1)-736°;(2)904°18′.[解] (1)-736°=-3×360°+344°,344°是第四象限角. ∴344°与-736°是终边相同的角,且-736°为第四象限角. (2)904°18′=2×360°+184°18′,184°18′是第三象限角. ∴184°18′与904°18′是终边相同的角,且904°18′为第三象限角.(1)把任意角化为α+k ·360°(k ∈Z 且0°≤α<360°)的形式,关键是确定k .可以用观察法(α的绝对值较小),也可用除法.要注意:正角除以360°,按通常的除法进行;负角除以360°,商是负数,其绝对值比被除数为其相反数时的商大1,使余数为正值.(2)要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.[活学活用]写出-720°到720°之间与-1 068°终边相同的角的集合为______________. 解析:与-1 068°终边相同的角为-1 068°+k ·360°,要落在-720°到720°之间,则取k =1,2,3,4.★答案★:{-708°,-348°,12°,372°}已知角α所在象限,判断αn 或nα(n ∈Z)所在象限[解] ∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°,k ∈Z. ∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z.∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角. [一题多变]1.[变设问]若本例条件不变,求α2是第几象限角?解:45°+k 2 ·360°<α2<90°+k2·360°,k ∈Z.当k 为偶数时,不妨令k =2n ,n ∈Z , 则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z , 则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角.2.[变设问]若本例条件不变,求α3是第几象限角?解:∵k ·120°+30°<α3<k ·120°+60°(k ∈Z),当k =3n (n ∈Z)时, n ·360°+30°<α3<n ·360°+60°;当k =3n +1(n ∈Z)时, n ·360°+150°<α3<n ·360°+180°;当k =3n +2(n ∈Z)时, n ·360°+270°<α3<n ·360°+300°.∴α3是第一或第二或第四象限的角. 3.[变条件]已知α是第二象限角,且8α与2α的终边相同,判断2α是第几象限角. 解:8α=2α+k ·360°(k ∈Z), 所以α=k ·60°(k ∈Z), 所以,2α=k ·120°(k ∈Z),当k 为偶数时, 2α的终边分别落在x 轴的正半轴和第二、第三象限. 当k 为奇数时,2α的终边分别落在x 轴的正半轴和第二、第三象限, 所以,2α为第二或第三象限角,或是终边落在x 轴正半轴上的角.已知角α终边所在象限,(1)确定nα终边所在的象限,直接转化为终边相同的角即可. (2)确定αn 终边所在象限常用的步骤如下:①求出αn 的范围;②对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1; ③下结论.层级一 学业水平达标1.在0°到360°范围内,与-950°角终边相同的角是________.解析:-950°=130°-3×360°,所以在0°~360°的范围内,与-950°角终边相同的角是130°.★答案★:130°2.在-390°,-885°,1 351°,2 016°这四个角中,其中第四象限角的个数为________. 解析:-390°=-360°-30°是第四象限角;-885°=-2×360°-165°是第三角限角;1 351°=3×360°+271°是第四象限角;2 016°=5×360°+216°是第三象限角.故有2个.★答案★:23.钟表经过2小时,时针转过的度数为________.解析:时针均按顺时针方向旋转,2小时时针转过16周,所以时针转过了-60°.★答案★:-60°4.已知角α,β的终边相同,那么α-β的终边在________. 解析:∵角α,β的终边相同, ∴α=k ·360°+β,k ∈Z.作差α-β=k ·360°+β-β=k ·360°,k ∈Z. ∴α-β的终边在x 轴的正半轴上. ★答案★:x 轴的正半轴上5. 设集合A ={α|α=90°·k +30°,k ∈Z},B ={α|0°≤α<360°},则A ∩B =________. 解析:由0°≤90°·k +30°<360°,k ∈Z , 得-13≤k <113,k ∈Z ,所以k =0,1,2,3,所以A ∩B ={30°,120°,210°,300°}. ★答案★:{30°,120°,210°,300°}6.若α=45°+k·180° (k∈Z),则α的终边在第________象限.解析:由题意知α=k·180°+45°,k∈Z,当k=2n+1,n∈Z时,α=2n·180°+180°+45°=n·360°+225°,在第三象限,当k=2n,n∈Z时,α=2n·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.★答案★:一或三7.已知α与β均为正角,且α+β=180°,若0°<α≤90°,则角β的终边位于_______________.解析:若0°<α<90°,则90°<β=180°-α<180°,即角β的终边在第二象限;若α=β=90°,则角β的终边位于y轴正半轴上.★答案★:第二象限或y轴正半轴上8.若角α满足180°<α<360°,角5α与角α有相同的始边,且又有相同的终边,那么角α=______________.解析:∵5α与α的始边和终边相同,∴这两角的差应是360°的整数倍.即5α-α=4α=k·360°,k∈Z.即α=k·90°.又180°<α<360°,∴180°<k·90°<360°.∴2<k<4.∴k=3,故α=270°.★答案★:270°9.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.解:(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.10.已知α=-1 910°,(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解:(1)设α=β+k·360°(k∈Z),则β=-1 910°-k·360°(k∈Z).令-1 910°-k·360°≥0,解得k≤-1 910 360.所以k的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限的角.(2)令θ=250°+k·360°(k∈Z),取k=-1,-2就得到符合-720°≤θ<0°的角:250°-360°=-110°,250°-720°=-470°.故θ=-110°或-470°.层级二应试能力达标1.在0°到360°范围内,与角-60°的终边在同一条直线上的角为___________.解析:与角-60°的终边在同一条直线上的角为-60°+k·180°,k∈Z,取k=1,2.★答案★:120°与300°2.射线OA绕端点O逆时针旋转120°到达OB位置,再顺时针旋转270°到达OC位置,则∠AOC=________.解析:根据任意角的定义可得∠AOC=120°+(-270°)=-150°.★答案★:-150°3.若α是第三象限角,则180°-α是第________象限角.解析:因为α是第三象限角,所以k·360°+180°<α<k·360°+270°,k∈Z.所以k·360°-90°<180°-α<k·360°,k∈Z.所以180°-α为第四象限角.★答案★:四4.与1 991°终边相同的最小正角是________,绝对值最小的角是________.解析:与1 991°终边相同的角为1 991°+k·360°,取k=-5,-6.★答案★:191°,-169°5.角α,β的终边关于y轴对称,若α=30°,则β=________________.★答案★:150°+k·360°,k∈Z6.已知角2α的终边落在x 轴上方,那么α是第________象限角. 解析:由题知k ·360°<2α<180°+k ·360°,k ∈Z , ∴k ·180°<α<90°+k ·180°,k ∈Z.当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角,∴α为第一或第三象限角.★答案★:一或三7.若θ是第一象限角,判断θ2所在的象限.解:∵θ是第一象限角, ∴k ·360°<θ<k ·360°+90°(k ∈Z). k ·180°<θ2<k ·180°+45°(k ∈Z).当k =2n ,n ∈Z 时,n ·360°<θ2<n ·360°+45°,∴θ2为第一象限角; 当k =2n +1,n ∈Z 时, n ·360°+180°<θ2<n ·360°+225°,∴θ2为第三象限角.综上,θ2为第一或第三象限角.8.已知角β的终边在直线3x -y =0上. (1)写出角β的集合S ;(2)写出S 中适合不等式-360°<β<720°的元素. 解:(1)如图,直线3x -y =0过原点,倾斜角为60°, 在0°~360°范围内,终边落在射线OA 上的角是60°, 终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合为: S 1={β|β=60°+k ·360°,k ∈Z}, S 2={β|β=240°+k ·360°,k ∈Z}, 所以角β的集合S =S 1∪S 2={β|β=60°+k ·360°,k ∈Z}∪{β|β=60°+180°+k ·360°,k ∈Z} ={β|β=60°+2k ·180°,k ∈Z}∪{β|β=60°+(2k +1)·180°,k ∈Z} ={β|β=60°+k ·180°,k ∈Z}.(2)由于-360°<β<720°,即-360°<60°+k·180°<720°,k∈Z.解得-73<k<113,k∈Z,所以k=-2,-1,0,1,2,3.所以S中适合不等式-360°<β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°+0×180°=60°;60°+1×180°=240°;60°+2×180°=420°;60°+3×180°=600°.。

人教版高中数学必修四教材用书第一章 三角函数 1.1.1 任意角 Word版含答案

人教版高中数学必修四教材用书第一章 三角函数 1.1.1 任意角 Word版含答案

.任意角和弧度制.任意角[提出问题]问题:当钟表慢了(或快了),我们会将分针按某个方向转动,把时间调整准确.在调整的过程中,分针转动的角度有什么不同?提示:旋转方向不同.问题:在体操或跳水比赛中,运动员会做出“转体两周”“向前翻腾两周半”等动作,做上述动作时,运动员分别转体多少度?提示:顺时针方向旋转了°或逆时针方向旋转了°,顺时针方向旋转了°.[导入新知]角的分类.按旋转方向.()角的终边在第几象限,则称此角为第几象限角;()角的终边在坐标轴上,则此角不属于任何一个象限.[化解疑难].任意角的概念认识任意角的概念应注意三个要素:顶点、始边、终边.()用旋转的观点来定义角,就可以把角的概念推广到任意角,包括任意大小的正角、负角和零角.()对角的概念的认识关键是抓住“旋转”二字.①要明确旋转方向;②要明确旋转角度的大小;③要明确射线未作任何旋转时的位置..象限角的前提条件角的顶点与坐标原点重合,角的始边与轴的非负半轴重合.[提出问题]在条件“角的顶点与坐标原点重合,始边与轴非负半轴重合”下,研究下列角:°,°,-°.问题:这三个角的终边位置相同吗?提示:相同.问题:如何用含°的式子表示°和-°?提示:°=×°+°,-°=-×°+°.问题:确定一条射线,以它为终边的角是否唯一?提示:不唯一.[导入新知]终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合=,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[化解疑难]所有与角α终边相同的角,连同角α在内可以用式子·°+α,∈表示,在运用时需注意以下几点.()是整数,这个条件不能漏掉.()α是任意角.()·°,∈与α之间用“+”连接,如·°-°,∈应看成·°+(-°),∈.()终边相同的角不一定相等,终边相同的角有无数个,它们相差周角的整数倍;相等的角终边一定相同.[例] 已知角的顶点与坐标原点重合,始边落在轴的非负半轴上,作出下列各角,并指出它们是第几象限角.()-°;()°;()-°.。

人教A版高中数学必修4课后习题 第一章 1.1.1 任意角

人教A版高中数学必修4课后习题 第一章 1.1.1 任意角

第一章三角函数1.1 任意角和弧度制1.1.1 任意角课后篇巩固探究1.200°角是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角180°<200°<270°,第三象限角α的取值范围为k·360°+180°<α<k·360°+270°,k∈Z,所以200°角是第三象限角.2.在-360°≤α<0°范围内与60°角终边相同的角为( )A.-300°B.-300°,60°C.60°D.420°60°角终边相同的角α可表示为α=60°+k·360°,当k=-1时,α=-300°,故在-360°≤α<0°范围内与60°角终边相同的角为-300°.3.若角θ是第四象限角,则90°+θ是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.4.角α=45°+k×180°(k∈Z)的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限k是偶数时,角α是第一象限角,当k是奇数时,角α是第三象限角.5.如图,终边在阴影部分(含边界)的角的集合是( )A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z},终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.故选C.±45°,k∈Z},P=,P之间的关系为( ) 6.已知集合M={x|x=k·180°2A.M=PB.M⊆PC.M⊇PD.M∩P=⌀±45°=k·90°±45°=(2k±1)·45°,k∈Z, M,x=k·180°2对于集合P,x=k·180°±90°=k·45°±90°=(k±2)·45°,k∈Z.∴4M⊆P.7.已知角α,β的终边关于直线x+y=0对称,且α=-60°,则β=.-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为-45°+15°=-30°,所以β=-30°+k·360°,k∈Z.30°+k·360°,k∈Z8.若角α与角288°终边相同,则在0°~360°内终边与角α4终边相同的角是.,得α=288°+k·360°(k∈Z),α4=72°+k·90°(k∈Z).又α4在0°~360°内,所以k=0,1,2,3,相应地有α4=72°,162°,252°,342°.9.终边落在图中阴影部分所示的区域内(包括边界)的角的集合为.由图易知在0°~360°范围内,终边落在阴影区域内(包括边界)的角为45°≤α≤90°与225°≤α≤270°,故终边落在阴影部分所示的区域内(包括边界)的角的集合为{α|k·360°+45°≤α≤k·360°+90°,k ∈Z}∪{α|k·360°+225°≤α≤k·360°+270°,k∈Z}={α|k·180°+45°≤α≤k·180°+90°,k∈Z}.Z}10.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.设α=β+k·360°(k∈Z),则β=-1910°-k·360°(k∈Z).令-1910°-k·360°≥0,解得k≤-1910360=-51136.k的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限角.(2)令θ=250°+n·360°(n∈Z),取n=-1,-2就得到符合-720°≤θ<0°的角. 250°-360°=-110°,250°-720°=-470°.故θ=-110°或θ=-470°.11.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合.0°~360°范围内,终边落在阴影部分内的角为30°<α<150°与210°<α<330°,故所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.12.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①α-β=670°+k·360°,k∈Z.∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。

人教A版高中数学必修四课后训练{1.1.1任意角}.docx

人教A版高中数学必修四课后训练{1.1.1任意角}.docx

课后训练1.下列说法中正确的是( )A .120°角与420°角的终边相同B .若α是锐角,则2α是第二象限的角C .-240°角与480°角都是第三象限的角D .60°角与-420°角的终边关于x 轴对称2.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( )A .{α|α为锐角}B .{α|α小于90°}C .{α|α为第一象限角}D .以上都不对3.已知角2α的终边在x 轴上方,那么α是( )A .第一象限角B .第一或第二象限角C .第一或第三象限角D .第一或第四象限角4.如果角α是第三象限角,则角2的终边所在的区域是如图所示的( )区域(不含边界)A .③⑦B .④⑧C .②⑤⑧D .①③⑤⑦5.终边在直线y =-x 上的所有角的集合是( )A .{α|α=k ·360°+135°,k ∈Z }B .{α|α=k ·360°-45°,k ∈Z }C .{α|α=k ·180°+225°,k ∈Z }D .{α|α=k ·180°-45°,k ∈Z }6.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=__________.7.时钟的时针走过了1小时20分钟,则分针转过的角为__________.8.已知-990°<α<-630°,且α与120°角的终边相同,则α=__________.9.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合.10.若角θ的终边与168°角的终边相同,求0°~360°内与角的终边相同的角.3参考答案1答案:D 解析:对于A,420°=360°+60°,所以60°角与420°角终边相同,所以A 不正确;对于B ,α=30°角是锐角,而2α=60°角也是锐角,所以B 不正确;对于C,480°=360°+120°,所以480°角是第二象限角,所以C 不正确;对于D ,-420°=-360°-60°,又60°角与-60°角终边关于x 轴对称,所以D 正确.2答案:D 解析:小于90°的角包括所有负角,第一象限角指终边落在第一象限的角,所以A ∩B 是指锐角及第一象限的所有负角的集合,故选D .3答案:C 解析:由条件知k ·360°<2α<k ·360°+180°(k ∈Z ),∴k ·180°<α<k ·180°+90°(k ∈Z ),当k 为偶数时,α是第一象限角;当k 为奇数时,α是第三象限角.4答案:A 解析:∵α是第三象限角,∴k ·360°+180°<α<k ·360°+270°(k ∈Z ),∴k ·180°+90°<2α<k ·180°+135°(k ∈Z ). ∴当k =2n (n ∈Z )时,n ·360°+90°<2α<n ·360°+135°,对应区域③; 当k =2n +1(n ∈Z )时,n ·360°+270°<2α<n ·360°+315°,对应区域⑦; ∴角2α的终边所在区域为③⑦. 5答案:D 解析:因为直线过原点,它有两个部分,一部分出现在第二象限,一部分出现在第四象限,所以排除A ,B .又C 项中的角出现在第三象限,故选D .6答案:270° 解析:由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,所以5α-α=4α=k ·360°(k ∈Z ).∴α=k ·90°(k ∈Z ).又∵180°<α<360°,令k =3,得α=270°.7答案:-480° 解析:时针走过了1小时20分钟,则分针转了43圈,又因为按顺时针方向旋转的角为负角,所以分针转过的角为43-×360°=-480°. 8答案:-960° 解析:∵α与120°角终边相同,故有α=k ·360°+120°,k ∈Z . 又-990°<α<-630°,∴-990°<k ·360°+120°<-630°,即-1 110°<k ·360°<-750°.当k =-3时,α=(-3)·360°+120°=-960°.9答案:解:在0°~360°范围内,终边落在阴影部分内的角为30°<α<150°与210°<α<330°,∴所有满足题意的角α的集合为{α|k ·360°+30°<α<k ·360°+150°,k ∈Z }∪{α|k ·360°+210°<α<k ·360°+330°,k ∈Z }={α|n ·180°+30°<α<n ·180°+150°,n ∈Z }.10答案:解:因为θ=k ·360°+168°, 所以3θ=k ·120°+56°,k ∈Z .令0°≤k ·120°+56°<360°,得k =0,1,2,故0°~360°内与角3终边相同的角有56°,176°,296°.。

高中数学苏教版必修4同步练习 1.1.1 任意角 Word版含解析

高中数学苏教版必修4同步练习 1.1.1 任意角 Word版含解析

学业分层测评(一)任意角(建议用时:45分钟)[学业达标]一、填空题1.与405°终边相同的角的集合为________.【解析】与405°角终边相同的角,可表示为k·360°+45°,k∈Z.【答案】{α|α=k·360°+45°,k∈Z}2.(2016·如东高一检测)下面各组角中,终边相同的有________.(填序号)①390°,690°;②-330°,750°;③480°,-420°;④3 000°,-840°.【解析】-330°=-360°+30°,750°=2×360°+30°,均与30°角终边相同.【答案】②3.在-390°,-885°,1 351°,2 016°这四个角中,其中第四象限内的角有________. 【导学号:06460002】【解析】-390°=-360°-30°,显然终边落在第四象限;-885°=-720°-165°,其角的终边落在第三象限;1 351°=1 080°+271°,其角的终边落在第四象限;2 016°=2 160°-144°,其角的终边落在第三象限,故满足题意的角有-390°,1 351°.【答案】-390°,1 351°4.(2016·泰州高一检测)下列命题正确的是________(填序号).①三角形的内角必是第一、二象限角;②始边相同而终边不同的角一定不相等;③第四象限角一定是负角;④钝角比第三象限角小.【解析】 只有②正确.对于①,如A =90°不在任何象限;对于③,如330°在第四象限但不是负角;对于④,钝角不一定比第三象限角小.【答案】 ②5.(2016·南京高一检测)已知角α=-3 000°,则与α终边相同的最小正角是________.【解析】 与α终边相同的角的集合为{θ|θ=k ·360°-3 000°,k ∈Z },与θ终边相同的最小正角是当k =9时,θ=9×360°-3 000°=240°,所以与α终边相同的最小正角为240°.【答案】 240°6.(2016·宿迁高一检测)若角α的终边与240°角的终边相同,则α2的终边在第________象限.【解析】 角α满足的集合为{α|α=k ·360°+240°,k ∈Z },故有⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α2⎪⎪⎪ α2=k ·180°+120°,k ∈Z , ∴α2终边落在第二象限或第四象限.【答案】 二或四7.若α是第四象限角,则180°-α是第________象限角.【解析】 如图所示,α是第四象限角,则-α是第一象限角,∴180°-α是第三象限角.【答案】 三8.已知α是第二象限角,且7α与2α的终边相同,则α=________.【解析】 7α=k ·360°+2α(k ∈Z ),∴α=k ·72°,又α为第二象限角,∴在0°~360°内符合条件的角为144°,故α=k ·360°+144°(k ∈Z ).【答案】 α=k ·360°+144°(k ∈Z )二、解答题9.(2016·无锡高一检测)将下列各角表示为k·360°+α(k∈Z,0°≤α<360°)的形式,并指出是第几象限角.(1)420°;(2)-510°;(3)1 020°.【解】(1)420°=360°+60°,而60°角是第一象限角,故420°是第一象限角.(2)-510°=-2×360°+210°,而210°是第三象限角,故-510°是第三象限角.(3)1 020°=2×360°+300°,而300°是第四象限角,故1 020°是第四象限角.10.写出终边在如图1-1-5所示阴影部分(包括边界)的角的集合.图1-1-5【解】先写出边界角,再按逆时针顺序写出区域角,则(1){α|k·360°+30°≤α≤k·360°+150°,k∈Z}.(2){α|k·360°-210°≤α≤k·360°+30°,k∈Z}.[能力提升]1.下列说法中正确的是________.(填序号)①120°角与420°角的终边相同;②若α是锐角,则2α是第二象限的角;③-240°角与480°角都是第三象限的角;④60°角与-420°角的终边关于x轴对称.【解析】对于①,420°=360°+60°,所以60°角与420°角终边相同,所以①不正确;对于②,α=30°角是锐角,而2α=60°角也是锐角,所以②不正确;对于③,480°=360°+120°,所以480°角是第二象限角,所以③不正确;对于④,-420°=-360°-60°,又60°角与-60°角终边关于x轴对称,故④正确.【答案】④2.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中,角所表示的范围(阴影部分)正确的是________.图1-1-6【解析】令k=0得,45°≤α≤90°,排除②④,令k=-1得,-135°≤α≤-90°,排除①.故填③.【答案】③3.已知集合M={第一象限角},N={锐角},P={小于90°的角},则以下关系式你认为正确的是________(填序号).①M P;②M∩P=N;③N∪P⊆P.【解析】对于①:390°是第一象限角,但390°>90°.对于②:-330°是第一象限角且-330°<90°,但-330°不是锐角.对于③:锐角一定小于90°,所以N P,故N∪P⊆P.【答案】③4.若α是第一象限角,问-α,2α,α3是第几象限角?【解】 ∵α是第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ).(1)-k ·360°-90°<-α<-k ·360°(k ∈Z ),∴-α所在区域与(-90°,0°)范围相同,故-α是第四象限角.(2)2k ·360°<2α<2k ·360°+180°(k ∈Z ),∴2α所在区域与(0°,180°)范围相同,故2α是第一、二 象限角或终边在y 轴的非负半轴上.(3)k ·120°<α3<k ·120°+30°(k ∈Z ).法一:(分类讨论)当k =3n (n ∈Z )时,n ·360°<α3<n ·360°+30°(n ∈Z ),∴α3是第一象限角;当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°(n ∈Z ),∴α3是第二象限角;当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°(n ∈Z ),∴α3是第三象限角.综上可知:α3是第一、二或第三象限角.法二:(几何法)如图,先将各象限分成3等份,再从x 轴的非负半轴的上方起,依次将各区域标上1,2,3,4,则标有1的区域即为α3终边所落在的区域,故α3为第一、二或第三象限角.。

2018版高中数学人教A版 必修4部分 第1章 1-1 1-1-1 任

2018版高中数学人教A版 必修4部分 第1章 1-1 1-1-1 任

1.1任意角和弧度制1.1.1任意角1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角及区间角的表示方法.(易错点)[基础·初探]教材整理1任意角的概念阅读教材P2~P3“第5行”以上内容,完成下列问题.1.角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示:如图1-1-1,图1-1-1(1)始边:射线的开始位置OA,(2)终边:射线的终止位置OB,(3)顶点:射线的端点O.这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.角的分类:按旋转方向,角可以分为三类:时钟经过1小时,时针转动的角的大小是________.【解析】时钟是顺时针转,故形成的角是负角,又经过12个小时时针转动一个周角,故经过1个小时时针转动周角的112,所以转动的角的大小是-112×360°=-30°.【答案】-30°教材整理2象限角与轴线角阅读教材P3“图1.1-3至探究”以上内容,完成下列问题.1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.如果角的终边在坐标轴上,称这个角为轴线角.下列说法:①第一象限角一定不是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中错误的序号为________(把错误的序号都写上).【解析】由象限角定义可知①②③④都不正确.【答案】①②③④教材整理3终边相同的角阅读教材P3“探究”以下至P4“例1”以上内容,完成下列问题.1.前提:α表示任意角.2.表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.判断(正确的打“√”,错误的打“×”)(1)终边相同的角不一定相等,但相等的角终边一定相同.()(2)终边相同的角有无数个,它们相差360°的整数倍.()(3)终边相同的角的表示不唯一.()【解析】由终边相同角的定义可知(1)(2)(3)正确.【答案】(1)√(2)√(3)√[小组合作型]任意角的概念与终边相同的角(1)已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是()A.A=B=CB.A⊆CC.A∩C=BD.B∪C⊆C(2)下面与-850°12′终边相同的角是()【导学号:00680000】A.230°12′B.229°48′C.129°48′D.130°12′【精彩点拨】正确理解第一象限角、锐角、小于90°的角的概念.【自主解答】(1)第一象限角可表示为k·360°<α<k·360°+90°,k∈Z;锐角可表示为0°<β<90°,小于90°的角可表示为γ<90°.由三者之间的关系可知,选 D.(2)与-850°12′终边相同的角可表示为α=-850°12′+k·360°(k∈Z),当k=3时,α=-850°12′+1 080°=229°48′.【答案】(1)D(2)B1.判断角的概念问题的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.在0°到360°范围内找与给定角终边相同的角的方法:(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.[再练一题]1.有下列说法:①相差360°整数倍的两个角,其终边不一定相同;②终边相同的角一定相等;③终边关于x 轴对称的两个角α,β之和为k ·360°(k ∈Z ). 其中正确说法的序号是________.【解析】 ①不正确.终边相同的两个角一定相差360°的整数倍,反之也成立; ②不正确.由①可知终边相同的两个角一定相差k ·360°(k ∈Z ).③正确.因为终边关于x 轴对称的两个角,当α∈(-180°,180°),且β∈(-180°,180°)时α+β=0°,当α,β为任意角时,α+β=k ·360°(k ∈Z ).【答案】 ③象限角与区间角的表示(1)-1 154°是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角(2)已知角β的终边在如图1-1-2所示的阴影部分内,试指出角β的取值范围.图1-1-2【精彩点拨】找出0°~360°内阴影部分的角的集合――→+k ·360°k ∈Z 适合题意的角的集合【自主解答】 (1)∵-1 154°=-4×360°+286°,∴在0°~360°之间,与-1 154°终边相同的角α=286°,286°是第四象限角.故-1 154°角为第四象限角.【答案】 D(2)阴影在x 轴上方部分的角的集合为: A ={β|k ·360°+60°≤β<k ·360°+105°,k <Z }. 阴影在x 轴下方部分的角的集合为: B ={β|k ·360°+240°≤β<k ·360°+285°,k ∈Z }.所以阴影部分内角β的取值范围是A ∪B ,即{β|k ·360°+60°≤β<k ·360°+105°,k ∈Z }∪{β|k ·360°+240°≤β<k ·360+285°,k ∈Z },其中B 可以化为:{β|k ·360°+180°+60°≤β<k ·360°+180°+105°,k ∈Z }.即{β|(2m +1)×180°+60°≤β<(2m +1)×180°+105°,m ∈Z }. 集合A 可以化为{β|2m ×180°+60°≤β<2m +180°+105°,m ∈Z }. 故A ∪B 可化为{β|n ·180°+60°≤β<n ·180°+105°,n ∈Z }.1.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限. (2)第一步,将α写成α=k ·360°+β(k ∈Z,0°≤β<360°)的形式; 第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限. 2.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.[再练一题]2.写出图1-1-3中阴影部分(不含边界)表示的角的集合. 【导学号:70512000】图1-1-3【解】 在-180°~180°内落在阴影部分的角的集合为大于-45°小于45°,所以终边落在阴影部分(不含边界)的角的集合为{α|-45°+k ·360°<α<45°+k ·360°,k ∈Z }.[探究共研型]αk所在象限的判定方法及角的终边对称问题 探究1 若α是第二象限角,则α3是第几象限角?【提示】 (1)代数推导法:由题意知90°+k ·360°<α<180°+k ·360°(k ∈Z ), 30°+k ·120°<α3<60°+k ·120°(k ∈Z ).故α3是第一或第二或第四象限角. (2)画图法:如图①将各个象限2等分,从x 轴正半轴开始逆时针方向依次标注1,2,3,4,循环下去,直到填满为止,α2就在标注2的区域,即第一或第三象限的后半区(如图①阴影区域).同理,可得α3在第一、二、四象限(如图②阴影区域).探究2 若角α与β的终边关于x 轴、y 轴、原点、直线y =x 对称,则角α与β分别具有怎样的关系?【提示】 (1)关于x 轴对称:若角α与β的终边关于x 轴对称,则角α与β的关系是β=-α+k ·360°,k ∈Z .(2)关于y 轴对称:若角α与β的终边关于y 轴对称,则角α与β的关系是β=180°-α+k ·360°,k ∈Z .(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k ·360°,k ∈Z .(4)关于直线y =x 对称:若角α与β的终边关于直线y =x 对称,则角α与β的关系是β=-α+90°+k ·360°,k ∈Z .已知α为第二象限角,则2α,α2分别是第几象限角? 【导学号:70512001】【精彩点拨】 可由α范围写出2α,α2的范围后,直接求得2α的范围,然后分k 为奇数或偶数两种情况确定α2的位置.【自主解答】 ∵α是第二象限角, ∴90°+k ·360°<α<180°+k ·360°,∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z ,∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角. 同理45°+k 2·360°<α2<90°+k 2·360°.当k 为偶数时,不妨令k =2n ,n ∈Z , 则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z , 则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角.1.解决此类问题,要先确定α的范围,进一步确定出nα或αn 的范围,再根据k 与n 的关系进行讨论.2.一般地,要确定αn 所在的象限,可以作出各个象限的从原点出发的n 等分射线,它们与坐标轴把圆周等分成4n 个区域,从x 轴的非负半轴起,按逆时针方向把这4n 个区域依次循环标上号码1,2,3,4,则标号为n 的区域就是根据α所在第几象限时αn的终边所落在的区域.[再练一题]3.若α是第四象限角,则180°-α是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角【解析】 ∵α是第四象限角,则角α应满足:k ·360°-90°<α<k ·360°,k ∈Z , ∴-k ·360°<-α<-k ·360°+90°,则-k ·360°+180°<180°-α<-k ·360°+90°+180°,k ∈Z , 当k =0时,180°<180°-α<270°, 故180°-α为第三象限角. 【答案】 C1.若α是第一象限角,则-α2是( )A.第一象限角B.第一、四象限角C.第二象限角D.第二、四象限角【解析】 因为α是第一象限角,所以α2为第一、三象限角,所以-α2是第二、四象限角.【答案】 D2.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}【解析】当选项C的集合中k=-2时,α=-457°.【答案】 C3.下列各角中,与角330°的终边相同的角是()A.510°B.150°C.-150°D.-390°【解析】与330°终边相同的角的集合为S={β|β=330°+k·360°,k∈Z},当k=-2时,β=330°-720°=-390°,故选 D.【答案】 D4.若角α与角β终边相同,则α-β=________.【解析】根据终边相同角的定义可知:α-β=k·360°(k∈Z).【答案】k·360°(k∈Z)5.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°. 【导学号:00680001】【解】(1)与-120°终边相同的角的集合为M={β|β=-120°+k·360°,k∈Z}.当k=1时,β=-120°+1×360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角.(2)与640°终边相同的角的集合为M={β|β=640°+k·360°,k∈Z}.当k=-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角.。

高一数学人教A版必修4练习1.1.1 任 意 角 Word版含解析

高一数学人教A版必修4练习1.1.1 任 意 角 Word版含解析

第一章三角函数三角函数
.任意角和弧度制
.任意角
.理解任意角的概念,特别是象限角、区间角、终边相同的角的概念及其表示方法.
.了解正角、负角、零角的概念.
.注意数形结合思想的应用.
一、任意角
.任意角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的起始位置是角的始边,射线的终止位置是角的终边,射线的端点是角的顶点.
练习:下列说法正确的是()
.最大角是°.最大角是°
.角不可以是负的.角可以任意大小
解析:由角的定义,角可以是任意大小的.故选.
.正角、零角、负角概念:按旋转方向,角可以分为以下三类:
()正角——按逆时针方向旋转所形成的角;
()零角—射线没有作任何旋转形成的角;
()负角——按顺时针方向旋转所形成的角.
练习:时钟的分针经过分钟旋转的角为()
.°.°.-°.-°
解析:时针的分针是按顺时针旋转形成的角,所以为负角.故选.。

高中数学人教版必修四课后练习(含解析):1.1.1任意角.docx

高中数学人教版必修四课后练习(含解析):1.1.1任意角.docx

1.1.1 任意角班级:__________姓名:__________设计人:__________日期:__________课后练习基础过关1.下列说法中,正确的是A.第二象限角为钝角B.第三象限角必大于第二象限角C.是第二象限角D.是终边相同的角2.若角2α与240°角的终边相同,则α=()A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z3.如图所示,终边落在阴影部分的角的集合是A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}D.{α|k·360°+120°≤α≤k·360°+315°,k∈Z}4.集合中属于区间(−360°,360°)的角是____. 5.如图所示,终边落在直线上的角的集合为______.6.在角的集合,中:(1)有几种终边不相同的角?(2)在范围内的角有几个?7.(1)已知角 =45°,在区间[―720°,0°]内找出所有与角有相同终边的角.(2)集合,,那么两集合的关系是什么?8.已知求的范围.能力提升1.已知角α是第二象限角,试确定角2α,是第几象限角.2.写出终边在如图所示阴影部分内的角的集合.1.1.1 任意角详细答案【基础过关】1.D;【解析】本题考查象限角的判定.对A ,第二象限也有负角;对B;第三象限角可能为负,第二象限取正;对C,为第三象限,故错误,选D.【备注】无2.B【解析】角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.【备注】无3.C【解析】由图可知,终边落在阴影部分的角的取值范围为k·360°-45°≤α≤k·360°+120°,k∈Z,故选C.【备注】该题易出现的问题是忽略角的方向,不能准确表示两个边界角.4.−240°,120°【解析】无【备注】无5.,【解析】本题主要考查角的概念.终边落在射线上的角的集合是,,终边落在射线上的角的集合是,,于是终边落在直线上的角的集合是,,,,,.【备注】无6.解:(1)在给定的角的集合中,终边不相同的角共有四种.(2)由,得.又,故,,,,,,,.∴给定的集合中在范围内的角共有8个.【解析】本题主要考查角的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴与- 1 000 °角终边相同的最小正角是 80°,为第一象限角.
答案: 80° 一
5. 在角的集合 { α|α= k·90°+ 45°,k∈ Z } 中,
(1)有几种终边不相同的角?
(2)若- 360°<α<360°,则集合中的 α共有多少个? 解: (1)在给定的角的集合中终边不相同的角共有四种,分别是与
答案: B
3. 若 α是第四象限角,则 180°- α是第 ________象限角. 解析: ∵角 α与角- α的终边关于 x 轴对称,
又∵角 α的终边在第四象限,
∴角- α终边在第一象限,又角- α与 18的终边在第三象限.
答案: 三
4.在 0°~360°范围内:与- 1 000 °角终边相同的最小正角是 ________,是第 ________象限角. 解析: - 1 000 °=- 3× 360°+ 80°,
45°、 135°、- 135°、- 45°终边相同
的角.
97 (2)令- 360°<k·90°+ 45°<360°,得- 2<k< 2. 又∵ k∈ Z,∴ k=- 4,- 3,- 2,- 1,0,1,2,3 , ∴满足条件的角共有 8 个.
1.已知中学生一节课的上课时间一般是 45 分钟,那么,经过一节课,分针旋转形成的角是 ( )
A . 120°
B.- 120°
C. 270°
D.- 270°
解析: 分针旋转形成的角是负角,每 60 分钟转动一周,所以一节课 45 分钟分针旋转形成的角是-
45 360°× 60=- 270°.
答案: D
2. 下列叙述正确的是 ( )
A .第一或第二象限的角都可作为三角形的内角
B .始边相同而终边不同的角一定不相等
C.第四象限角一定是负角
D.钝角比第三象限角小 解析: - 330°角是第一象限角,但不能作为三角形的内角,故
A 错; 280°角是第四象限角,它是正角,
故 C 错;- 100°角是第三象限角,它比钝角小,故 D 错.
相关文档
最新文档