2018届人教A版 正余弦定理的应用举例 单元测试
2017-2018学年人教A版数学五课时达标检测(四)正、余弦定理在三角形中的应用含答案

课时达标检测(四) 正、余弦定理在三角形中的应用一、选择题1.在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,则cos θ是( )A 。
35B .-错误!C .±错误!D .±错误!解析:选C ∵S △ABC =错误!AB ·BC sin ∠ABC=错误!×2×5×sin θ=4,∴sin θ=45. 又θ∈(0,π),∴cos θ=±错误!=±错误!.2.在△ABC 中,已知A =30°,a =8,b =83,则△ABC 的面积为( )A .32错误!B .16C .323或16D .323或16错误!解析:选D 在△ABC 中,由正弦定理错误!=错误!,得sin B =错误!=错误!=错误!,又b >a ,∴B =60°或120°。
当B =60°时,C =180°-30°-60°=90°,∴S△ABC=错误!×8×8错误!=32错误!;当B=120°时,C=180°-30°-120°=30°,∴S△ABC=错误!ab sin C=错误!×8×8错误!×错误!=16错误!。
3.在△ABC中,A=60°,AB=2,且S△ABC=错误!,则边BC的长为()A.错误!B.3C。
错误!D.7解析:选A ∵S△ABC=12AB·AC sin A=错误!,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3.即BC=3。
4.△ABC的周长为20,面积为103,A=60°,则BC的边长等于( )A.5 B.6C.7 D.8解析:选C 如图,由题意得错误!由②得bc=40,由③得a2=b2+c2-bc=(b+c)2-3bc=(20-a)2-3×40,∴a=7.5.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为错误!m2,则此人这时离开出发点的距离为()A.3 m B。
【高三数学试题精选】2018届高考数学正弦定理、余弦定理的应用复习题及答案

2018届高考数学正弦定理、余弦定理的应用复习题及答案
5 c 高三数学(理)一轮复习教案第五编平面向量、解三角形总第25期
§55 正弦定理、余弦定理的应用
基础自测
1在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,c点的俯角为70°,则∠BAc=
答案130°
2从A处望B处的仰角为,从B处望A处的俯角为,则、的大小关系为
答案 =
3在△ABc中,若(a+b+c)(a+b-c)=3ab,且sinc=2sinAcsB,则△ABc是三角形
答案等边
4已知A、B两地的距离为10 ,B、c两地的距离为 =5,
∴AB= ()∴A、B之间的距离为
例2.沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3 ,从B到c方位角是110°,距离是3 ,从c到D,方位角是140°,距离是(9+3 )试画出示意图,并计算出从A到D的方位角和距离(结果保留根号)解示意图如图所示,连接Ac,在△ABc中,
∠ABc=50°+(180°-110°)=1(70°+30°)=14cs
∴=S△Pc+S△PcD= ×1×2sin + (5-4cs )=2sin( - )+
∴当 - = ,即 = 时,ax=2+
所以四边形PDc面积的最大值为2+
巩固练习
1某观测站c在A城的南偏西60°)=sin cs60°-cs sin60°。
完整版正弦定理余弦定理应用实例练习含答案

后,就可以计算出A 、B 两点的距离为( )课时作业3应用举例时间:45分钟 满分:100分1. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成 60°勺视角,从B 岛望C 岛和A 岛成75°的视角,贝J B 、C 间的距离是 ()A . 10^3海里 C . 5迈海里【答案】 D【解析】 如图,/A = 60° /B = 75° 贝JZC = 45 °, 由正弦定理得:BCAB si nA 10x sin60 BC= sinC = sin452. 如图所示,设A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出AC 的距离为50m , / ACB = 45° / CAB = 105°B . 10/6海里 D . 5^6海里课堂训练—30 =150 ° ZCBO = 45 ° AB=35 ,【答案】 A【解析】 因为ZACB = 45° ZCAB = 105°所以ZABC = 30°根 据正弦定理可知'sin%=sin 監,即爲=馬,解得AB=5072m ,选 A.3. 从某电视塔的正东方向的A 处,测得塔顶仰角是60°从电视 塔的西偏南30°的B 处,测得塔顶仰角为45° A , B 间距离是35m ,【答案】 如图所示,塔高为0C ,贝JZOAC = 60° 从OB = 180°A . 5Oj2m C . 25 辺m则此电视塔的高度是m.【解析】A设电视塔高度为hm,则OA=^h, OB= h,在△KOB中由余弦定理可得AB2= OA2+ OB2—2OA OB cos/AOB,即352=(誓h)2 + h2—2x¥hx hx (—乎)解得h= 5佰.4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45° °如果此船不改变航向,继续向南航行, 有无触礁的危险?【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.【解析】 在△ABC 中,BC= 30,ZB= 30°,ZACB= 135°,•••zBAC = 15「「亠亠5 BC AC 卄30 AC 由正弦疋理snB ,即:sin15匸sin30/.AC = 60COS15 =°0cos(45 — 30 )=60(cos45 coS30 斗 sin45 sin30 ) = 15(V 6+V 2),•••A 到 BC 的距离为 d = ACsin45 = 15&3 + 1)〜40.98 海里 >38 海 里,所以继续向南航行,没有触礁危险.课后作业、选择题(每小题5分,共40分)1. 已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°如图所示,/ ECA = 40° ZFCB = 60°, ZACB = 180°—40 -60 = 80 :180 ° — 80••AC= BC ,.・.ZA=/ABC = ------ 2 --- = 50°,.・.ZABG= 180 —Z CBH-ZCBA = 180°— 120°— 50°= 10°.故选 B.2. 某市在“旧城改造”工程中,计划在如下图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮价格为a 元/m 2,则购买这【答案】 C1 1 1【解析】 $△= 2^ 20X 30X sin150 =十 20X 30X=150(m 2),•••购买这种草皮需要150a 元,故选C.【答案】【解析】 EGCH种草皮需要A . 450a 元C . 150a 元3. 有一长为10m 的斜坡,倾斜角为75°.在不改变坡高和坡顶的 前提下,通过加长坡面的方法将它的倾斜角改为 30。
正弦定理、余弦定理的应用举例练习题(基础、经典、好用)

正弦定理、余弦定理的应用举例一、选择题图3-8-91.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图3-8-9),要测算A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50 m,∠ABC=105°,∠BCA =45°,就可以计算出A,B两点的距离为()A.50 2 m B.50 3 mC.25 2 m D.2522m2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()A.5海里B.53海里C.10海里D.103海里图3-8-103.(2013·广州模拟)一艘海轮从A处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是() A.102海里B.103海里C.202海里D.203海里图3-8-114.如图3-8-11所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B处营救,则sin θ的值为()A.217 B.22 C.32 D.5714图3-8-125.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图3-8-12所示),则旗杆的高度为()A.10 m B.30 m C.10 3 m D.10 6 m二、填空题6.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的高是________米.7.在地上画一个∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为________米.图3-8-138.如图3-8-13,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB=________.三、解答题图3-8-149.(2013·佛山调研)如图3-8-14,某观测站C在城A的南偏西20°的方向,从城A出发有一条走向为南偏东40°的公路,在C处观测到距离C处31 km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了20 km后到达D处,测得C,D两处的距离为21 km,这时此车距离A城多少千米?图3-8-1510.如图3-8-15,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C 处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D间的距离(计算结果精确到0.01 km,2≈1.414,6≈2.449).图3-8-1611.(2013·惠州模拟)某城市有一块不规则的绿地如图3-8-16所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.(1)求AB的长度;(2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建设费用最低,请说明理由.解析及答案一、选择题1.【解析】在△ABC中,由正弦定理BCsin 30°=ABsin 45°,AB=50 2.【答案】 A2.【解析】如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,于是这艘船的速度是50.5=10(海里/小时).【答案】 C3.【解析】由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理,得BC=ABsin 45°×sin 30°=10 2.【答案】 A4.【解析】连接BC.在△ABC中,AC=10,AB=20,∠BAC=120°,由余弦定理,得BC2=AC2+AB2-2AB·AC·cos 120°=700,∴BC=107,再由正弦定理,得BCsin∠BAC =AB sin θ,∴sin θ=21 7.【答案】 A5.【解析】如图,在△ABC中,∠ABC=105°,所以∠ACB=30°.由正弦定理得106sin 30°=BCsin 45°,所以BC=206×2 2=203(m).在Rt△CBD中,CD=BC sin 60°=203×32=30(m).【答案】 B二、填空题6.【解析】如图,依题意甲楼高度AB=20tan 60°=203米,又CM=DB=20米,∠CAM =60°.所以AM=CM·1tan 60°=2033米,所以乙楼的高CD=203-2033=4033米.【答案】403 37.【解析】如图所示,设BD=x m,则142=102+x2-2×10×x×cos 60°,∴x2-10x-96=0,∴x=16.【答案】168.【解析】设AB=h,在△ABC中tan 60°=h BC,∴BC=33h,在△BCD中,∠DBC=180°-15°-30°=135°,由正弦定理得CDsin∠DBC =BCsin∠BDC,即30sin 135°=33hsin 30°,解得h=15 6.【答案】15 6三、解答题9.【解】在△BCD中,BC=31,BD=20,CD=21,由余弦定理cos∠BDC=DB2+DC2-BC22DB·DC=-17,所以cos∠ADC=17,sin∠ADC=437,在△ACD中,由条件知CD=21,A=60°,所以sin∠ACD=sin(60°+∠ADC)=32×17+12×437=5314,由正弦定理ADsin∠ACD =CD sin A,所以AD=2132×5314=15,故这时此车距离A城15千米.10.【解】 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC ,又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线, 所以BD =BA . 在△ABC 中,AB sin ∠BCA =ACsin ∠ABC,即AB =AC sin 60°sin 15°=32+620,因此,BD =32+620≈0.33 km.故B ,D 间的距离约为0.33 km.11.【解】 (1)在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =356-320cos C , ① 在△ABD 中,由余弦定理及∠C =∠D 整理得AB 2=AD 2+BD 2-2AD ·BD cos D =392-392cos C , ② 由①②得:356-320cos C =392-392cos C , 整理可得,cos C =12,又∠C 为三角形的内角,所以C =60°, 又∠C =∠D ,AD =BD , 所以△ABD 是等边三角形, 故AB =14,即A 、B 两点的距离为14. (2)小李的设计符合要求.理由如下:S △ABD =12AD ·BD sin D , S △ABC =12AC ·BC sin C , 因为AD ·BD >AC ·BC , 所以S △ABD >S △ABC ,由已知建造费用与用地面积成正比,故选择△ABC建造环境标志费用较低.因此小李的设计符合要求.。
(完整版)正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭. 3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.例2.已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-= 22()2122AC BC AC BC AB AC BC +--==, 所以60C =.例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.例4.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求ac的值;解:由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-= 故3a c =例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 . 612例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________________.3例7.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则b =【解析】0000000sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得sin 2sin a b B A =⋅=, 例8.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 2 ,AC 的取值范围为 (2,3) .解: 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈例9.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。
正余弦定理的综合应用及答案

正余弦定理的综合应用1.【河北省唐山一中2018届二练】在中,角的对边分别为,且.(1)求角的大小;(2)若的面积为,求的值.2. 【北京市海淀区2018届高三第一学期期末】如图,在中,点在边上,且,,,.(Ⅰ)求的值;(Ⅱ)求的值.【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系.3. 【海南省2018届二模】已知在中,,,分别为内角,,的对边,且 .(1)求角的大小;(2)若,,求的面积.4.【湖北省天门等三市2018届联考】在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(Ⅰ)求的值;(Ⅱ)若,求的取值范围.5.【山东省淄博市2018届高三3月模拟】在中,角对边分别为,已知.(1)求角的大小;(2)若,求的面积.6. 【福建省南平市2018届第一次质检】在中,分别为角的对边,且.(1)若,求及;(2)若在线段上,且,求的长.7.【山东省实验中学2017届高三第一次诊,16】在△中,,,分别是角,,的对边,,且.(1)求角;(2)求边长的最小值.8. 【河北衡水中学2017届上学期一调,17】(本小题满分12分)在中,,,分别为角,,所对的边,且.(1)求角的大小;(2)若的面积为,求的值.正余弦定理的综合应用答案1【分析】(1)先根据两角和正弦公式,三角形内角关系及诱导公式得,再根据正弦定理得,即(2)由的面积为,得,再根据余弦定理得,解得,因此结合正弦定理得2.【解析】(Ⅰ)如图所示,,故,设,则,.在中,由余弦定理,即,解得,.(Ⅱ)在中,由,得,故,在中,由正弦定理,即,故,由,得,.3. 【解析】(1)由及正弦定理得,,即,又,所以,又,所以.(2)由(1)知,又,易求得,在中,由正弦定理得,所以.所以的面积为.4【解析】(Ⅰ)由已知得,即有因为,∴.又,∴.又,∴,∴(Ⅱ)由余弦定理,有.因为,有又,于是有,即有5【解析】(1)由已知,得,由余弦定理,得,所以,又,故;(2)由(1)知,由正弦定理,得,所以或(舍去)从而,所以的面积为.6【解析】(Ⅰ)∵,,,在△ABC中,由正弦定理,∴,又,所以,则C为锐角,所以,则,所以7【解析】(I)由已知即△中,,故(Ⅱ)由(I)因此由已知故的最小值为1. 8【解析】(1),,即,则,.又在中,.则,解得,或,当时,,则,均为钝角,与矛盾,故舍去,故,则.。
2018届人教A版 三角函数与解三角形 单元测试

一、选择题【2016年大连八中、二十四中联考】1、函数)6cos()3sin()(x x x f -+=ππ的最小正周期是( )A .π2B .πC .2πD .π4【答案】B 【解析】21cos 2()3()sin()cos()sin()cos ()sin ()3632332x f x x x x x x πππππππ++⎡⎤=+-=+-+=+=⎢⎥⎣⎦21cos(2)32x π=++,所以最小正周期为22T ππ==,故选B. 【2016黑龙江师大附中、东北师大附中、辽宁实验中学联考】2、若点()ααsin ,cos P 在直线x y 2-=上,则)22cos(πα+的值等于( )A .54-B .54C .53-D .53 【答案】B【2016广西一模】3、已知<α<π,3sin2α=2cos α,则cos (α﹣π)等于( )A.B.C.D.【答案】C【解析】解:∵<α<π,3sin2α=2cos α,∴sin α=,cos α=﹣.∴cos(α﹣π)=﹣cos α=﹣(﹣)=,故选:C .【2016甘肃兰州实战考试】4、24sin 225α=,02πα<<,)4πα-的值为( )A .15- B .15 C .75- D .75【答案】D.cos())sin cos 4πααααα-=+=+, 又∵249(sin cos )12sin cos 1sin 225ααααα+=+=+=,02πα<<, ∴7sin cos 5αα+=,故选D .【2016辽宁大连双基测试】5、ABC ∆中,2,3,60AB AC B ==∠=,则cos C =( )(A (B ) (C ) (D 【答案】D【2016甘肃兰州实战】6、在ABC ∆中,,,a b c 分别是内角,,A B C 的对边,若sin 3sin b A c B =, 3a =,2cos 3B =,则b =( )A .14B .6C 【答案】D.【解析】由题意得,sin 3sin 331b A c B ab bc a c c =⇒=⇒=⇒=,∴22222cos 9123163b ac ac B b =+-=+-⋅⋅⋅=⇒=,故选D . 【2016天津红桥区二模】7、钝角中,内角所对的边分别为,已知,则的面积等于( )A .B .C .D .【答案】C【2016广西一模】8、已知函数)sin()(ϕω+=x A x f 的图象如图所示,则该函数的解析式可能是( )A .)623sin(43)(π+=x x fB .)5154sin(54)(+=x x fC .)665sin(54)(π+=x x fD .)5132sin(54)(-=x x f【答案】B【解答】解:由函数f (x )=Asin (ωx+φ)的图象可得0<A <1,T=>2π,求得0<ω<1.再根据f (2π)<0,结合所给的选项, 故选:B .【2016山东济南3月模拟】9、函数)2,0)(sin(2)(πϕϕ<>+=w wx x f 的部分图像如图所示,则)1217()0(π+f 的值为A 32-B 32+C 231- D 231+【答案】A【解析】由题意可知T=π,22==ππw ,3πϕ-=,代入求值即可得到)1217()0(π+f =32-. 【2016山东滨州二模】10、将函数x x f 2sin 2)(=的图象向右平移)20(πϕϕ<<个单位后得到函数)(x g 的图象.若对满足4)()(21=-x g x f 的21,x x ,有6min21π=-x x ,则=ϕ( ) A .125π B .3π C .4π D .6π 【答案】B【2016四川绵阳三诊】11、若函数()f x 同时满足以下三个性质;①()f x 的最小正周期为π;②对任意的x R ∈,都有()4f x f x π⎛⎫-=- ⎪⎝⎭;③()f x 在3,82ππ⎛⎫⎪⎝⎭上是减函数, 则()f x 的解析式可能是( )A .()cos 8f x x π⎛⎫=+⎪⎝⎭B .()sin 2cos 2f x x x =-C .()sin cos f x x x =D .()sin 2cos 2f x x x =+ 【答案】D【解析】根据题意,函数应满足:①()x f 的最小正周期为π;②对任意的R x ∈,都有()04=-+⎪⎭⎫ ⎝⎛-x f x f π,用8π+x 替换式中的x 可得088=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-ππx f x f ,即函数的图象关于点⎪⎭⎫ ⎝⎛-0,8π对称;③()x f 在⎪⎭⎫ ⎝⎛2,83ππ上是减函数;对于A,()⎪⎭⎫ ⎝⎛+=8cos πx x f 的周期为π2=T ,不符合①,故不满足题意;对于B ,()⎪⎭⎫ ⎝⎛-=-=42sin 22cos 2sin πx x x x f ,不符合②,故不满足题意;对于C ,()x x x x f 2sin 21cos sin ==,不符合②,故不满足题意;对于D ,()⎪⎭⎫ ⎝⎛+=+=42sin 22cos 2sin πx x x x f ,符合①②③,满足题意,故选D.【2016辽宁抚顺一中四模】12、关于函数()3sin(2)13f x x π=-+(x R ∈),下列命题正确是( )A .由12()()1f x f x ==可得12x x -是π的整数倍;B .()y f x =的表达式可改写成3cos(2)16y x π=++;C .()y f x =的图象关于点(,1)6π对称; D .()y f x =的图象关于直线34x π=对称. 【答案】C二、填空题【2016重庆巴蜀中学3月月考】1、函数]43,0[),3cos(sin 2)(ππ∈-=x x x x f 的最小值为______. 【答案】0【解析】由已知()2sin (cos cossin sin )33f x x x x ππ=+2sin cos x x x =+1sin 2cos 2)2x x =+-sin(2)3x π=-+,因为3[0,]4x π∈,所以72[,]336x πππ-∈-,sin(2)3x π-的最小值为sin()3π-=,从而()f x 最小值为0+=. 【2016广西一模】2、已知三角形ABC 中,三边长分别是a ,b ,c ,面积S=a 2﹣(b ﹣c )2,b+c=8,则S 的最大值是 .【答案】1764【2016山东潍坊一模】3、已知△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a•cosB+b•cosA=3c•cosC,则cosC= .【答案】【解析】∵a•cosB+b•cosA=3c•cosC,∴利用余弦定理可得:a×+b×=3c×,整理可得:a 2+b 2﹣c 2=,∴由余弦定理可得:cosC===.【2016黑龙江师大附中、东北师大附中、辽宁实验中学联考】4、已知ABC ∆满足3π=A ,0)(=⋅+→→→BC AC AB ,点M 在ABC ∆外,且22==MC MB ,则MA 的取值范围是 . 【答案】[]1,3【2016辽宁抚顺一中四模】5、在ABC ∆中,cos cos cos cos 2b C c B a C c A +=+=,且cos sin a C C b c =+,则ABC ∆的面积为________.【解析】∵cos cos cos cos b C c B a C c A +=+,∴sin cos sin cos sin cos sin cos B C C B A C C A +=+,即sin()sin()B C A C +=+,sin sin A B =,所以A B =.222222cos cos 22a b c b c a a C c A b b+-+-+=+2b ==,所以2a =.由cos sin a C C b c +=+得4sin()26C c π+=+,当3πC =时,2c =符合题意.所以11sin 22sin 223πS ab C ==⨯⨯⨯=.【2016北京东城区二模】6、已知函数,关于此函数的说法正确的序号是__. ①为周期函数;②有对称轴;③为的对称中心;④.【答案】①②④三、解答题【2016年大连八中、二十四中联考】1、在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且满足CB c b a cos cos 2=-. (1)求角C 的大小;(2)设函数23sin sin 2cos cos sin 2)(2-+=C x C x x x f ,求函数)(x f 在区间]2,0[π上的值域. 【答案】(1)3π;(2)]1,23[-【解析】(1)CBc b a cos cos 2=-,B c C b a cos cos )2(=-∴, C B C B C A sin cos cos sin cos sin 2+=∴A CBC A sin )sin(cos sin 2=+=∴.A ∠ 是ABC ∆的内角,0sin ≠∴A ,1cos 2=∴C ,3π=∠∴C .………………………………………………6分 (2)由(1)可知3π=∠C ,)sin 21(232sin 21)(2x x x f --=∴ x x 2cos 232sin 21-=)32sin(π-=x ………………………………………………………8分 由]2,0[π∈x ,32323πππ≤-≤-∴x ,1)32sin(23≤-≤-∴πx ∴函数()f x 的值域为]1,23[-.……………………………………12分. 【2016北京东城区二模】2、已知函数(),且函数的最小正周期为. (Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.【答案】(Ⅰ)=2. (Ⅱ)最大值为f()=3;最小值为f()=0.【2016天津红桥区二模】3、已知(1)求函数的最小正周期及在区间的最大值;(2)若,求的值。
高中数学-余弦定理、正弦定理应用举例跟踪测试卷及答案

课时跟踪检测 (十三) 余弦定理、正弦定理应用举例层级(一) “四基”落实练1.如图,两座灯塔A 和B 与河岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的 ( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及题图可知,∠A =∠B =40°.又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m, 2 0 3 m C .10(3-2)m, 20 3 mD.1532 m ,2033m 解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 3.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 kmD .60 2 km解析:选B 如图所示,依题意有AB =15×4=60,∠DAC =60°,∠ CBM =15°,所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BMsin 30°,解得BM =30 2 (km).4.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船的航行速度为( )A.1762n mile/h B .34 6 n mile/h C.1722n mile/h D .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762(n mile/h).故选A. 5.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为 ( )A .30°B .45°C .60°D .75°解析:选B 依题意可得AD =2010(m), AC =305(m),又CD =50(m),所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22.又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.6.某人朝正东方向走x m 后,向右转150°,然后朝新方向走3 m ,结果他离出发点恰好为3m ,那么x 的值为_______.解析:如图,在△ABC 中,AB =x ,B =30°,BC =3,AC =3,由余 弦定理得(3)2=x 2+32-2×3×x ×cos 30°, ∴x 2-33x +6=0,∴x =3或2 3. 答案:23或 37.如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°, 45°,且∠BAC =135°.若山高AD =100 m ,汽车从C 点到B 点历时14 s ,则这辆汽车的速度为________m/s.(精确到0.1,参考数据:2≈1.414,5≈2.236) 解析:由题意可知,AB =200 m ,AC =100 2 m , 由余弦定理可得BC =40 000+20 000-2×200×1002×-22≈316.2(m), 这辆汽车的速度为316.2÷14≈22.6(m/s). 答案:22.68.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,求山高MN .解:根据图示,AC =100 2 m .在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°解得AM =100 3 m .在△AMN 中,MNAM =sin 60°,所以MN =1003×23=150(m). 层级(二) 能力提升练1.如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与 A ,B 不共线的一点C ,然后给出了三种测量方案(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ):①测量A ,B ,b ;②测量a ,b ,C ;③测量A ,B ,a .则一定能确定A ,B 间距离的所有方案的个数为( )A .3B .2C .1D .0解析:选A 对于①,利用内角和定理先求出C =π-A -B ,再利用正弦定理b sin B =c sin C解出c ;对于②,直接利用余弦定理c 2=a 2+b 2-2ab cos C 即可解出c ;对于③,先利用内角和定理求出C =π-A -B ,再利用正弦定理a sin A =csin C解出c .故选A. 2.当太阳光线与水平面的倾斜角为60°时,一根长为2 m 的竹竿,要使它的影子最长,则竹竿与地面所成的角α=________. 解析:如图,设竹竿的影子长为x . 依据正弦定理可得2sin 60°=xsin (120°-α).所以x =43·sin(120°-α). 因为0°<120°-α<120°,所以要使x 最大,只需120°-α=90°, 即α=30°时,影子最长. 答案:30°3.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为______小时.解析:如图,设A 地东北方向上存在点P 到B 的距离为30千米, AP =x .在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB ·cos A ,即302=x 2+402-2x ·40cos 45°,化简得x 2-402x +700=0, |x 1-x 2|2=(x 1+x 2)2-4x 1x 2=400, |x 1-x 2|=20,即图中的CD =20(千米),故t =CD v =2020=1(小时).答案:14.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直 弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217s .A 地测得该仪器弹至最高点H 时的仰角为30°. (1)求A ,C 两地的距离; (2)求该仪器的垂直弹射高度CH . (声音的传播速度为340 m/s)解:(1)由题意,设AC =x m ,则BC =x -217×340=(x -40)m.在△ABC 中,由余弦定理,得BC 2=BA 2+AC 2-2BA ·AC cos ∠BAC , 即(x -40)2=10 000+x 2-100x ,解得x =420. 所以A ,C 两地间的距离为420 m.(2)在Rt △ACH 中,AC =420 m ,∠CAH =30°, 所以CH =AC tan ∠CAH =140 3 m. 所以该仪器的垂直弹射高度CH 为140 3 m.5.如图所示,在社会实践中,小明观察一棵桃树.他在点A 处发现桃树顶端点C 的仰角大小为45°,往正前方走4 m 后,在点B 处发现桃树 顶端点C 的仰角大小为75°. (1)求BC 的长;(2)若小明身高为1.70 m ,求这棵桃树顶端点C 离地面的高度(精确到0.01 m ,其中3≈1.732).解:(1)在△ABC 中,∠CAB =45°,∠DBC =75°, 则∠ACB =75°-45°=30°,AB =4. 由正弦定理得BC sin 45°=4sin 30°, 解得BC =42(m).即BC 的长为4 2 m. (2)在△CBD 中,∠CDB =90°,BC =42,所以DC =42sin 75°.因为sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=6+24,则DC =2+2 3. 所以CE =ED +DC =1.70+2+23≈3.70+3.464≈7.16(m).即这棵桃树顶端点C 离地面的高度为7.16 m. 层级(三) 素养培优练1.北京冬奥会,首钢滑雪大跳台(如图1)是冬奥历史上第一座与工业遗产再利用直接结合的竞赛场馆,大跳台的设计中融入了世界文化遗产敦煌壁画中“飞天”的元素.西青区某校研究性学习小组为了估算赛道造型最高点A (如图2)距离地面的高度AB (AB 与地面垂直),在赛道一侧找到一座建筑物PQ .测得PQ 的高度约为25米,并从P 点测得A 点的仰角为30°.在赛道与建筑物PQ 之间的地面上的点M 处测得A 点、P 点的仰角分别为75°和30°(其中B ,M ,Q 三点共线).则该学习小组利用这些数据估算得赛道造型最高点A 距离地面的高度约为(参考数据:2≈1.41,3≈1.73,6≈2.45)( )A .59B .60C .65D .68解析:选A 如图所示,由题意得∠AMB =75°,∠PMQ =30°,∠AMP =75°,∠APM =60°,∠PAM =45°,在△PMQ 中,PM =PQsin ∠PMQ=50,在△PAM 中,由正弦定理得AM sin ∠APM =PMsin ∠PAM,AM sin 60°=50sin 45°,所以AM =256, 在△ABM 中,AB =AM ·sin ∠AMB =256×sin 75° =256×6+24, 所以AB =150+5034≈150+50×1.734=236.54=59.125,所以赛道造型最高点A 距离地面的高度约59.2.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 的北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. (3)是否存在v ,使得小艇以v 海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v 的取值范围;若不存在,请说明理由. 解:(1)设相遇时小艇的航行距离为S 海里,则由余弦定理,可得S =900t 2+400-2×30t ×20cos (90°-30°) =900t 2-600t +400=900t -132+300, 故当t =13时,S min =103,此时v =303,即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意可知(v t )2=202+(30t )2-2·20·30t ·cos(90°-30°), 化简得,v 2=400t2-600t 900=400 1t -342+675. 由于0<t ≤12,所以1t ≥2,所以当1t =2时,v 取得最小值1013, 即小艇航行速度的最小值为10 13 海里/时. (3)存在.由(2)知,v 2=400t2-600t +900,设1t =u (u >0), 于是400u 2-600u +900-v 2=0.小艇总能有两种不同的航行方向与轮船相遇,等价于方程有两个不等正根,即6002-1 600(900-v 2)>0,900-v 2>0,解得153<v <30, 所以v 的取值范围是(153,30).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理的应用举例一、选择题1.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为()A.1千米B.2sin10°千米C.2cos10°千米D.cos20°千米解析:由题意知DC=BC=1,∠BCD=160°,∴BD2=DC2+CB2-2DC·CB·cos160°,=1+1-2×1×1×cos(180°-20°)=2+2cos20°=4cos210°.∴BD=2cos10°.答案:C2.轮船A和轮船B在中午12时离开海港C,两艘轮船航行方向的夹角为120°,轮船A的航行速度是25海里/小时,轮船B的航行速度是15海里/小时,下午2时两船之间的距离是()A.35海里B.352海里C.353海里D.70海里解析:设轮船A、B航行到下午2时时所在的位置分别是E、F,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°,EF =CE 2+CF 2-2CE ·CF cos120°=502+302-2×50×30cos120°=70. 答案:D3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( )A .5海里/时B .53海里/时C .10海里/时D .103海里/时解析:如图,A ,B 为灯塔,船从O 航行到O ′,OO ′BO =tan30°,OO ′AO =tan15°, ∴BO =3OO ′,AO =(2+3)OO ′. ∵AO -BO =AB =10, ∴OO ′·[(2+3)-3]=10. ∴OO ′=5.∴船的速度为512=10海里/时.答案:C4.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522 m 解析:由正弦定理,得AB =AC ·sin ∠ACB sin B=50×2212=502(m). 答案:A5.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos60°. 即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.答案:A6.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处求援,则cos θ等于( )A.217B.2114C.3217D.2128解析:在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos120°,=402+202-2×40×20×⎝ ⎛⎭⎪⎫-12=2 800,所以BC =207. 由正弦定理得,sin ∠ACB =AB BC ·sin ∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角. 故cos ∠ACB =277. 故cos θ=cos(∠ACB +30°)=cos ∠ACB cos30°-sin ∠ACB ·sin30°=2114. 答案:B7.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是 3 km ,那么x 的值为( )A. 3 B .2 3 C .23或 3D .3解析:如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理得x 2-33x +6=0,解得x =3或2 3. 答案:C8.在200 m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,如图所示,则塔高CB 为( )A.4003 mB.4003 3 m C.2003 3 m D.2003 m解析:由已知:在Rt △OAC 中,OA =200,∠OAC =30°,则OC =OA ·tan ∠OAC =200tan30°=20033. 在Rt △ABD 中,AD =20033,∠BAD =30°, BD =AD ·tan ∠BAD =20033tan30°=2003, 又∵DC =OA =200,∴CB =DC -BD =200-2003=4003. 答案:A9.(2016·云南调研)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,则乙船的速度为( )A .253海里/小时B .252海里/小时C .303海里/小时D .302海里/小时 解析:如图,连接A 1B 2,由题知A 1A 2=302×2060=102, A 2B 2=102,又∠A 1A 2B 2=60°, ∴△A 1A 2B 2为正三角形, 从而A 1B 2=102,∠B 1A 1B 2=105°-60°=45°,又A 1B 1=20,在△B 1A 1B 2中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos45°=202+(102)2-2×20×102×22=200.∴B 1B 2=102,∴乙船的速度为10220×60=302(海里/小时). 答案:D10.(2016·启东中学检测)如图,l 1,l 2,l 3是同一平面内三条平行直线,l 1与l 2间的距离是1,边长为4的正三角形的三顶点分别在l 1,l 2,l 3上,则l 2与l 3间的距离是( )A .2 3 B.35-12 C.3154 D .2 5解析:如图,设∠ABE =θ,则∠CBE =60°-θ,设l 2,l 3间的距离等于d , 由题意得sin θ=14,∴cos θ=154,∴sin(60°-θ)=32×154-12×14=35-18=d4, ∴d =35-12, 故选B. 答案:B 二、填空题11.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.解析:如图所示,依题意有: AB =15×4=60,∠MAB =30°, ∠AMB =45°, 在△AMB 中,由正弦定理,得60sin45°=BM sin30°. 解得BM =302(km).12.在直径为30 m 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,且其轴截面顶角为120°,若要光源恰好照整个广场,则光源的高度为________m.解析:轴截面如图,则光源高度h =15tan60°=53(m). 答案:5 313.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________(米/秒)的速度匀速升旗.解析:在△BCD 中,∠BDC =45°,∠CBD =30°, CD =106,由正弦定理,得BC =CD sin45°sin30°=20 3. 在Rt △ABC 中,AB =BC sin60°=203×32=30(米). 所以升旗速度v =AB t =3050=0.6(米/秒).14.如图所示,为测量河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析:在△BCD 中,∠DBC =30°,由正弦定理得BC sin45°=CDsin30°,∴BC =102,在Rt △ABC 中,tan30°=BC AB ,∴AB 的高是106米.答案:10 6 三、解答题15.(2016·河南郑州模拟)如图所示,一辆汽车从点O 出发沿一条直线公路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O 的距离为5公里,且距离公路线的垂直距离为3公里的点M 的地方有一个人骑摩托车出发,想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他骑摩托车行驶了多少公里?解:由题意知MI =3,∵OM =5,∴OI =4,∴cos ∠MOI =45.设骑摩托车的人的速度为v 公里/小时,追上汽车的时间为t 小时.由余弦定理,得(v t )2=52+(50t )2-2×5×50t ×45, 整理得v 2=25t 2-400t +2 500=25⎝ ⎛⎭⎪⎫1t -82+900≥900. ∴当t =18时,v 的最小值为30,其行驶距离为v t =308=154(公里).故骑摩托车的人至少以30公里/小时的速度匀速行驶才能实现他的愿望,此时他骑摩托车行驶了154公里.16.(2016·石家庄模拟)已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇,岛A 处的一艘走私船正以10海里/时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝ ⎛⎭⎪⎫参考数据:sin38°=5314,sin22°=3314解:如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5海里,依题意,∠BAC=180°-38°-22°=120°,由余弦定理可得BC2=AB2+AC2-2AB·AC cos120°,所以BC2=49,BC=0.5x=7,解得x=14.又由正弦定理得,sin∠ABC=AC·sin∠BACBC=5×327=5314,所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.。