专题 正余弦定理的应用

专题   正余弦定理的应用
专题   正余弦定理的应用

正余弦定理的应用

1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.

2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若

45BDC ∠=?,则BD =___________,cos ABD ∠=___________.

3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .

(1)若a =3c ,b ,cos B =2

3

,求c 的值; (2)若sin cos 2A B a b =,求sin()2

B π

+的值.

4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥

AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线

段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.

已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).

(1)若道路PB 与桥AB 垂直,求道路PB 的长;

(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;

(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.

5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2

A C

a b A +=. (1)求B ;

(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

6、【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12

-

. (1)求b ,c 的值; (2)求sin (B +C )的值.

7、【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,

3sin 4sin c B a C =.

(1)求cos B 的值; (2)求sin 26πB ??

+ ??

?

的值.

一、正弦、余弦定理

1、在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则

2、S △ABC =2ab sin C =2bc sin A =2ac sin B =4R

3、正余弦定理的作用:

(1).正弦定理的作用:边角互化问题,方法有: ①利用a =2R sin A ,b =2R sin B ,c =2R sin C 将边化为角;

②利用cos A =b 2+c 2-a 2

2bc

等将余弦化为边;

③c cos B +b cos C =a 等化角为边.

(2).求边长问题,方法有:①利用正弦定理求边;②利用余弦定理求边.

二、在△ABC中,已知a、b和A时,解的情况如下:

a=b sin A b sin Ab

1、仰角和俯角:与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).

(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等.

(3)方位角:指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).

(4)坡度:坡面与水平面所成的二面角的正切值.

四、注意点:1、解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”.

题型一、运用正余弦定理解三角形的基本量

三角形的基本量主要是指变、角、面积等。解题时注意一下两点:(1)根据所给等式的结构特点利用正、余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用正、余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.

例1、(2019通州、海门、启东期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若a cos B=3b cos A,

B=A-π

6

,则B=________.

例2、(2019苏州三市、苏北四市二调)在△ABC中,已知C=120°,sin B=2sin A,且△ABC的面积为23,则AB的长为________.

例3、(2019镇江期末)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c cos B +b cos C =3a cos B. (1) 求cos B 的值;

(2)若|CA →-CB →

|=2,△ABC 的面积为22,求边b.

题型二、运用正余弦定理研究三角形中的范围

运用正余弦定理研究三角形中的范围主要涉及两方面的问题:一是:与不等式结合;二是有角的范围,确定三角函数值的范围·

例4、(2019苏州期初调查)在斜三角形ABC 中,已知

1

tan A +

1

tan B

+tan C =0,则tan C 的最大值等于________.

例5、(2018苏锡常镇调研(二))在△ABC 中,三个内角A ,B ,C 的对边分别为a b c ,,,设△ABC

的面积为S ,且2224)S a c b =

+-.

(1)求B ∠的大小;

(2)设向量(sin 23cos )A A =,m ,(32cos )A =-,n ,求?m n 的取值范围.

题型三、正余弦定理与向量的综合

正余弦定理与向量的综合主要就是借助于向量的知识转化为边角的函数关系式,然后运用正余弦定理解决问题。

例6、(2019无锡期末)在 △ABC 中,设 a ,b ,c 分别是角 A ,B ,C 的对边,已知向量 m = (a ,sin C -sin B ),n =(b +c ,sin A +sin B ),且m ∥n . (1)求角 C 的大小;

(2)若 c = 3, 求 △ABC 的周长的取值范围.

题型四、运用正余弦定理解决实际问题

解三角形应用题的解题技巧:首先,理清题干条件和应用背景,画出示意图;其次,把所求问题归结到一个或几个三角形中,利用正弦定理、余弦定理等有关知识求解;最后,回归实际问题并检验结果. 例7、(2019苏北三市期末)如图,某公园内有两条道路AB ,AP ,现计划在AP 上选择一点C ,新建道路BC ,并把△ABC 所在的区域改造成绿化区域.已知∠BAC=π

6

,AB =2 km .

(1) 若绿化区域△ABC 的面积为1 km 2

,求道路BC 的长度;

(2) 若绿化区域△ABC 改造成本为10万元/km 2

,新建道路BC 成本为10万元/km .设∠ABC=θ?

??

??

0<θ≤

2π3,当θ为何值时,该计划所需总费用最小?

一、填空题

1、(2018苏中三市、苏北四市三调) 在△ABC 中,若sin :sin :sin 4:5:6A B C =,则cos C 的值为 .

2、(2017常州期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2

=3b 2

+3c 2

-23bc sin A ,则

C =________.

3、(2019苏州三市、苏北四市二调) 在△ABC 中,已知C =120°,sin B =2sin A ,且△ABC 的面积为23,则AB 的长为________.

4、(2019南京学情调研) 已知△ABC 的面积为315,且AC -AB =2,cos A =-1

4,则BC 的长为________.

5、(2019苏州期初调查) 已知△ABC 的三边上高的长度分别为2,3,4,则△ABC 最大内角的余弦值等于________.

6、(2017南通、扬州、泰州、淮安三调) 在锐角△ABC 中,3AB =,4AC =.若△ABC 的面积为则BC 的长是 .

7、(2019苏锡常镇调研(一)) 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin ?

??

??

A -

π4=________.

8、(2018苏锡常镇调研)) 设△ABC 的内角A ,B ,C 的对边分别是a b c ,,,且满足

3cos cos 5a B b A c -=,则tan tan A B

= .

9、(2019南京、盐城二模)在△ABC 中,若sin C =2cos A cos B ,则cos 2

A +cos 2

B 的最大值为________. 10、(2017南京、盐城一模)在△AB

C 中,A ,B ,C 所对的边分别为a ,b ,c ,若a 2

+b 2

+2c 2

=8,则△

ABC 面积的最大值为________.

二、解答题

11、(2019南京、盐城一模)在△ABC 中,设a ,b ,c 分别为角A ,B ,C 的对边,记△ABC 的面积为S ,若2S =AB →·AC →

(1) 求角A 的大小;(2) 若c =7,cos B =4

5,求a 的值.

12、(2019南通、泰州、扬州一调)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,a cos B =2b cos A ,

cos A =

3

3

. (1) 求角B 的值;(2) 若a =6,求△ABC 的面积.

13、(2019宿迁期末)已知△ABC 的面积是S ,AB →·AC →=23

3S.

(1) 求sin A 的值;

(2) 若BC =23,当△ABC 的周长取得最大值时,求△ABC 的面积S.

14、(2017苏州期末)已知函数f(x)=

32sin 2x -cos 2x -12

. (1) 求函数f(x)的最小值,并写出取得最小值时的自变量x 的集合;

(2) 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,f(C)=0,若sin B =2sin A ,求a ,b 的值

15、(2019镇江期末)某房地产商建有三栋楼宇A ,B ,C ,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域ABC 外建第四栋楼宇D ,规划要求楼宇D 对楼宇B ,C 的视角为120°,如图所示,假设楼宇大小高度忽略不计.

(1) 求四栋楼宇围成的四边形区域ABDC 面积的最大值;

(2) 当楼宇D 与楼宇B ,C 间距离相等时,拟在楼宇A ,B 间建休息亭E ,在休息亭E 和楼宇A ,D 间分别铺设鹅卵石路EA 和防腐木路ED ,如图,已知铺设鹅卵石路、防腐木路的单价分别为a ,2a(单位:元/千米,a 为常数).记∠BDE=θ,求铺设此鹅卵石路和防腐木路的总费用的最小值.

答 案

1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.

【答案】

4

【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈πQ ,sin 0,A ∴≠ ∴sin cos 0B B +=,即tan 1B =-,3.4

B π∴=

2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若

45BDC ∠=?,则BD =___________,cos ABD ∠=___________.

【答案】

5,10

【解析】如图,在ABD △中,由正弦定理有:

sin sin AB BD ADB BAC =∠∠,而3π

4,4

AB ADB =∠=,

5AC =,34sin ,cos 55BC AB BAC BAC AC AC ∠=

=∠==,所以BD =

ππcos cos()cos cos sin sin 4410

ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=

.

3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .

(1)若a =3c ,b ,cos B =

2

3

,求c 的值; (2)若sin cos 2A B a b =,求sin()2

B π

+的值.

【解析】(1)因为2

3,3

a c

b B ===,

由余弦定理222cos 2a c b B ac +-=,得23=,即2

13c =.

所以3

c =

(2)因为

sin cos 2A B

a b =, 由正弦定理sin sin a b A B =,得cos sin 2B B

b b

=,所以cos 2sin B B =. 从而22

cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5

B =.

因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =

.

因此πsin cos 2B B ??+

== ?

?

?4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).

(1)若道路PB 与桥AB 垂直,求道路PB 的长;

(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;

(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.

【解析】(1)过A 作AE BD ⊥,垂足为E .

由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84

cos sin 105

PBD ABE ∠=∠=

=.

所以

12

15

4cos 5

BD PB PBD =

==∠. 因此道路PB 的长为15(百米).

(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1

)知10AD =

=,

从而2227

cos 0225

AD AB BD BAD AD AB +-∠==>?,所以∠BAD 为锐角.

所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.

当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;

当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.

设1P 为l 上一点,且1

PB AB ⊥,由(1)知,1P B =15, 此时11113

sin cos 1595

PD PB PBD PB EBA =∠=∠=?

=; 当∠OBP >90°时,在1

PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.

由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时

CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径

.

综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ

=d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ

=17+

因此,d 最小时,P ,Q 两点间的距离为

17+.

5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、

B 、

C 的对边分别为a 、b 、c .已知sin sin 2

A C

a b A +=. (1)求B ;

(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【解析】(1)由题设及正弦定理得sin sin sin sin 2

A C

A B A +=. 因为sin A ≠0,所以sin

sin 2

A C

B +=. 由180A B

C ?++=,可得sin cos 22A C B +=,故cos 2sin cos 222

B B B

=. 因为cos 02

B ≠,故1

sin 22B =,因此B =60°.

(2)由题设及(1)知△ABC

的面积ABC S =

△. 由正弦定理得(

)sin 120sin 1sin sin 2

C c A a C C ?-===.

由于△ABC 为锐角三角形,故0°

122a <<

ABC S <<△. 因此,△ABC

面积的取值范围是??

. 这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 6、【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =1

2

-

. (1)求b ,c 的值; (2)求sin (B +C )的值.

【解析】(1)由余弦定理2222cos b a c ac B =+-,得

2221

323()2

b c c =+-???-.

因为2b c =+,

所以2

2

2

1(2)323()2

c c c +=+-???-. 解得5c =. 所以7b =. (2)由1cos 2B =-

得sin B =.

由正弦定理得sin sin 14

a A B

b =

=

. 在ABC △中,B C A +=π-.

所以sin()sin B C A +==

7、【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,

3sin 4sin c B a C =.

(1)求cos B 的值;

(2)求sin 26πB ?

?+ ??

?的值.

【解析】(1)在ABC △中,由正弦定理

sin sin b c

B C

=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.

又因为2b c a +=,得到43b a =

,2

3

c a =. 由余弦定理可得222222

416199cos 22423

a a a a c

b B a

c a a +-+-=

==-??. (2)由(1)可

得sin B ==

,从

而sin 22sin cos B B B ==,227

cos 2cos sin 8

B B B =-=-,故

717sin 2sin 2cos cos 2sin 666828216B B B πππ?

?+=+=--?=-

??

?. 本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正

弦定理、余弦定理等基础知识.考查运算求解能力.

一、正弦、余弦定理

1、在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则

2、S△ABC=

2ab sin C=

2

bc sin A=

2

ac sin B=

4R

3、正余弦定理的作用:

(1).正弦定理的作用:边角互化问题,方法有:

①利用a=2R sin A,b=2R sin B,c=2R sin C将边化为角;

②利用cos A=b2+c2-a2

2bc

等将余弦化为边;

③c cos B+b cos C=a等化角为边.

(2).求边长问题,方法有:①利用正弦定理求边;②利用余弦定理求边.

二、在△ABC中,已知a、b和A时,解的情况如下:

a=b sin A b sin Ab

1、仰角和俯角:与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方

高考第32课正弦定理与余弦定理的综合应用.docx

第32课正弦定理与余弦定理的综合应用 【自主学习】 第32课正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,内角A,B,C的对边分别为a,b,c.若a2-b2= 3bc,sin C3sin B,则角A=. 【答案】π6 【解析】由sin C3sin B得c3b,代入a2-b23bc得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 2,所以角A= π 6. 3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为n mile/h.

(第3题) 【答案】 176 4.(必修5P26本章测试7 改编)设△ABC的内角A,B,C的对边分别为a,b,c.若a sin A+c sin C-2a sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c2-2ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B= 2 2,因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c 成等比数列,则角B的取值范围为. 【答案】 π0 3?? ???, 【解析】因为a,b,c成等比数列,所以b2=ac,所以cos B= 222 - 2 a c b ac + = 22- 2 a c ac ac + ≥1 2, 因为0

正余弦定理的综合应用

正余弦定理的综合应用教学设计 课题名称正余弦定理的综合应用 科目数学(高三)授课人耿向娜 一、教学内容分析 本节课为高三一轮复习中的解三角形部分的习题课。解三角形的知识在历年的高考中与三角函数向量等知识相结合,频繁出现在选择、填空和17题的位置,是学生们的重要得分点之一。本节课对2013年中出现的解三角形问题的分析解答,强化学生对解三角形的理解和巩固,同时消除他们对高考的畏惧感,提升其自信心。 二、教学目标 1、知识目标:熟练掌握正余弦定理、三角形面积公式、边角关系互化,同时熟练结合三角函数知识求相关函数的最值等。 2、能力目标:培养学生分析解决问题的能力,提高学生的化简计算能力 3、情感目标:让学生在直接面对高考真题的过程中,体会解决问题的快乐,提升他们的自信心,提高他们的备战能力! 三、学情分析 我所任课的班级是高三22班是文科普通班,他们的数学基础整体上很薄弱,计算能力有待提高。通过三个多月的一轮复习,越来越多的学生对数学产生了兴趣,同时也品尝到数学成绩提高带来的喜悦,具有了一定的函数知识和解决问题的能力。 四、教学重点难点 重点正余弦定理的应用 难点公式的转化和计算

五、教法分析 本节课我利用多媒体辅助教学,采用的是教师引导下的学生自主探究式学习法。 六、教学过程 教学环节教学内容设计意图 一、基 础 知 识 回 顾回顾正弦定理:k C c B b A a = = = sin sin sin ; C k c B k b A k a sin , sin , sin= = = 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 三角形面积公式:A bc B ac C ab S sin 2 1 sin 2 1 sin 2 1 = = = 通过对公式的 回顾,为本节 课解答问题提 供工具。 二、例 题 讲 解类型一:判定三角形形状 1、设在ABC ?中,若B b A a cos cos=,判定该三角形 的形状。 该题的设置目 的在于训练学 生对边角混合 式的转化。此 题可以边化 角,也可角化 边,让学生体 会正余弦定理 的应用和边角 转化的魅力。 形 直角三角形或等腰三角 或 法二:(角化边) 角形 为等腰三角形或直角三 , 或 ) 解析:法一:(边化角 ? = = + ? = - - + ? - = - ? - + = - + ? - + = - + ? = + = + = ? = ? = b a c b a o b a c b a c b a b a b c a b a c b a ac b c a b bc a c b a B A B A B A B A B A A 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) )( ( ) ( ) ( ) ( 2 2 . 2 2 2 2 sin 2 1 2 sin 2 1 sinBcos cos sin π π

正弦定理和余弦定理专题训练

正弦定理和余弦定理专题训练 一、选择题 1. 在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为3 2,则C =( ) A.30° B.45° C.60° D.75° 2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A = 2π 3 ,a =2,b =233,则B 等于( ) A.π3 B.5π6 C.π6或5π6 D.π6 3. 在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A.等边三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则“a >b ”是“cos 2A < cos 2B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π 4 B.π3 C.π4 D.π6 二、填空题 6. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-1 4, 3sin A =2sin B ,则c =________. 7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________. 8. 在△ABC 中,A =2π3 ,a =3c ,则b c =________. 三、解答题 9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (侧角和俯角 与目标线在同一铅垂平面内的水平■视线和目标视线的火角,目标视线在水平■视线白勺角叫仰角,目标视线在水平■视线下方的角叫俯角(如图①). (2) 方向角:相对丁某正方向的水平■角,如南偏东30°,北偏西45°,西偏北60等; (3) 方位角 指从正北方向顺时针转到目标方向线的水平■角,如B点的方位角为g如图②). (4) 坡度:坡面与水平■面所成的二面角的度数. 【助学微博】 解三角形应用题的一般步骤 (1) 阅读理解题意,弄活问题的实际背景,明确已知与未知,理活量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2汁艮据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3汁艮据题意选择正弦定理或余弦定理求解.

(4)#三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1) 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有 时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1. (2012江苏金陵中学)已知^ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等丁 - 解析记三角形三边长为a-4, a, a+ 4,则(a + 4)2 = (a-4)2 + a2— 2a(a-4)cos 1 120,解得a= 10,故S= 2 X 10x 6X sin 120 = 15寸3. 答案15 3 2. 若海上有A, B, C三个小岛,测得A, B两岛相距10海里,/ BAC= 60°, / ABC= 75°,则B, C问的距离是__________ 渔里. ................................ BC AB - 解析由正弦正理,知sin 60° = sin 1800-60°-75°.解侍BC= 5V6(海里)? 答案5 6

正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4, 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .6π B .3π C .32π D .65π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若sin sin C A =2, ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0 150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5 ,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中, 75 6,8,cos 96BC AC C === ,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .2π B .3π C .4π D .6π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A.14 B.23 C.23- D.1 4- 10.在ABC ?中,a b c , ,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4 ,b=4 ,则B 等于( )

正余弦定理的应用_三角形面积公式公开课一等奖

正余弦定理的应用——三角形面积公式 一、教学容解析 本课教学容出自人教版《普通高中课程标准实验教科书必修数学5》第一章1.2节。 1.教材容 本节容是正弦定理与余弦定理知识的延续,借助正弦定理和余弦定理,进一步解决一些有关三角形面积的计算。教材中先结合已知三角形面积公式推导新的三角形面积公式,然后借助正弦定理和余弦定理求三角形面积,最后给出三角形面积实际问题的求解过程。 2.教学容的知识类型 在本课教学容中,包含了四种知识类型。三角形面积公式的相关概念属于概念性知识,三角形面积公式的符号语言表述属于事实性知识,利用正弦定理和余弦定理求解三角形面积的步骤属于程序性知识,发现问题——提出问题——解决问题的研究模式,以及从直观到抽象的研究问题的一般方法,属于元认知知识。 3.思维教学资源与价值观教育资源 已知三角形两边及其夹角求三角形面积的探索过程能引发提出问题——分析问题——解决问题的研究思维;生活实际问题求解三角形面积,是培养数学建模思想的好契机;引出海伦公式和秦九韶“三斜求积”公式,激发学生学习数学的兴趣,探究数学史材料,培养学生对数学的喜爱。 二、学生学情分析 主要从学生已有基础进行分析。 1.认知基础:从学生知识最近发展区来看,学生在初中已经学习过用底和高表示的三角形面积公式,并且掌握直角三角形中边和角的关系。现在进一步探究两边及其夹角表示的面积公式符合学生的认知规律。此外在前面两节的学习中学生已经掌握了正余弦定理,这为求解三角形的边和角打下了坚持基础。 2.非认知基础:通过小学、初中和高中阶段三角函数和应用题的学习,学生具有一定的分析问题、类比归纳、符号表示的能力。具备相当的日常生活经验,能够从实际问题抽象出数学问题并建立数学模型解决问题。 三、教学策略选择 《普通髙中数学课程标准(2017年版)》强调基于核心素养的教学,特别重视

2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】

2021届高三高考数学文科一轮复习知识点 专题4.6 正弦定理和余弦定理【考情分析】 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 【重点知识梳理】 知识点一正弦定理和余弦定理 1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则 定理正弦定理余弦定理 公式 a sin A= b sin B= c sin C=2R a2=b2+c2-2bc cos A;b2=c2 +a2-2ca cos B; c2=a2+b2-2ab cos C 常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C; (2)sin A= a 2R,sin B= b 2R,sin C= c 2R; (3)a∶b∶c=sin A∶sin B∶sin C; (4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A= b2+c2-a2 2bc; cos B= c2+a2-b2 2ac; cos C= a2+b2-c2 2ab 2.S△ABC=1 2ab sin C= 1 2bc sin A= 1 2ac sin B= abc 4R= 1 2(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R, r. 3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角A为钝角或直角图形 关系式a=b sin A b sin Ab a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理 1.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;

(完整版)必修五正余弦定理习题练习

必修五正余弦定理习题练习 一.选择题(共5小题) 1.(2015?秦安县一模)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=() A.B.C.D. 2.(2016?太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为() A.B.C. D. 3.(2016?大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是() A.等腰三角形B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形 4.(2016?宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C. D.或 5.(2014?新课标II)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5 B.C.2 D.1 二.填空题(共6小题) 6.(2015?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为______. 7.(2015?重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=______. 8.(2015?广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=______. 9.(2015?北京)在△ABC中,a=3,b=,∠A=,则∠B=______.10.(2015?安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=______.11.(2013?福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为______.

正余弦定理的综合应用及答案

正余弦定理的综合应用 1.【河北省唐山一中2018届二练】在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 ()()3,cos sin sin cos 0b A B c A A C =+-+=. (1)求角B 的大小;(2)若ABC ?的面积为 3 2 ,求sin sin A C +的值. 2.【北京市海淀区2018届高三第一学期期末】如图,在ABC ?中,点D 在AC 边上,且 3AD DC =,7AB =,3 ADB π ∠=,6 C π ∠= . (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值. 【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系. 3.【海南省2018届二模】已知在ABC ?中,a ,b ,c 分别为内角A ,B ,C 的对边,且 3cos sin cos b A a A C +sin cos 0c A A +=. (1)求角A 的大小; (2)若3a =,12 B π = ,求ABC ?的面积. 4.【湖北省天门等三市2018届联考】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=. (Ⅰ)求cos B 的值;(Ⅱ)若1a c +=,求b 的取值范围. 5.【山东省淄博市2018届高三3月模拟】在 中,角 对边分别为 ,已知 . (1)求角的大小;(2)若 ,求 的面积. 6.【福建省南平市2018届第一次质检】在中, 分别为角 的对边,且 . (1)若,求及; (2)若 在线段 上,且 ,求的长. 7.【山东省实验中学2017届高三第一次诊,16】在△ABC 中,a ,b ,c 分别是角A ,B , C 的对边, cos 2cos C a c B b -=,且2a c +=.

正余弦定理专题教学内容

解斜三角形(正余弦定理灵活应用) 1.正弦定理: A a sin =B b sin =C c sin =2R.(关键点“比”) 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2.余弦定理: a2=b2+c2-2bccosA ;① b2=c2+a2-2cacosB ;② c2=a2+b2-2abcosC. ③ 在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. cos A =bc a c b 2222-+; cos B =ca b a c 2222-+; cos C =ab c b a 22 22-+. 利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来理解”. 判断三角形的形状: 1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) 答案:C A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 2.下列条件中,△ABC 是锐角三角形的是( ) 答案:C A.sin A +cos A =51 B.AB ·>0 C.tan A +tan B +tan C >0 D.b =3,c =33,B =30° 解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角. 由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角. 由 B b sin = C c sin ,得sin C =23,∴C =3π或3 π2. 3.在△ABC 中,sin A =C B C B cos cos sin sin ++,判断这个三角形的形状. 解:a =ab c b a ca b a c c b 22222222-++-++,所以b (a 2-b 2)+c (a 2-c 2)=bc (b +c ).所以(b +c )a 2=(b 3+c 3)+bc (b +c ).所以a 2=b 2-bc +c 2+bc .所以a 2=b 2+c 2.所以△ABC 是直角三角形. 解斜三角形(求角度和长度) 4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______. 解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc .∴bc a c b 2222-+=21.∴∠A =3π. 答案:3 π 5.在△ABC 中,“A >30°”是“sin A > 21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用 正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题. 求解此类问题的大概步骤为: (1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形; (3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答. 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123 cos 22312031BD BC CD B BC BD +-+-===???, 3 s i n B =. 在ABC ?中,sin 24sin BC B AC A ?= =. 由余弦定理,得222 2cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米). 答:此人所在D 处距A 还有15千米. 评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理. 2.航海中正、余弦定理的应用 例2 在海岸A 处,发现北偏东45?方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75?方向,距A 为2海里的C 处的缉私船奉命以/小时 A C D 31 21 20 35? 25? 东 北

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

正余弦定理的应用举例

正余弦定理的应用举例 正、余弦定理的应用举例 知识梳理 一、解斜三角形应用题的一般步骤: 分析:理解题意,分清已知与未知,画出示意图 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决. 典例剖析 题型一距离问题 例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲

船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结,由已知, 又,是等边三角形, 由已知,,, 在中,由余弦定理,.. 因此,乙船的速度的大小为.答:乙船每小时航行海里.题型二高度问题 例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30,至点c处测得顶端A的仰角为2,再继续前进10至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。 解法一:由已知可得在AcD中, Ac=Bc=30,AD=Dc=10,ADc=180-4, =。sin4=2sin2cos2 cos2=,得2=30=15,在RtADE中,AE=ADsin60=15 答:所求角为15,建筑物高度为15 解法二:设DE=x,AE=h 在RtAcE中,+h=30在RtADE中,x+h= 两式相减,得x=5,h=15在RtAcE中,tan2== =30,=15

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且 75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正余弦定理练习题

正余弦定理练习题 1.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( ) A .22 B .8 2 C. 2 D.22 2. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 3. 满足A =45°,c =6,a =2的△ABC 的个数记为m ,则a m 的值为( ) A .4 B .2 C .1 D .不确定 4. 在△ABC 中,cos 2B 2=a +c 2c ,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 5. 在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A 、B 、C 的度数依次是________. 6. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________. 7. 在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c .已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .

8. 在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;(2)求sin ? ?? ??2A -π4的值. 9. 设△ABC 的角A ,B ,C 的对边长分别为a ,b ,c ,且3b 2+3c 2-3a 2=42bc . (1)求sin A 的值;(2)求A C B A 2cos 214sin 4sin 2-??? ??++??? ??+ππ的值. 10. 在△ABC 中,A 、B 为锐角,角A ,B ,C 所对的边分别为a ,b ,c ,且cos2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 11. 在△ABC 中,C -A =π2,sin B =13 . (1)求sin A 的值;(2)设AC =6,求△ABC 的面积.

高考数学专题--正余弦定理及解三角形

高考数学专题--正余弦定理及解三角形 高考考点:1、利用正、余弦定理解三角形 2、解三角形的实际应用 3、解三角形与其他知识的交汇问题 解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点. 考点1 利用正、余弦定理解三角形 题组一 利用正、余弦定理解三角形 调研1 ABC △的内角,,A B C 的对边分别为,,a b c ,已知3 cos sin 3b a C a C =+ . (1)求A ; (2)若3a = ,2bc =,求ABC △的周长. 【解析】(1) 3cos sin 3b a C a C =+ ,3 ,sin sin cos sin sin 3B A C A C ∴=+由正弦定理得, 3 sin cos cos sin sin cos sin sin 3A C A C A C A C ∴+=+ ,tan 3A =即, ()0πA ∈又,,∴ π 3A = . (2) 22π,32cos 3b c bc =+-由余弦定理得, ()2 33b c bc +-=即, 2bc =又,3b c ∴+=, 故33ABC +△的周长为. 调研2 如图,ABC △中,角,,A B C 的对边分别为,,a b c ,已知3sin cos C c B b = .

(1)求角B 的大小; (2)点D 为边AB 上的一点,记BDC θ∠=,若π85π,2,5,2 5CD AD a θ<<=== ,求sin θ与b 的值. 【解析】(1)由已知3sin cos C c B b =,得3sin sin cos sin C C B B =, 因为sin 0 C >,所以sin 3tan cos 3B B B == , 因为0πB <<,所以 π 6B = . (2)在BCD △中,因为sin sin sin CD BC a B BD C θ== ∠,所以 85 25sin sin B BDC = ∠,所以 25sin 5θ=, 因为θ为钝角,所以ADC ∠为锐角,所以 ()25cos cos π1sin 5ADC θθ∠=-=-= , 在ADC △中,由余弦定理,得22252cos(π)5425255b AD CD AD CD θ=+-?-=+-?? =, 所以5b = . ☆技巧点拨☆ 利用正、余弦定理解三角形的关键是利用定理进行边角互化.即利用正弦定理、余弦定理等工具合理地选择“边”往“角”化,还是“角”往“边”化. 若想“边”往“角”化,常利用“a =2R sin A ,b =2R sin B ,c =2R sin C ”; 若想“角”往“边”化,常利用sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,cos C =a 2+b 2-c 2 2ab 等. 题组二 与三角形面积有关的问题 调研3 如图,在ABC △中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD . (1)求AD 的长;

相关文档
最新文档