高中数学:三角函数与正余弦定理专题

合集下载

余弦定理和正弦定理-高考数学复习

余弦定理和正弦定理-高考数学复习




解析:根据正弦定理


,∵
sin
sin
sin
sin 2 A = sin 2 B + sin 2
C ,∴ a 2= b 2+ c 2,∴ A 是直角, B + C =90°,∴2 sin B cos C =2
sin B cos (90°- B )=2 sin
2B=
sin A =1,∴ sin B =


c 2= a 2+ b 2-2 ab cos C

高中总复习·数学
定理
变形
正弦定理
余弦定理
高中总复习·数学
2. 在△ ABC 中,已知 a , b 和 A 时解的情况
A 为锐角
A 为钝角或直角
图形
关系式
a = b sin A
解的个数
1
b sin A < a <
b
2
a≥b
a>b
1
1
高中总复习·数学
弦定理得
2 + 2 −2
9+25−49
1
cos A =

=- ,因为 A 为△ ABC 的内
2
30
2

角,所以 A = .
3
高中总复习·数学
5. 在△ ABC 中, sin A =2 sin B cos C ,且 sin 2 A = sin 2 B + sin 2 C ,则
△ ABC 的形状是 等腰直角三角形 .
cos C + c cos A ; c = b cos A + a cos B.
高中总复习·数学
1. (多选)在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,下

高中数学三角函数正弦定理与余弦定理的解题方法

高中数学三角函数正弦定理与余弦定理的解题方法

高中数学三角函数正弦定理与余弦定理的解题方法在高中数学中,三角函数是一个重要的章节,其中正弦定理和余弦定理是解决三角形相关问题的关键。

本文将介绍这两个定理的解题方法,并通过具体题目的举例,说明其考点和解题技巧。

一、正弦定理的解题方法正弦定理是指在任意三角形ABC中,边长a、b、c与其对应的角度A、B、C之间有如下关系:a/sinA = b/sinB = c/sinC1. 已知两边和一个夹角,求第三边假设已知三角形ABC中,边长a=5cm,b=7cm,夹角C=45°,求边长c。

根据正弦定理,有a/sinA = c/sinC,代入已知条件,得到5/sin45° = c/sinC。

由此可得c = sinC/sin45° * 5 ≈ 5√2 cm。

2. 已知两边和一个角度,求另外两个角度假设已知三角形ABC中,边长a=4cm,b=6cm,夹角C=60°,求角度A和B。

根据正弦定理,有a/sinA = b/sinB,代入已知条件,得到4/sinA = 6/sinB。

由此可得sinA/sinB = 2/3。

根据三角函数的性质,sinA/sinB = 1/sin(B-A)。

所以,1/sin(B-A) = 2/3,解得sin(B-A) = 3/2。

但是,sin(B-A)的取值范围是[-1,1],因此无解。

二、余弦定理的解题方法余弦定理是指在任意三角形ABC中,边长a、b、c与其对应的角度A、B、C之间有如下关系:c² = a² + b² - 2ab*cosC1. 已知两边和一个夹角,求第三边假设已知三角形ABC中,边长a=5cm,b=7cm,夹角C=45°,求边长c。

根据余弦定理,有c² = a² + b² - 2ab*cosC,代入已知条件,得到c² = 5² + 7² -2*5*7*cos45°。

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全高中数学定理公式非常多,所以一定需要总结归纳。

为了让同学们对三角函数有个更深的记忆。

下面是由小编为大家整理的“三角函数正余弦定理公式大全”,仅供参考,欢迎大家阅读。

三角函数余弦定理公式大全余弦定理对于边长为a、b、c而相应角为A、B、C的三角形,有:a^2 = b^2 + c^2 - 2bc·cosAb^2 = a^2 + c^2 - 2ac·cosBc^2 = a^2 + b^2 - 2ab·cosC也可表示为:cosC=(a^2 +b^2 -c^2)/ 2abcosB=(a^2 +c^2 -b^2)/ 2accosA=(c^2 +b^2 -a^2)/ 2bc这个定理也可以通过把三角形分为两个直角三角形来证明。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。

要小心余弦定理的这种歧义情况。

延伸定理:第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cos C+c·cos B,b=c·cos A+a·cos C,c=a·cos B+b·cos A 三角函数正弦定理公式正弦定理对于边长为 a, b和 c而相应角为 A, B和 C的三角形,有:sinA / a = sinB / b = sinC/c也可表示为:a/sinA=b/sinB=c/sinC=2R变形:a=2RsinA,b=2RsinB,c=2RsinC其中R是三角形的外接圆半径。

它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。

在这个定理中出现的公共数 (sinA)/a是通过 A, B和 C三点的圆的直径的倒数。

正弦定理用于在一个三角形中(1)已知两个角和一个边求未知边和角(2)已知两边及其一边的对角求其他角和边的问题。

上面的推论是三角测量中常见情况,也是很容易就掌握的要领。

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全三角函数是数学中的一项重要内容,其常用到的公式有正弦定理和余弦定理。

这两个定理在解决三角形问题时起着非常关键的作用,可以帮助我们求解三角形的各个边长和角度。

下面将详细介绍三角函数的正弦定理和余弦定理的公式及其应用。

1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:sinA / a = sinB / b = sinC / c其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

正弦定理可以用来求解三角形的边长或角度,只要已知任意两个角或边长即可。

应用1:已知三角形两边和夹角的情况下,可以利用正弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据正弦定理可得:sin∠BAC / 5 = sin∠ABC / BC将∠BAC=60°代入,可得:sin60° / 5 = sin∠ABC / BC√3 / 2 / 5 = sin∠ABC / BC√3 / 10 = sin∠ABC / BC再将sin∠ABC的值代入,求得BC的值。

2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

余弦定理可以用来求解三角形的边长或角度,只要已知任意一个角的两边长度即可。

应用2:已知三角形两边和夹角的情况下,可以利用余弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据余弦定理可得:BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos∠BAC将已知数值代入,可得:BC^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°BC^2=25+49-70*0.5BC^2=25+49-35BC^2=39BC=√39求得边BC的长度。

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;①利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ①B ①C 为( ) A .1①1①3 B .1①2①3 C .1①3①2D .1①4①1【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ①B ①C =1①2①3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,①ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;①若a =5,c =3,边AC 的中点为D ,求BD 的长.【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理,得2sin C +sin A =2sin B cos A , 又sin C =sin(A +B )=sin A cos B +cos A sin B ,所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.①由余弦定理得b 2=a 2+c 2-2a ·c cos①ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos①BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos①BAC =9+494-2×3×72×1114=194,所以BD =192.题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则①ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此①ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A ,即sin(B +C )=sin 2 A ,所以sin A =sin 2 A ,故sin A =1,即A =π2,因此①ABC 是直角三角形.【例2】在①ABC 中,若c -a cos B =(2a -b )cos A ,则①ABC 的形状为 .【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A ,故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B ,A =π2或A =B ,故①ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.①ABC 的面积公式(1)S ①ABC =12a ·h (h 表示边a 上的高).(2)S ①ABC =12ab sin C =12ac sin B =12bc sin A .(3)S ①ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则①ABC的面积为 .【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以①ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以①ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在①ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则①ABC 的面积为 .【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S ①ABC =12ab sin C=12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且①ABC 的面积为32,则ab = ,a +b = . 【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由①ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若①ABC 的面积为3,周长为8,求a .【解析】:(1)由题设得a sin C =c cos A 2,由正弦定理得sin A sin C =sin C cos A 2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求①ABC 外接圆的直径;(2)求a +c 的取值范围.【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3.根据正弦定理得,①ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知①ABC 的外接圆直径为1,根据正弦定理得,a sin A =b sin B =c sin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ①R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,①ABC 的面积为12,求a 的值.【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6①⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ①Z ,解得x ①⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2,所以sin ⎪⎭⎫ ⎝⎛+62πA =1. 因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由①ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),解得a =3-1. 【例2】①ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小;(2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【解析】:(1)法一:在①ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B ,又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0,则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.二、高效训练突破 一、选择题1.(2020·广西桂林阳朔三校调研)在①ABC 中,a ①b ①c =3①5①7,那么①ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形【解析】:因为a ①b ①c =3①5①7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,①ABC 是钝角三角形,故选B. 2.(2020·河北衡水中学三调)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则①ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形【解析】:在①ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ①(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以①ABC 的形状是等边三角形,故选C.3.(2020·河南南阳四校联考)在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( ) A.823 B.1433 C.73D .733【解析】:因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D. 4.(2020·湖南省湘东六校联考)在①ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sinB ,则其最小内角的余弦值为( )A .-24 B.24 C.528D .34【解析】:由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为①ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc =(2a )2+(2a )2-a 22·2a ·2a=528,故选C.5.(2020·长春市质量监测(一))在①ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( ) A .60°B .120°C .45°D .135°【解析】:法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C+12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在①ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c 2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.(2020·河南三市联考)已知a ,b ,c 分别为①ABC 三个内角A ,B ,C 的对边,sin A ①sin B =1①3,c =2cos C =3,则①ABC 的周长为( ) A .3+3 3 B .23 C .3+2 3D .3+3【解析】:因为sin A ①sin B =1①3,所以b =3a , 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以①ABC 的周长为3+23,故选C.7.(2020·湖南师大附中4月模拟)若①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,①ABC的面积S =52cos A ,则a =( ) A .1 B.5 C.13D .17【解析】:因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A . 所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.易得cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a =1.故选A. 8.(2020·开封市定位考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,①ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( ) A .10 B .12 C .8+ 3D .8+23【解析】:因为①ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cosA +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以①ABC 为正三角形,所以①ABC 的周长为3×4=12.故选B.9.(2020·昆明市诊断测试)在平面四边形ABCD 中,①D =90°,①BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B.6C.7D .22【解析】:如图,在①ACD 中,①D =90°,AD =1,AC =2,所以①CAD =60°.又①BAD =120°,所以①BAC =①BAD -①CAD =60°.在①ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos①BAC =7,所以BC =7.故选C.10.(2020·广州市调研测试)已知①ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2Cc =sin A sin Ba cos B +b cos A ,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]【解析】:根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A +sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.二、填空题1.在①ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 【解析】:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B . 2.(2020·天津模拟)在①ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .【解析】:在①ABC 中,由正弦定理b sin B =c sin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sinC ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.3.(2020·河南期末改编)在①ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .【解析】:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sin C ,即sin 2A -sin 2C -sin 2B =-2sin B sin C .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.4.在①ABC 中,A =π4,b 2sin C =42sin B ,则①ABC 的面积为 .【解析】:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S ①ABC =12bc sin A =12×42×22=2.5.(2020·江西赣州五校协作体期中改编)在①ABC 中,A =π3,b =4,a =23,则B = ,①ABC 的面积等于 .【解析】:①ABC 中,由正弦定理得sin B =b sin A a =4×sinπ323=1.又B 为三角形的内角,所以B =π2,所以c =b 2-a 2=42-(23)2=2,所以S ①ABC =12×2×23=2 3.6.在①ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S ①ABC =574,则b 的值为 .【解析】:由sin A sin B =5c 2b ①a b =5c 2b ①a =52c ,①由S ①ABC =12ac sin B =574且sin B =74得12ac =5,①联立①,①得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.三 解答题1.(2020·兰州模拟)已知在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长.【解析】:(1)因为a sin B +b cos A =0,所以sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,所以sin A +cos A =0,所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角,所以A =3π4. (2)在①ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求cos B 的值.【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33.(2)因为sin A a =cos B 2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255.3.(2020·福建五校第二次联考)在①ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)若a =2,求①ABC 面积的最大值.【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S ①ABC =12bc sin A ≤2+3,故①ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:①ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且①ADB =2①ACD ,a =3,求b 的值.【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B ,所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c .故①ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1,因为①ADB =2①ACD =①ACD +①DAC , 所以①ACD =①DAC ,所以AD =CD =1.又因为cos①ADB =-cos①ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以①B =①C ,又因为①DAC =①ADB -①C =2①C -①C =①C =①B , 所以①CAB ①①CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知①ABC 的面积为32ac cos B ,且sin A =3sin C .(1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长.【解析】:(1)因为S ①ABC =12ac sin B =32ac cos B ,所以tan B = 3.又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13.所以BD =13.。

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。

高考专题正弦定理和余弦定理

高考专题正弦定理和余弦定理

⾼考专题正弦定理和余弦定理⾼考专题正弦定理和余弦定理最新考纲掌握正弦定理、余弦定理,并能解决⼀些简单的三⾓形度量问题.知识梳理1.正、余弦定理在△ABC 中,若⾓A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三⾓形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:1.判断正误(在括号内打“√”或“×”)(1)三⾓形中三边之⽐等于相应的三个内⾓之⽐.( )(2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐⾓三⾓形;当b 2+c 2-a 2=0时,△ABC 为直⾓三⾓形;当b 2+c 2-a 2<0时,△ABC 为钝⾓三⾓形.( ) (5)在三⾓形中,已知两边和⼀⾓就能求三⾓形的⾯积.( ) 解析 (1)三⾓形中三边之⽐等于相应的三个内⾓的正弦值之⽐. (3)已知三⾓时,不可求三边.(4)当b 2+c 2-a 2>0时,三⾓形ABC 不⼀定为锐⾓三⾓形. 答案 (1)× (2)√ (3)× (4)× (5)√2.△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2B. 3C.2D.3解析由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3? ????b =-13舍去,故选D. 答案 D3.在△ABC 中,⾓A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A ,则cos B =( )A.-12B.12C.-32D.32 解析由正弦定理知sin B 3cos B=sin Asin A =1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B. 答案 B4.在△ABC 中,A =60°,AB =2,且△ABC 的⾯积为32,则BC 的长为( ) A.32 B.3 C.2 3D.2解析因为S =12×AB ×AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,所以BC = 3. 答案 B5.在△ABC 中,a cos A =b cos B ,则这个三⾓形的形状为________. 解析由正弦定理,得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三⾓形为等腰三⾓形或直⾓三⾓形. 答案等腰三⾓形或直⾓三⾓形6.已知钝⾓△ABC 的⾯积为12,AB =1,BC =2,则⾓B =________,AC =________.解析∵钝⾓△ABC 的⾯积为12,AB =1,BC =2,∴12=12×1×2×sin B ,解得sin B =22,∴B =π4或3π4,∵当B =π4时,由余弦定理可得 AC =AB 2+BC 2-2AB ·BC ·cos B =1+2-2×1×2×22=1,此时,AB 2+AC 2=BC 2,可得A =π2,此△ABC 为直⾓三⾓形,与已知⽭盾,舍去.∴B =3π4,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1+2+2×1×2×22= 5. 答案3π45考点⼀利⽤正、余弦定理解三⾓形【例1】(1)在△ABC中,已知a=2,b=6,A=45°,则满⾜条件的三⾓形有()A.1个B.2个C.0个D.⽆法确定(2)在△ABC中,已知sin A∶sin B=2∶1,c2=b2+2bc,则三内⾓A,B,C 的度数依次是________.(3)设△ABC的内⾓A,B,C的对边分别为a,b,c,若a=3,sin B=12,C=π6,则b=________.解析(1)∵b sin A=6×22=3,∴b sin A∴满⾜条件的三⾓形有2个.(2)由题意知a=2b,a2=b2+c2-2bc cos A,即2b2=b2+c2-2bc cos A,⼜c2=b2+2bc,∴cos A=22,∵A∈(0°,180°),∴A=45°,sin B=12,⼜B∈(0°,180°),b<a,∴B=30°,∴C=105°.(3)因为sin B=12且B∈(0,π),所以B=π6或B=5π6.⼜C=π6,B+C<π,所以B=π6,A=π-B-C=2π3.⼜a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.答案(1)B(2)45°,30°,105°(3)1规律⽅法(1)判断三⾓形解的个数的两种⽅法①代数法:根据⼤边对⼤⾓的性质、三⾓形内⾓和公式、正弦函数的值域等判断.②⼏何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三⾓形的两边和其中⼀边的对⾓解三⾓形.可⽤正弦定理,也可⽤余弦定理.⽤正弦定理时,需判断其解的个数,⽤余弦定理时,可根据⼀元⼆次⽅程根的情况判断解的个数.【训练1】 (1)在△ABC 中,⾓A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( ) A.1B.2C.4D.6(2)△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析 (1)a 2=c 2+b 2-2cb cos A ?13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).(2)在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A+C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 (1)C (2)2113考点⼆利⽤正弦、余弦定理判定三⾓形的形状(典例迁移)【例2】 (经典母题)设△ABC 的内⾓A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐⾓三⾓形 B.直⾓三⾓形 C.钝⾓三⾓形D.不确定解析由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2. 答案 B【迁移探究1】将本例条件变为“若2sin A cos B =sin C ”,那么△ABC ⼀定是( )A.直⾓三⾓形B.等腰三⾓形C.等腰直⾓三⾓形D.等边三⾓形解析法⼀由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π法⼆由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ?a 2=b 2?a。

人教版高考总复习一轮数学精品课件 主题二 函数 第五章三角函数、解三角形-第七节 正弦定理和余弦定理

人教版高考总复习一轮数学精品课件 主题二 函数 第五章三角函数、解三角形-第七节 正弦定理和余弦定理
1
4
π
2
π
2
15
,
8
解因为cos = − ,所以 < < π,故0 < < ,又sin =
sin 2 = 2sin cos =
cos 2 =
2cos2
−1=
15

×
4
1
2× −1
16
1

4
=
=−
7
− .而sin
8
=
故sin 2 − = sin 2cos − cos 2 ⋅ sin = −
=− −




,
,
移项得 + = ,
所以△ 一定为直角三角形.


.又因为A, ∈ , ,
[对点训练2](1)在△ 中,内角,,所对的边分别是,,,若
− cos = 2 − cos ,则△ 的形状为() D
A.等腰三角形
B.直角三角形

=

+


− ⋅ = + − × × × = ,得 = .故选D.
(2)在△ 中,角,,的对边分别为,,.若 = 2, = 30∘ , = 105∘ ,则 =()
A.1B. 2C.2 2D.2 3
[解析]∵ = ∘ , = ∘ , + + = ∘ ,∴ = ∘ ,∴由正弦定理可知
6 = 4 2 + 2 + 2 ,解得 = 1(负值舍).
②求sin 的值;
解由①可求出 = 2,而0 < < π,所以sin = 1 − cos 2 =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学:三角函数与正余弦定理专题
一、选择题:
1.sin 68°sin 67°-sin 23°cos 68°的值为( )
A .-2
2 B.22 C.3
2 D .1
2.(2013·江西高考)若sin α
2=3
3,则cos α=( )
A .-2
3 B .-1
3 C.1
3 D.2
3
3.已知tan ⎝⎛⎭⎫α-π
6=3
7,tan ⎝⎛⎭⎫π
6+β=2
5,则tan(α+β)的值为( ) A.29
41 B.1
29 C.1
41 D .1
4.把y =sin 1
2x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω的值为(
) A .1 B .4 C.1
4 D .2
5.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( )
A .向左平移1个单位
B .向右平移1个单位
C .向左平移1
2个单位 D .向右平移1
2个单位
6.若sin α<0且tan α>0,则α是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
二、填空题:
7.已知角α的终边经过点(3,-1),则sin α=________.
8.已知扇形周长为10,面积是4,求扇形的圆心角为________.
9.函数y =cos ⎝⎛⎭⎫2x +π
6的单调递增区间为________.
10.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,
则角C =________.
三、解答题:
11. (2015·山东高考)设2()sin cos cos ()4f x x x x π=-+
(1)求()f x 的单调区间
(2)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c .若()02A f =,1a =,
求ABC ∆面积的最大值
12.已知2tan =θ, 求(Ⅰ)θ
θθθsin cos sin cos -+;(Ⅱ)θθθθ22cos 2cos .sin sin +-的值.
ABC ∆13.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足0cos cos )2(=--C a A c b .
(1)求角A 的大小;
(2)若3=a ,4
33=
∆ABC S ,试判断的形状,并说明理由.
14.已知函数)cos 3,cos (sin ,)(x x x m n m x f ωωω+=⋅=其中,
)(,0),sin 2,sin (cos x f x x x n 若其中>-=ωωωω的相邻两对称轴间的距离不小于.2
π (Ⅰ)求ω的取值范围; (Ⅱ)在,3,3,,,,,,=+=∆c b a C B A c b a ABC 的对边分别是角中 ,最大时当ω ABC A f ∆=求,1)(的面积.。

相关文档
最新文档