高速铁路隧道施工控制爆破方案设计

合集下载

隧道爆破方案

隧道爆破方案

隧道爆破方案第1篇隧道爆破方案一、项目背景随着我国基础设施建设的快速发展,隧道工程在公路、铁路、城市轨道交通等领域发挥着重要作用。

在隧道施工过程中,爆破作业是加快施工进度、提高工程效率的重要手段。

为确保隧道爆破作业的顺利进行,降低安全风险,提高爆破效果,特制定本方案。

二、爆破目标与原则1. 爆破目标:在确保安全的前提下,实现隧道开挖轮廓的整齐、稳定,减少对周边环境的影响。

2. 爆破原则:(1)安全第一:确保爆破作业过程中人员、设备、环境的安全。

(2)环保节能:降低爆破作业对周边环境的污染,提高爆破材料利用率。

(3)经济合理:合理选择爆破参数,降低工程成本。

(4)技术先进:采用国内外先进的爆破技术和设备,提高爆破效果。

三、爆破方案设计1. 爆破方法:采用深孔爆破法。

2. 爆破参数:(1)炮孔布置:根据隧道断面形状、大小及地质条件,合理布置炮孔,确保炮孔间距、排距符合规范要求。

(2)炮孔深度:根据隧道围岩等级、开挖断面及施工要求,确定炮孔深度。

(3)装药结构:采用乳化炸药,采用连续装药结构。

(4)起爆方式:采用非电导爆管雷管起爆。

3. 爆破安全措施:(1)爆破作业前,对爆破人员进行安全技术培训,确保熟悉爆破作业流程及安全操作规程。

(2)对爆破区域进行安全警戒,设立明显的警戒标志,确保无关人员不得进入。

(3)爆破作业过程中,严格按照国家相关法律法规和标准要求,做好安全防护措施。

(4)加强爆破作业现场监测,及时处理安全隐患。

四、爆破作业实施1. 爆破作业前准备:(1)办理爆破作业许可证。

(2)编制爆破作业设计书。

(3)采购合格的爆破材料。

(4)对爆破人员进行安全技术培训。

2. 爆破作业流程:(1)炮孔测量:根据设计图纸,对炮孔位置进行测量,确保炮孔布置合理。

(2)炮孔钻孔:采用合适的钻机进行钻孔,确保炮孔质量。

(3)装药:按照设计要求,进行装药作业。

(4)堵塞:采用适当的材料进行炮孔堵塞,确保堵塞质量。

隧道爆破方案

隧道爆破方案

目录一、工程概况 (1)1.工程简介 (1)2.重要工程数量 (2)3.重要技术标准 (2)二、钻爆设计控制要点 (3)三、减震措施 (3)四、重要部位爆破设计 (4)1.Ⅲ级围岩采用上下台阶法钻爆施工 (4)2.Ⅳ级围岩采用台阶法弧形导坑留核心土钻爆施工 (6)3.V级围岩CRD法钻爆施工 (12)4.V级围岩紧急停车带采用双侧壁导坑法开挖 (15)五、爆破施工程序及作业标准 (20)六、爆破震动监测 (23)七、施工中异常现象应对措施 (24)隧道爆破施工方案一、工程概况1.工程简介⑴宝鸡至坪坎高速公路项目位于陕西西部的宝鸡市南部秦岭山区, 路线起于银洞峡隧道进口, 在神沙河设连续钢构桥后折向南设15.5公里专长隧道翻越秦岭, 沿车道河河谷向南, 经岩湾、田坝, 止于凤县坪坎, 向南与拟建定汉线坪坎至汉中(石门)公路衔接。

路线全长42.558公里。

其中秦岭专长隧道建筑规模(双向六车道)目前居世界第一, 是全线控制性工程, 我标段承建此隧道出口段施工, 设计为分离式隧道。

左线长3735m, 设计纵坡1.65%, 起讫里程为ZK164+265~ZK168+000;右线长3790m, 设计纵坡 1.65%, 起讫里程为K164+350~K168+140,设计净空为1400cm*500cm, 洞门形式均采用端墙式。

⑵地形、地貌及工程地质本标段跨越秦岭中山地貌区(K164+265~K168+150)和车道河河谷(K168+150-k168+217)。

中山地貌区属于花岗岩侵蚀地貌, 山高坡陡, 高耸的山峰与深切峡谷相间出现, 地形起伏大, “V”型谷发育, 相对高差一般在400m以上, 河流纵比降大, 河流冲积物重要为漂卵石, 两岸谷坡上基岩裸露;车道河属汉江一级支流褒河的支流。

发源于秦岭南坡, 由北向南流经岩湾、核桃坝、坪坎, 在留坝县江西营北侧汇入褒河。

车道河两岸谷坡较缓, 呈阶梯状, 谷坡上发育高阶地, 谷底宽阔平坦, 发育一级阶地, 冲积物为漂卵石和砂砾土, 厚度不超过15m。

公路工程隧道爆破专项施工方案

公路工程隧道爆破专项施工方案

公路工程隧道爆破专项施工方案一、施工概述本项目为公路工程隧道施工爆破专项施工方案,施工内容为隧道主体施工中进行的爆破作业。

本方案将详细介绍爆破作业的施工流程、爆破设计、爆破参数、爆破装置的选择和应急预案。

二、施工流程1.爆破前期准备:施工前进行现场勘察,明确隧道的地形地貌、地质构造等情况。

制定爆破设计方案,并选择合适的爆破装置。

2.安全措施:在爆破前,必须确保区域内没有人员和设备。

设置警示标语并封闭周边道路,确保施工现场安全。

3.布置爆破装置:按照爆破设计方案,在隧道内布置爆破装置。

装置的布置应符合爆破参数要求,并有足够的防护措施。

4.爆破作业:进行引爆操作,并保持通畅的沟通方式,实时控制爆破效果。

5.作业结果评估:对爆破后的隧道进行检查,并评估作业结果。

三、爆破设计1.确定炸药类型:根据隧道的地质情况和工程要求,选择合适的炸药类型,如雷管炸药、闭口雷管炸药等。

2.确定爆破参数:根据隧道的尺寸和地质情况,确定合适的爆破参数,包括药量、药性、起爆时间和装置布置等。

3.爆破装置布置:根据爆破参数,合理布置爆破装置,确保爆破效果。

4.考虑安全因素:结合施工现场的实际情况,综合考虑安全因素,制定相应的安全措施和应急预案。

四、爆破参数1.药量:根据隧道的尺寸和工程要求,确定合适的药量。

药量过大可能对隧道结构造成损坏,药量过小则影响爆破效果。

2.药性:根据地质情况和工程要求,选择合适的炸药种类和药性。

3.起爆时间:根据隧道的长度和起爆条件,确定合适的起爆时间,保证爆破的同步性和高效性。

4.布置装置:根据爆破设计方案,合理布置装置,并设置相应的防护措施。

五、爆破装置选择1.炸药:根据隧道地质情况和工程要求,选择合适的炸药类型,如乳化炸药、硝化甘油炸药等。

2.发火装置:选择可靠的发火装置,并保证其在爆破作业中正常工作。

3.导爆索:根据隧道尺寸和布置情况,选择合适的导爆索,并注意设置防护措施。

六、应急预案1.紧急通讯:确保施工现场与指挥部之间有畅通的通讯方式,以应对突发情况。

高速公路隧道路基爆破工程施工组织设计方案 --(完整实用最新)

高速公路隧道路基爆破工程施工组织设计方案 --(完整实用最新)

高速公路隧道路基爆破工程工组织施工方案编制:审核:确认:备注:年月日目录一、编制依据: (2)二、工程概况: (2)三、企业资质: (3)四、施工安排: (3)1、仓库设置: (3)2、采购管理: (3)3、运输管理: (4)4、仓库管理: (4)5、施工队使用管理: (5)6、安全管理: (6)五、施工方案: (7)1、路基爆破施工方法及工艺 (7)2、隧道施工爆破方案 (8)3、施工要点: (9)六、爆破工艺 (10)1、全断面炮眼布置、装药参数表及主要经济技术指标。

(11)2、大面积契形掏槽炮眼布置图。

(11)七、装药参数表及主要经济技术指标: (11)1、Ⅲ级围岩主要经济技术指标: (11)2、IV、V级围岩装药参数表: (12)IV、V级围岩主要经济技术指标: (13)八、装药结构 (13)1、施工技术措施 (14)2、光面爆破质量保证措施 (17)一、编制依据:根据项目部施工组织设计、危爆物品管理要求及该工程的实际情况编制。

二、工程概况:我项目部所承建的工程为**高速公路D27合同段,全标段长2.005km,其中隧道双洞共长2865m(左洞长1265 m,右洞长1206 m),特大桥一座共长775.5m(双线);路基工程多为石方挖方段。

开工日期为 xx 年2月到xx 年8月。

三、企业资质:我项目部是**集团第四工程有限公司xx 高速公路C11标段施工管理的法人机构,全面负责公司在xx C11标段的施工管理工作。

(中标通知及公司资质的有关资料附后)四、施工安排:根据xx 高速公路指挥部的工程形象进度要求,我部拟在xx 年11月份全面开工,现正做开工前的准备工作。

针对xx 高速公路的具体情况,我们制定了工程用火工品的管理措施。

具体如下:1、仓库设置:由于该标段石方爆破量大,施工工期短,我部拟在工地建一临时炸药库,建筑面积1.26亩, 砖混结构,炸药库 20 m2,雷管库 15m2,两库相距30m,设计最大库容量:炸药库8吨,雷管库5万发,最小库容数量不得低于最大容量的30%,以满足工程用料。

浅谈高速铁路隧道施工控制爆破方案设计

浅谈高速铁路隧道施工控制爆破方案设计

限值
在 于防止破坏 预应 力 混凝土 和安装 的仪器
我 国学者吴德 伦等 人参 考欧洲 国家 的做法 ,建议 的爆 破震动标准见表 2 。
表2 爆破震动控制建议标准
建筑物分类 现浇混凝 土结构 钢结构 坚 < 1 0 1 0 ~ 4 o 4 0—1 0 0
2 0 1 3 年 第 3期
第3 9卷 总第 1 7 3期
I ・ J 材 S i c h u a n Bu i l d i n g Ma t e d a b
・1 3 9・
2 0 1 3 年 6月
D O I : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 2— 4 0 1 1 . 2 0 1 3 . 0 3 . 0 6 4
1 工程概 况
京沪高速铁路作 为我 国高速铁路 网 中“ 四纵 ” 的重要 组 成 部分于 2 0 0 8 年4 月开工建设 , 线路 总长度 达 1 3 0 0 多k m, 设 计时速 3 5 0 k m/ h ,是新 中国成立 以来一次建设里程最长 、 投 资最大 、标准 最高 的高速铁 路 ,京沪 高速铁 路现 已建成 并于2 0 1 1 年 6月正式开通运营。 本文研究之金 牛山隧道 位于 山东省 泰安市 岱岳 区六 郎 坟村与 高新 区小 官 庄 村 之 间,隧道 进 口里 程 为 D K 4 6 5+ 3 3 5 ,出口里程为 D K 4 6 7+ 2 4 0 ,隧道全 长 1 9 0 5 m,隧道 内 为单面坡 ,坡度 3 % 0 和1 2 0 的 上坡 ,隧 道所 处地形 起 伏较 % 大 ,其 中隧道最大埋深为 3 5 . 3 7 m ,隧道在里程为 D K 4 6 6 + 2 3 0一D K 4 6 6+ 3 3 0区段下穿 京福 高速公 路 C匝道 ,此 区段 内埋深仅 为 9 . 8 m,属 于 超浅 埋 隧道 ,在 D K 4 6 6+5 6 0一 D K 4 6 6+ 6 6 O段下穿京福高速公路正线 ,其 中高速公路 宽度 为3 6 m,其 中隧道与公路 匝道 和正 线的交 角分别为 1 4 . 5 7 。 和3 6 . 7 。 ,属于斜交。隧道的工程地质情况为风化花 岗片麻 岩 ,局部夹杂角 闪岩 和部 分石英 ,其 中围岩 已经风 化 ,尤 其接近地表埋深较 浅处节 理裂 隙较 发育 ,岩石 比较破碎 并 有地下裂隙水发育 ,属Ⅳ级围岩。

高速公路隧道下穿既有铁路隧道控制爆破技术

高速公路隧道下穿既有铁路隧道控制爆破技术
工程爆破 !"#$"!!%$"#&'()*$"#

文章编号6557;:5<6"4567#56;5578;58
高速公路隧道下穿既有铁路隧道控制爆破技术
6工程概况
贵州省六盘水至镇宁高速公路六盘水至六枝段 为双向四车道高速公路!设计速度为@5OB&I!路基 宽度为48?<B%项目起自水城东!经滥坝'陡箐'黑 塘!止于 六 枝 西 那 玉!全 长 75OB%茨 冲 隧 道 位 于 )六六*高 速 公 路 第 一 合 同 段!左 线 在 VW8@X@6@ "设计 标 高 6:C<?77B#处 与 沪 昆 铁 路 上 行 段 隧 道 *4464X854?<"轨顶标高6@44?@87B#相交!隧道轴 线与铁路线路交角为==Y<4Z7?8[!高差4:?6@7B!净
袁良远6唐春海4朱加雄4白 玉=
6>六盘水久翔爆破工程有限公司贵州六盘水 <<=7554>广西大学资源与冶金学院南宁 <=5558 =? 毕节市恒宇爆破工程有限公司贵州毕节 <<6:55
摘要为确保公路隧道爆破施工过程中既有铁路隧道的结构安全!采取了以下措施严格控制爆破振动产生的危害%通过参考相关资
6789:6$9$GH/3I.21J.3KHJ.L-23-+,/1-0M1K3N++.0MI.+3I.+.MH+.M12-+AH+23/NA3-H+!2HB.B.12N/.B.+32M./.31O.+ JH/AH+3/H00-+,P1B1,.HJQ0123-+,R-Q/13-H+>(AAH/P-+,3H/.0.R1+321J.3K231+P1/P-+JH/B13-H+!3I.Q0123-+,R-Q/13-H+21J.3K AH+3/H0231+P1/PM12P.3./B-+.P3HQ.@>5AB&2JH/3I..L-23-+,3N++.0>&.+AIB.3IHPM12N2.P1+PQ0123-+,1PR1+A.S.//HN+P HJ5>CB M122.3NS3H/.PNA.Q0123-+,2A10.13NSS./Q.+AI>(2./-.2HJ3.AI+-TN.2M./.31O.+PN/-+,3N++.0Q0123-+,3H/.PNA. 3I.R-Q/13-H+!2NAI12-+A/.12-+,-+-3-13-H+2.,B.+32!P.A/.12-+,3I.AI1/,.1BHN+3S./P.01K-+3./R10!P/-00-+,BH/..BS3KIH0.2 1+P2HH+>(,HHPQ0123-+,.JJ.A3M-3IHN31+K+.,13-R.-BS1A3H+3I..L-23-+,/1-0M1K3N++.0M12J-+100K1AI-.R.P> ;<= >?:@8$U/H223N++.0(*N++.0Q0123-+,(&0123-+,R-Q/13-H+(UH+3/H0Q0123-+,

铁路隧道爆破工程施工方案

铁路隧道爆破工程施工方案

一、工程概况本工程位于我国某地区,隧道全长XX公里,设计断面为XX米×XX米,属于深埋隧道。

隧道地质条件复杂,主要地层为砂岩、泥岩、页岩等,围岩等级多为Ⅲ~Ⅳ级。

隧道进出口分别位于XX市和XX市,穿越地形复杂,施工难度较大。

二、施工方案1. 施工顺序(1)隧道进出口段:先进行明挖施工,再进行隧道主体施工。

(2)隧道主体施工:采用台阶法施工,自上而下分层开挖,先进行拱部开挖,再进行边墙开挖。

2. 施工工艺(1)爆破施工爆破施工是隧道施工的关键环节,需严格按照以下步骤进行:① 爆破设计:根据隧道地质条件、围岩等级、隧道断面尺寸等因素,确定爆破参数,包括炸药种类、装药量、炮眼布置、起爆顺序等。

② 爆破材料:选用高威力、低粉尘、环保型炸药,确保爆破效果。

③ 爆破作业:按照爆破设计要求,进行炮眼钻凿、装药、堵塞等作业。

④ 爆破监控:采用声波监测、地震监测等方法,实时监控爆破效果,确保施工安全。

(2)开挖支护① 开挖:按照施工顺序,自上而下分层开挖,确保开挖面稳定。

② 支护:采用锚杆、钢筋网、喷射混凝土等支护措施,确保隧道围岩稳定。

(3)衬砌施工① 钢筋施工:按照设计要求,进行钢筋加工、绑扎、焊接等作业。

② 模板施工:采用钢模板或木模板,确保衬砌质量。

③ 混凝土施工:选用高性能混凝土,确保衬砌强度和耐久性。

3. 安全措施(1)爆破安全:严格按照爆破设计要求进行爆破施工,确保施工安全。

(2)隧道围岩稳定:加强围岩监测,及时发现并处理围岩变形、开裂等问题。

(3)施工人员安全:加强安全教育,提高施工人员安全意识,确保施工人员安全。

(4)环境保护:严格控制粉尘、噪音等污染,确保施工环境达标。

三、施工进度根据工程实际情况,制定详细的施工进度计划,确保工程按期完成。

四、质量保证(1)加强施工过程控制,确保施工质量。

(2)对关键工序进行检测,确保施工质量符合设计要求。

(3)对施工质量进行跟踪,及时发现并解决质量问题。

铁路隧道爆破专项施工方案

铁路隧道爆破专项施工方案

铁路隧道爆破专项施工方案隧道爆破施工方案一、工程概况本施工方案针对一条铁路隧道爆破施工工程进行设计,隧道总长1000米,断面尺寸为6米×6米,隧道主要由砂岩组成,其中含有少量的硬破碎带。

本施工方案旨在通过爆破施工方式,达到开挖隧道的目的。

二、施工准备1.施工区划划定:将施工区域划分为爆破区、清理区和安全区三个区域,确保施工过程中人员的安全。

2.清理区准备:设置专门的清理区,将爆破产生的碎石等物料及时清理,以保证隧道畅通。

3.安全措施:在施工现场设置警示标志,并配备专业的爆破工具和设备,确保人员的施工安全。

三、方案实施1.爆破孔设计:根据隧道的尺寸和岩性,合理设计爆破孔的位置和数量。

常用的爆破孔布置方式为正交网状孔布置。

爆破孔的直径为80毫米,间距为1.5米。

2.钻孔施工:采用钻石钻头进行钻孔,钻孔深度为8米。

钻孔完成后,将孔口清理干净,并进行测量,以保证孔深的准确性。

3.装药与装载:在爆破孔中放入爆破药品,使用专门的装药管进行装药。

每个爆破孔装药量为1.2kg。

装药后,进行装载,使用钢筒将装药管放入孔中,并用砂浆将孔口封堵。

4.起爆:在装药完成后,待所有爆破孔都装载完成后,进行起爆。

起爆采用电起爆方式,并设置合理的爆炸延时时间,以实现同步起爆。

5.清理炮口:爆破后,将隧道内的碎石和残留的炸药清理出来,确保隧道畅通,以便后续开挖施工。

四、安全控制1.施工现场安全:施工现场周边设置警示标志,划定安全区,严禁无关人员进入施工现场,在工人之间设置警戒线,确保施工期间的人员安全。

2.装药安全:装药时必须佩戴防爆眼镜和手套,并进行良好的防护。

在装药完成后,装药工具和装药管必须妥善存放,防止发生意外。

3.爆破起爆安全:起爆时严格按照操作规程进行,保证安全起爆。

起爆前必须确认无人员在爆破区域内,以免造成人员伤亡。

五、施工效果评估在爆破完成后,对隧道进行观察和测量。

观察爆破区域的情况,检查隧道内是否有裂缝和滑坡等现象;测量隧道的尺寸和地形,以评估爆破效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:1009-6825(2013)06-0156-02谈高速铁路隧道施工控制爆破方案设计收稿日期:2012-12-15作者简介:赵君(1980-),男,工程师赵君(中铁十八局集团有限公司,天津300222)摘要:就京沪高铁金牛山隧道下穿既有公路的综合施工技术作为研究内容,结合金牛山隧道的特点,采用经验公式对爆破方案进行设计,以此确定单段最大装药量,从而为工程实践提供参考。

关键词:隧道,数值计算,爆破中图分类号:U455.6文献标识码:A1工程概况京沪高速铁路作为我国高速铁路网中“四纵”的重要组成部分,于2008年4月开工建设,线路总长度达1300余千米,设计时速350km/h,是新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高速铁路现已建成并于2011年6月正式开通运营。

本文研究之金牛山隧道位于山东省泰安市岱岳区六郎坟村与高新区小官庄村之间,隧道进口里程为DK465+335,出口里程为DK467+240,隧道全长1905m,隧道内为单面坡,坡度3ɢ和12ɢ的上坡,隧道所处地形起伏较大,其中隧道最大埋深为35.37m,隧道在里程为DK466+230 DK466+330区段下穿京福高速公路C匝道,此区段内埋深仅为9.8m,属于超浅埋隧道,在DK466+560 DK466+660段下穿京福高速公路正线,其中高速公路宽度为36m,隧道与公路匝道和正线的交角分别为14.57ʎ和36.7ʎ,属于斜交。

隧道的工程地质情况为风化花岗片麻岩,局部夹杂角闪岩和部分石英,其中围岩已经风化,尤其接近地表埋深较浅处节理裂隙较发育,岩石比较破碎并有地下裂隙水发育,属Ⅳ级围岩。

2控制爆破方案设计当隧道采用钻爆法进行开挖时,由于炸药的爆破产生的震动,对既有隧道的结构和洞周围岩影响非常大,并且使得既有隧道比静力状态下更容易遭到破坏。

京沪高铁金牛山隧道为超浅埋隧道,围岩风化比较严重,加之地表有既有高速公路通过,在进行爆破开挖时,这种破坏将会更加严重。

所以如何将爆破对隧道支护结构、围岩以及上部的既有公路的影响减小到最低限度是本文所要研究的核心内容。

1)现行爆破震动影响控制标准。

工程中常以引起结构的位移、速度和加速度等物理量来衡量爆破震动的强度,那么就必须要有一个临界值或者说标准来衡量这些物理量对既有结构的影响,并由此来判断爆破震动强度。

在实际爆破工程中以上几个因素一旦超过临界值,就认为相应岩体已经被破坏,而这一临界值被称为爆破震动的破坏标准。

对爆破震动的影响进行了文件性总结并给出了极限值(见表1)。

表1爆破的影响和特定的Ⅴ极限值的文件性总结表种类V/cm·s-1类型岩石注释地下爆破试验(美国)46引发值砂岩在直径2m 10m的毛洞中进行高强爆炸使用,实验中有些岩石落下Koi隧道(日本)33.8引发值花岗岩混凝土衬砌中出现小裂缝瑞典30临界值杂岩未衬砌隧道中有石块落下瑞典7限值短时间连续爆破时,采用该值北美空防联合司令部5.6引发值旁边隧道爆破时,地下洞室无损坏瑞士3限值使用或未使用混凝土衬砌的地下室和隧道需强制实行该限值Dinorwic(英国)4.5限值强制实行该限值主要在于防止破坏预应力混凝土和安装的仪器我国学者吴德伦等人参考欧洲国家的做法,建议的爆破震动标准见表2。

表2爆破震动控制建议标准建筑物分类频率范围/Hz质点震动速度/cm·s-1现浇混凝土结构<103.5钢结构10 403.5 4.0坚固堡坝40 1004.0 5.0良好设计的砖混结构<102.5一般条石砌筑堡坝10 402.5 3.0挡土墙40 1003.0 3.5灰岩砂浆或条石建筑<101.5砖木混合结构10 401.5 2.0木结构40 1002.0 2.5陈旧危险建筑<100.8精密防震设备建筑10 400.8 1.0历史建筑40 1001.0 1.2水工隧道、下水管道10 5012有支护的地下洞室或构筑物50 20013综上所述,可以看出不同的国家、科研部门以及不同的学者对爆破震速的认识和想法是不同的,因此提出爆破震动速度的限值差别很大,在实际工程中,由于地质条件、爆破方式、隧道结构形式存在差异,所以可操作性很差,针对不同的隧道施工项目应从工程实际情况角度出发,提出相适应的爆破方案。

根据GB6722-2003爆破安全规程中的规定,各类建筑物的爆破震动安全允许标准如表3所示。

设计中只考虑爆破对已衬砌隧道的结构安全。

根据规定,隧道安全允许震速标准值为10cm/s 20cm/s,设计中取安全控制值为10.0cm/s。

a.选取建筑物安全震速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自振频率、地基条件等因素。

b.省级以上(含省级)重点保护古建筑物与古迹的安全允许震速,应经专家论证选取,并报相应文物管理部门批准。

c.选取隧道、巷道安全允许震速时,应综合考虑构筑物的重要性、围岩情况、断面大小、埋深大小、爆源方向、地震震动频率等因素。

d.非挡水新浇大体积混凝土的安全允许震速,可按表3给出·651·第39卷第6期2013年2月山西建筑SHANXI ARCHITECTUREVol.39No.6Feb.2013的上限值选取。

2)金牛山隧道爆破设计。

根据以往的经验,一般来说,起爆的药量越大,所产生的爆破震速也就越大,所以金牛山隧道在爆破施工过程中,要保证在距离既有公路最近的地段的起爆药量小于产生临界爆破震速的临界药量,这样就能够保证既有路面的安全使用。

目前,国内外对于涉及到爆破震速问题,一般情况下采用前苏联学者萨道夫斯基提出的经验公式来确定最大分段装药量,如式(1)所示:V=K(Q1/3/R)α(1)其中,Q为最大分段装药量,kg;R为爆心距,m;V为爆破安全震动速度值,cm/s;K为与岩石性质、地质条件、爆破规模等综合因素有关的系数;α为地震波的衰减系数,大小与地质条件以及距爆破中心的距离有关。

表3爆破震动安全允许标准序号保护对象类别安全允许震速/cm·s-1<10Hz10Hz 50Hz50Hz 100Hz1土窑房、土坯房、毛石房屋0.5 1.00.7 1.21.1 1.52一般砖房、非抗震的大型砌块建筑物2.0 2.52.3 2.82.7 3.03钢筋混凝土结构房屋3.0 4.03.5 4.54.2 5.04一般古建筑与古迹0.1 0.30.2 0.40.3 0.55水工隧道7 156交通隧道10 207矿山巷道15 308水电站及发电厂中心控制室设备0.59新浇大体积混凝土龄期/d:初凝0 3;龄期:3 7;龄期:7 282.0 3.0;3.0 7.0;7.0 12注:1)表列频率为主振频率,系指最大震幅所对应波的频率。

2)频率范围可根根据类似工程或现场实测波形选取。

选取频率时亦可参考下列数据:硐室爆破小于20Hz;深孔爆破10Hz 60Hz;浅孔爆破40Hz 100Hz由式(1)可知,当具体工程的K,α确定之后,单段最大爆破药量Q和爆破震速V有直接关系。

隧道爆破时,由于工程地质条件、爆破条件以及爆破点距测点距离的差异,介质系数K和震动衰减系数α变化很大,为了确保各参数的真实性,其取值应由现场试验确定。

我国GB6722-2003爆破安全规程对介质系数和震动衰减系数K,α的建议值如表4所示。

表4爆区不同岩性的K,α值岩性Kα坚硬岩石50 1501.3 1.5中硬岩石150 2501.5 1.8软岩石250 3501.8 2.0根据本工程所处围岩地质资料和GB6722-2003爆破安全规程建议值,介质系数K暂取250、震动衰减系数α暂取1.8。

对目前各工程上常用的几种工业炸药进行比对,最终选择了铵梯炸药和乳化炸药,如果爆破中炮眼里没有水,使用铵梯炸药,有水则使用乳化炸药。

金牛山隧道下穿京福高速公路段,最小埋深为9.28m,根据式(2),计算得到的单段最大装药量:Q=R3V()K3α(2)计算得到的单段最大装药量为3.7kg。

在实际工程中,应该在每次爆破之前,首先确定爆破点距离监测点的距离,然后再根据萨道夫斯基公式进行计算,理论上讲在一定的装药量的前提下,爆破产生的爆破震速和爆心距是成反比的。

炮眼布置图见图1。

图1台阶法开挖炮眼及掏槽眼布置图1711971575656754321997793988098190709032.99515094×25051390515094×250512012524836450°58°61°531356注:1)本图尺寸均以cm计;2)炮眼旁边数字表示雷管段数;3)本设计根据以往爆破经验设计,实际施工过程中要根据爆破效果进行适当调整采用台阶法、三台阶法开挖采用光面弱爆破。

光面爆破参数应通过爆破试验方法确定。

当无试验条件时,有关参数根据表5选用。

表5光面爆破参数表岩石类别周边眼间距E/cm周边眼抵抗线W/cm相对距离E/W装药集中度q/kg·m-1极硬岩50 6055 750.8 0.850.25 0.30硬岩40 5050 600.8 0.850.15 0.25软质岩35 4545 600.7 0.850.07 0.12同时,在药量选择上还要考虑爆破震动速率对隧道结构物以及地表建筑物的影响。

·751·第39卷第6期2013年2月赵君:谈高速铁路隧道施工控制爆破方案设计。

相关文档
最新文档