初中数学《一次方程组》主题单元教学设计以及思维导图

合集下载

一次方程实际问题PPT课件[PPT课件白板课件思维导图知识点复习资料]北师大版初中数学

一次方程实际问题PPT课件[PPT课件白板课件思维导图知识点复习资料]北师大版初中数学

解:设每餐甲、乙原料各x g、y g. 则有下表:
甲原料x g 乙原料y g 所配的营养品
其中所含蛋白质 0.5x
0.7y
35
其中所含铁质
x
0.4y
40
根据题意,得方程组
0.5x+0.7y=35 x+0.4y=40
化简,得

5x+7y=350 ① 5x+2y=200 ②
①- ②,得 5y=150 y=30
(1-10﹪)y
780
解:设去年的总产值为x万元,总支出为y万元,则有
x-y=200 (1+20﹪)x-(1-10﹪)y=780
解得
x=2 000 y=1 800
因此,去年的总产值是2 000万元,总支出是1 800万元.
例2:医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位 蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质, 若病人每餐需要 35单位蛋白质和40单位铁质, 那么每餐甲、乙原料各多少克恰好满足病人的需要?
总有一款PPT 适合您
【最新出品\精心整理\倾情奉献\敬请珍惜】
第五章 二元一次方程组
5.4 应用二元一次方程组 ——增收节支
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.会利用列表分析题中所蕴含的数量关系,列出二元一次方程组解决实 际问题.(重点) 2.进一步经历和体验列方程组解决实际问题的过程.
如果他储蓄了5年,则小李5年后得到的本息和是 元.
700
问1:增长(亏损)率问题的公式? 原量×(1+增长率)=新量 原量×(1-亏损率)=新量
问2:银行利率问题中的公式?(利息、本金、利率) 利息=本金×利率×期数(时间) 本息和=本金+利息 利润:总产值-总支出

初中数学《一次函数》单元教学设计以及思维导图

初中数学《一次函数》单元教学设计以及思维导图

初中数学《一次函数》单元教学设计以及思维导图掌握“一次函数”的图象特征;能够应用“一次函数”解决实际问题;了解“函数”在方程(组)和不等式(组)中的应用;思想品德:培养学生对数学研究的兴趣和探究精神;培养学生的数学思维能力和解决实际问题的能力;培养学生的合作研究和自主研究能力;情感态度:正确认识数学学科,树立正确的研究态度;感受数学在生活中的应用,增强数学学科的亲和力;体验数学学科的美妙和挑战,增强自信心和自尊心;主题单元研究重点(说明:在研究过程中需要着重强调的内容)1.“变量与函数”中的函数概念及其应用;2.“一次函数”中的表达式、图象和实际应用;3.“函数观点看方程(组)与不等式(组)”中的应用;4.“课题研究”中的合作研究和自主研究;主题单元研究难点(说明:在研究过程中需要特别注意和解决的难点)1.函数概念的理解和应用;2.“一次函数”图象的特征和应用;3.“函数观点看方程(组)与不等式(组)”中的思维转换;4.“课题研究”中的合作研究和自主研究;主题单元研究方式(说明:在研究过程中采用的主要方法)1.课堂教学(包括讲授、示范、探究、讨论等);2.课外研究(包括课题研究、作业、自主研究等);3.合作研究(包括小组讨论、集体研究、合作探究等);4.情景教学(包括实验、观察、调查、模拟等);主题单元研究成果(说明:学生在本主题单元研究中应达到的预期成果)1.理解“函数”的概念和应用,掌握“一次函数”的表达式和图象特征;2.能够应用“一次函数”解决实际问题,理解“函数”在方程(组)和不等式(组)中的应用;3.培养学生的数学思维能力和解决实际问题的能力,提高学生的自主研究和合作研究能力;4.增强学生对数学学科的兴趣和探究精神,正确认识数学学科,树立正确的研究态度。

本单元研究旨在让学生掌握数学中的基本概念和方法,培养学生的数学思维和动手能力,同时也希望通过研究实际问题,让学生体会数学在生活中的应用和重要性。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

初中数学思维导图

初中数学思维导图
幂的乘方,底数不变,指数相乘。 (am)n=amn(m,n都是正整数) 积的乘方等于每一个因数乘方的积 (ab)n=anbn(n是正整数)
如果遇到括号先去括号,再合并同类项。 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。 单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再 把所得的积相加。 多项式与多项式相乘,先用多项式的每一项去乘另一个多项式的每一项, 再把所得的积相加。 单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被 除式里含有的字母,连同它的指数一起作为商的一个因式。 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得 的商相加。
1、两角对应相等的两个三角形是相似; 2、三边对应成比例的两个三角形相似; 3、两边对应成比例且夹角相等的两个三角形相似。 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个 点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相 似比又叫位似比。 位似图形上任意一对对应点到位似中心的距离之比等于位似比。 利用概念判断 平面上到顶点的距离等于定长的所有点组成的图形叫做圆,定点称为圆 心,定长称为半径。以点O为圆心的圆记做"⊙O",读作“圆O”。
如果点C把线段AB分成一长一短两条线段AC和BC,并且AC/AB=BC/AC,则称线 段AB被点C黄金分割,点C叫做黄金分割点,AC与AB的比叫做黄金比,即 (√5-1)/2(≈0.61803398874989...)。 各角对应相等、各边对应成比例的两个多边形叫做相似多边形。 1、相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相 似比; 2、相似多边形周长的比等于相似比,面积的比等于相似比的平方。 利用概念判断 三角对应相等、三边对应成比例的两个三角形是相似三角形。

七年级数学知识思维导图-代数

七年级数学知识思维导图-代数

不等式(组)
不等式:用“≠”、“<”,“≤”,“≥”或“>”表示大小关系的式子。
不等式的定义和性质
不等式的性质: 1.不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号 的方向不变。 2.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。 3.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。若a<b, 则b>a。若a>b,则b<a。若a<b,b<c,那么a<c。若a>b,b>c,那 么a>c。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一 次)的不等式。
解一元一次不等式:利用不等式的性质,采取与解一元一次方程类似的步 骤,就可以求出一元一次不等式的解集。
一元一次不等式(组)
一元一次不等式组:由几个含有同一个未知数的一元一次不等式组成的不等 式组,叫做一元一次不等式组。不等式组中所有不等式的解集的公共部分叫 做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
数轴
数轴的定义:用来表示实数的直线叫做数轴。(该直线是由无数个点组成的 集合,实数包括正实数、零、负实数也有无数个)
在直线上任取一个点表示0这个点叫做原点。
数轴的特性
规定正负方向,通常规定直线上从原点向右(或上)为正方向,从原点向左 (或下)为负方向。
选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个 点,表示正数;从原点向左,用类似方法表示负数。
无理数
无理数分类:无理数分为正无理数、负无理数。
无理数的判定:质数的平方根=无理数
正数:大于0的数。有时为了明确表达意义,会在正数前面加上“+(正 号)”。
负数:在一个正数前面加上符号“-(负号)”的数叫做负数(负数小于 0)。

初中数学《一元二次方程》主题单元教学设计以及思维导图

初中数学《一元二次方程》主题单元教学设计以及思维导图

初中数学《一元二次方程》主题单元教学设计以及思维导图一元二次方程主题单元设计适用年级九年级所需时间 10课时主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要学习方式和预期的学习成果,字数300-500。

) “一元二次方程”主题单元结构包括一元二次方程的概念、解法和一元二次方程的应用。

第一节研究一元二次方程的概念及一般形式;第二节研究用直接开平方法、配方法、公式法、因式分解法。

第三节研究一元二次方程的应用。

一元二次方程是在学习了一元一次方程、二元一次方程组等的基础上进一步学习,是对以前实数、一元一次方程、因式分解、二次根式等知识加以巩固,它也是一种数学建模的方法,同时又是以后学习一元二次不等式、二次函数等知识的基础,是学好高中数学的基础。

此外,学习一元二次方程对其他学科有重要意义,因此,它在初中数学中占有重要的地位。

结合学生的实际水平,采用探索学习方式,以类比发现法为主,讨论法、练习法为辅的教学方法,教学中力求体现“问题情境——数学模型——求解——解释应用“的模式,借助多媒体辅助教学指导学生通过观察直观形象的演示,从具体的问题情境中抽象出数学问题,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性的解决问题,有效的发挥学生的思维能力。

主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。

)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次??解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题( 过程与方法:(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型(•根据数学模型恰如其分地给出一元二次方程的概念((2)结合整式中的有关概念介绍一元二次方程的概念,如二次项等((3)通过掌握缺一次项的一元二次方程的解法??直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程((4)通过用已学的配方法解ax2+bx+c=0(a?0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0((5)通过复习《乘法公式与因式分解》这一章中的因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它((6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题(情感态度与价值观:经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣( 对应课标(说明:学科课程标准对本单元学习的要求) 1、通过生活现实和数学现实,了解一元二次方程的概念; 2、经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力;3、理解配方法,能用直接开平方法、配方法、公式法、因式分解法解数字系数的一元二次方程;4、能根据具体问题的实际意义,检验方程的解是否合理;5、会列出一元二次方程解决相关的实际问题,进一步体会方程式刻画现实世界中数量关系的有效模型,增强应用意识,培养分析和解决问题的能力。

初中数学《一次函数》单元教学设计以及思维导图

初中数学《一次函数》单元教学设计以及思维导图
1刻画现实世界中待定数量关系的数学模型2理解常量与变量的辩证关系和反映在函数概念中的运动变化观点3进一步认识数形结合的思想方法和函数方程的思想方法4增强学生团结协作恴识和能力对应课标1一次函数的概念图象和性质以及k和b的几何意义2用待定系数法求一次函数的关系式3熟练地用一次函数关系式已知两个点的坐标求出k和b4用一次函数解简单的实际问题主题单元问题设计1什么是函数
强调数形结合,强调函数方程思想,强调与日常生活的关系。
主题单元规划思维导图
主题单元学习目标
知识与技能:1、理解并掌握函数的概念、函数的表示形式、函数的图象。
2、根据实际问题中的条件确定一次函数解析式
3、能判断一个函数是否为பைடு நூலகம்次函数
4、能用描点法、两点法、平移法画一次函数图象
5、会用待定系数法求一次函数的解析式
1、一次函数的图象及其性质是什么?
2、怎样求函数表达式?
所需教学环境和教学资源
信息化资源:几何画板,课件
常规资源:作图工具
教学支持环境:多媒体教室
其它:纸笔
学习活动设计
活动一:一次函数图象
1、给出函数图象的概念。
2、具体活动
(1)作出一次函数y=2x+1的图像。
注意:小组合作,共同完成,教师提示:线是有什么构成?找那些点合适?需要画很多点吗?有了点怎么办?
所需教学环境和教学资源
信息化资源:几何画板,课件
常规资源:作图工具
教学支持环境:多媒体教室
其它:纸笔
学习活动设计
1、利用所学知识,给出课本所列实例的结果。(可以小组内交流)
2、教师根据学生对课本前例的认识程度和存在的问题,指导学生试做课本例1,并考虑多种解法,在组内交流,班内展示。教师要鼓励学生发散思维,多种解法,但要认识到:本节的设计目的在于培养学生良好的识图能力,因而要防止学生过多的用代数方法解题。

初中数学《一元一次方程》单元教学设计以及思维导图

初中数学《一元一次方程》单元教学设计以及思维导图

一元一次方程的单元设计适用年级七年级所需时间课内共用12课时,每周5课时;课外共用3课时主题单元学习概述⒈本章在教材中的地位与作用:方程是数学的一个重要组成部分,在中学数学里,始终贯穿着方程的知识和它的应用. 一元一次方程是内容最基本、形式最简单的方程,在初中代数中占有重要的地位.本章知识的学习,在整个代数知识的学习中起着承上启下的作用.它既是对已学过的知识—代数式、有理数运算、整式的加减的巩固和加深,又能为今后学习分式方程、二元一次方程组组、函数、一元一次不等式等内容奠定基础。

“一元一次方程的应用”一节,是在代数式、一元一次方程的解法之后,继续学习的一个理论联系实际的内容,它是前面知识的深化与应用。

“列方程解应用题”是初中代数学习中的重要内容之一;本节又是今后学习列二元一次方程组、分式方程、一元二次方程解应用题的基础,所以这一节又是整个列方程解应用题的重点。

2.重难点分析:重点是理解等式的两条基本性质,会运用字母表示它们,并能熟练地运用等式基本性质解方程;归纳移项法则,并熟练运用移项法则等求解一元一次方程;理解方程的解的含义,并会运用方程的解的含义解决有关问题。

难点是通过对实际问题的分析,正确抓住其中的等量关系,设列方程;综合运用所学知识来求解较复杂的方程。

⒊学情分析:在初一数学教学中,列方程解应用题是一个难点,由于学生受小学算术解法思维定势的影响,学生受小学算术解法思维定势的影响,习惯于把未知量置于特殊地位,不能把它与己知量同等对待、发挥未知量在分析问题过程中的作用,所以接受起来有一定困难,有时还会产生畏难情绪,影响了教学效果。

另外,初一学生思维能力较弱,初学解应用题,有时不能全面透彻理解题目的文字含义,教学中教师要注意正确引导。

4、学习方式及预期成果:让学生在小学已有的方程知识的基础上,结合自学指导提纲进行自主探究学习,加强数学建模思想,提高分析为题解决问题的能力。

主题单元规划思维导图主题单元学习目标知识与技能:掌握一元一次方程及其相关概念,一元一次方程的解法,运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次方程组主题单元教学设计
三、教学难点:
1、用配方法解一元二次方程;
2、分析实际问题,如何建立一元二次方程的数学模型
四、在具体的教学中:二元一次方程组的解法要注重方法的理解与应用,可以让学生做一些不同类型的练习进行巩固理解;在实际问题的应用中,要求学生要对具体问题具体分析,由生活抽象出数学,用数学解决实际问题。

五、预期效果
1.了解二元一次方程、二元一次方程组及其解等概念
2.会用代入消元法、加减消元法解二元一次方程组
3.能解决实际问题
主题单元规划思维导图
主题单元学习目标。

相关文档
最新文档