六年级数学思维美培优综合教案之行程问题(二)(A版)第一大课时
小学六年级数学教案行程问题-精选教育文档

小学六年级数学教案——行程问题众所周知,未来的教育,倡导开放式学习,把学习的地点扩展到社会、网络;倡导探索式学习,积极引导学生探索未知领域;倡导合作式学习,通过共享达到共同提高的目的;倡导多学科之间的整合、相互应用。
未来教育模式要求学生围绕一个问题,利用现代教育信息技术积极主动地投身于探究活动,去收集相关的资料,并解决实际问题。
结合这两个方面,我依据维果茨基的支架理论,应用美国JAVA互动教学软件,让学生小组合作,自主探索,实践《行程问题》第一课时的学习。
《行程问题》是人教版小学数学第九册第54~59页的教学内容。
学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。
但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体的运动情况。
这里以相遇问题为主,研究两个物体在运动中的速度、时间、路程之间的数量关系。
两个物体运动的情况是多种多样的有方向问题,出发地点问题,还有时间问题。
学生要全部掌握这些是比较困难的。
本册教材的重点是教学两个物体相向运动的应用题。
因此,特制定如下教学目标:1、知识与技能目标:理解相遇问题的意义,形成两个物体运动的空间观念。
2、解决问题目标:引导学生探索发现相遇问题的数量关系,掌握解题思路和解答方法,正确解答求路程的应用题。
3、情感与态度目标:创设师生互动情境,在民主、宽松、和谐的学习氛围中,培养学生严谨科学的学习态度、勇于探索创新的精神以及乐于合作的意识,发展学生的个性。
教学重点:相遇应用题的数量关系。
教学难点:理解相遇相向而行速度和的含义。
课前需掌握的知识和技能:单个物体运动的数量关系:速度时间=路程路程速度=时间路程时间=速度。
数学春季教案六年级-11行程问题(二)

第11 讲行程问题(二)[教学内容] :春季六年级精英版,第11 讲“行程问题(二)”。
[教学目标]:知识技能:1、学习车长问题、车桥问题和流水问题的一般解决方法2、利用车长问题、车桥问题和流水问题解决实际问题。
数学思考:1、画出线段图,从中找到解决的突破口2、能够独立思考,解决车长问题、车桥问题和流水问题。
问题解决:1、将复杂的问题通过各种方式转化为简单的问题。
2、通过合作交流,生生互动,解决问题并表达出自己的想法情感与态度:1、在相互协作,教师引导下,解决较困难的问题,竖立信心2、养成乐于思考、勇于质疑、言必有据的良好品质和习惯。
[教学重点和难点]:教学重点:掌握车长问题、车桥问题和流水问题的解决方法教学难点:利用车长问题、车桥问题和流水问题解决实际问题。
[教学准备]:动画多媒体语言课件。
第一课时教学过程:教学路径学生活动方案说明导入同学们,上节课我们学习了行程问题(一),大家还记得我们学了哪些类型行程问题吗?(进行简单的复习,回忆行程问题中基本的关系式)(课件出示:复习上节课内容相遇问题(按钮):动画出示两个人相向而行,两人相遇,然后出示:基本公式:总路程=速度和X相遇时间。
追及问题(按钮):动画出示两个人的追及过程,然后出示:基本公式:追及路程=速度差X追及时间。
(速度和+速度差)吃=较快的速度(速度和-速度差)吃=较慢的速度)车桥问题分为两类:第一类是一动一静。
火车过桥(隧道)时,车辆行驶的路程是桥长(隧道长)+车长。
第二类是两物体都在运动。
两辆车在“错车”的时候,两辆车都在前进,“错车”时所行驶的路程一般是指两辆车的长度之和。
流水问题:(做三个船行驶的过程。
)船静水速度+水流速度=顺水速度;船静水速度-水流速度=逆水速度;(顺水速度+逆水速度)吃=船静水速度;(顺水速度-逆水速度)吃=水流速度教学新授学生独立解答经过所需要的时间就是: (12+8)吒=2.5 (秒)师:说得非常好。
现在每位同学在书上把这道题解答完整, 写完后,同桌之间相互讲解这题的解题思路。
行程问题教案(共五篇)

行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。
2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。
例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
六年级奥数上册第六讲 行程问题(二) 教案

1、某列车经过一根信号灯的电杆用了9秒,通过468米的铁桥用了35秒,求这一列车的长度。
2、一列慢车的车身长230米,车速是每秒15米;一列快车的车身长260米,车速是每秒20米。
两车在双轨道上相向而行,从车头相遇到车尾相离要用多少秒? 3、王老师坐在运行的火车中,他从看到第1根电线杆到看到第51根电线杆正好经过经过了2分钟,已知每相邻两根电线杆之间是50米,求火车每小时行多少千米? 4、沿长江边的两个码头相距105千米,乘船往返一次需要6小时,去时比返回时多1小时,那么水的流速是多少?船在静水中的速度是多少?5、保联小学1204名学生排成四路纵队去看电影,前后两个学生中间相距5分米,他们通过一座大桥用去10分钟。
如果队伍前进的速度是每分钟25分钟,桥长多少米?6、一只小船逆流而行,一个水壶从船上掉入水中被发现时,水壶已与小船相距400米,已知小船在静水中的速度是每分钟100米,水流的速度是每分钟20米,小船调7、甲、乙两船在静水中的速度分别是每小时22千米和每小时18千米。
两船先后从同一港口顺水开出,乙船比甲船早出发2小时。
如果水速是每小时4小时。
那么甲船开出后几小时追上乙船?8、一只船顺水航行每小时19千米,逆水航行每小时17千米,那么这只船在静水中V 顺-V 逆=V 水×2(V 顺+逆)÷2=V 静 6÷(4÷5-1)=249、一列慢车车长115米,车速是每秒18米;一列快车车长135米,车速是每秒23米。
如果慢车在前面行驶,快车在后面追上到完全超过需要多少秒?10、甲车每秒行30米,乙车每秒行22米,若两车齐头并进,则甲车行24秒超过乙11达,逆水需14 12、甲、乙两地相距48千米,一艘轮船由甲地到乙地顺流航行需3小时,返回时因大雨后涨水,航行8小时才回到甲地。
已知平时水速为4千米/时,涨水后的水速增加多少?13、一艘轮船从武汉到九江要行驶5小时,从九江到武汉行驶7小时。
(完整版)行程问题教案

20 (10 10)1(小时)151 1(5 千米)
再提问相遇问题和追及问题的基本公式。 速度和×相遇时间=总路程 总路程÷速度和=相遇时间 总路程÷相遇时间=速度和。 追及路程(路程差)=速度差×追及时间 追及时间=路程差÷速度差 速度差=路程差÷追及时间
六、教学过程(说过程)
我将本节课分为三个部分。 用约3分钟时间进行导入部分,主要是复习和引入新课。 用约 10分钟时间进行正体部分。主要是通过讲练结合的方式完成前三道例题的学习。 最后,用
1
约2分钟的时间进行尾声部分,主要是小结和作业。
七、教学预测(反思)
根据以往的教学经验,学生在解答本节课的问题时,不会数形结合,所以在教学过程中要提 醒学生画线段图,帮助理解题意;例2对应的作业题目和例题有点不同,会有少部分学生按 部就班,不认真审题,看到题目就做,所以在布置作业时要提醒学生认真审题。 (一)、故事导入(课前检测) 两个男孩各骑一辆自行车,从相距2O 千米的两个地方,开始沿直线相向骑行。在他们起步 的那一瞬间,一辆自行车车把上的一只小鸟,开始向另一辆自行车径直飞去。它一到达另一 辆自行车车把,就立即转向往回飞行。这只小鸟如此往返,在两辆自行车的车把之间来回飞 行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O 千米的等速前进,小鸟以每 小时15千米的等速飞行,那么,小鸟总共飞行了多少千米呢?
(48 56)5 52(0 千米) (688- 520) 56 (3 小时)
答:再经过3小时,乙车也到达 C 站。 例 2、客车和货车同时从 A、B 两地相对开出,客车每小时行 50 千米,货车的速度是客车的 80%,相遇后客车继续行了 3.2 小时到达 B 地。A、B 两地相距多少千米? 分析:假设两车相遇在点 C,根据题意可知,客车走完 CB 用 3.2 小时,可求出 CB 之间的路
行程问题解决问题教案 -

“行程问题解决问题教案第一部分”一、教学目标1. 让学生理解行程问题的基本概念,包括路程、速度、时间等。
2. 培养学生运用行程公式解决实际问题的能力。
3. 培养学生合作交流、解决问题的能力。
二、教学重点与难点1. 教学重点:行程问题的基本概念及行程公式的应用。
2. 教学难点:如何将实际问题转化为行程问题,灵活运用行程公式。
三、教学准备1. 课件:行程问题相关图片、案例。
2. 教学工具:黑板、粉笔。
3. 练习题:涵盖不同类型的行程问题。
四、教学过程1. 导入:通过展示行程问题的图片,引导学生思考行程问题。
2. 基本概念讲解:介绍行程问题的基本概念,如路程、速度、时间等。
3. 行程公式讲解:讲解行程公式S = V ×T,并解释其含义。
4. 案例分析:分析实际案例,引导学生将问题转化为行程问题,并运用行程公式解决。
5. 练习巩固:让学生独立解决练习题,巩固行程问题的解决方法。
五、作业布置2. 布置一些实际问题,让学生运用行程公式解决。
“行程问题解决问题教案第二部分”六、教学目标1. 让学生理解行程问题的基本概念,包括路程、速度、时间等。
2. 培养学生运用行程公式解决实际问题的能力。
3. 培养学生合作交流、解决问题的能力。
七、教学重点与难点1. 教学重点:行程问题的基本概念及行程公式的应用。
2. 教学难点:如何将实际问题转化为行程问题,灵活运用行程公式。
八、教学准备1. 课件:行程问题相关图片、案例。
2. 教学工具:黑板、粉笔。
3. 练习题:涵盖不同类型的行程问题。
九、教学过程1. 复习:回顾上一节课讲过的行程问题的基本概念和行程公式。
2. 例题讲解:讲解一些典型行程问题,引导学生运用行程公式解决。
3. 练习巩固:让学生独立解决练习题,巩固行程问题的解决方法。
4. 小组讨论:让学生分组讨论,分享解决行程问题的方法和经验。
十、作业布置2. 布置一些实际问题,让学生运用行程公式解决。
“行程问题解决问题教案第三部分”十一、教学目标1. 让学生理解行程问题的基本概念,包括路程、速度、时间等。
行程问题小升初奥数综合教案及练习

行程问题(一)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。
2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
3. 行程问题的解题方法和技巧。
教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。
2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。
3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。
4. 练习题:让学生运用所学的知识和技巧解决实际问题。
教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。
2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。
行程问题(二)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。
2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
3. 行程问题的解题方法和技巧。
教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。
2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。
3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。
4. 练习题:让学生运用所学的知识和技巧解决实际问题。
教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。
2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。
行程问题(三)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
数学六年级下册思维训练《行程问题》教案

行程问题教学目标1.认知目标:理解“同时出发”、“相向(对)而行”等词语的含义,理解在一定的时间内,相向而行的两物体之间距离的变化情况,掌握已知两个物体运行的速度和相遇时间求路程的应用题的数量关系,并会解答类似的应用题。
2.情感目标:通过自主探究和合作交流,增强团队意识、乐于探究的良好品质,体验成功的喜悦。
3.养成良好的分析能力、思维能力和解决实际问题的能力。
教学过程一、复习准备。
1.口答下面的问题。
(1)小华每分钟走60米,2分钟、3分钟各走了多少米?(2)小李每分钟走70米,2分钟、3分钟各走了多少米?2.提问:“小华每分钟走60米”和“小李每分钟走70米”叫什么?(速度)。
“2分钟”和“3分钟”呢?(时间)。
要求的问题是什么?(路程)。
谁来说说速度、时间和路程之间的数量关系(速度×时间=路程)。
3.教师揭示课题并板书:行程问题。
二、例1教学。
1.课件出示题目:小华和小李两家相距520米,两人同时从自己家里出发相向而行,小华每分钟走60米,小李每分钟走70米,经过几分钟两人相遇?2.学生讨论如何画图表示:预设:定出一点,表示是小华的家,然后在小华家520米处的另一端定出小李的家。
确定两个学生家的位置后,用“小人图”在两家之间演示怎样“同时出发”,又怎样“相向而行”。
也可以请两个学生分别代表小华和小李在讲台前实际走一走,学生演示两人走路的过程,加深学生对题中“同时出发”“相向而行”以及每分钟两人之间缩短的距离是两人所走的速度和的理解在理解的基础上再请学填完后展示学生的表格,并要学生说一说,这样填的理由,重点说一说为什么两人走的路程的和越多,现在两人的距离越短?出发3分钟后,两人之间的距离为0的意思是什么?(就是说,两人把390米的路程走完即相遇了。
)3.解决问题:引导学生用方程来解决,首先找出题目中的数量关系再列方程。
预设:(1)小华走的路程+小李走的路程=两家相距路程(520米)解:设经过x分钟两人相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(二)(A版)
第一大课时
自主学习一
例1:在一个600米长的环形跑道上,兄弟两人如果同时从同一起点按顺时针方向跑步,哥哥比弟弟跑得快,每隔12分钟相遇一次,如果两人同时从同一起点反方向跑步,每隔4分钟相遇一次。
兄弟两人跑一圈各要几分钟。
思路导航:可以转化为和差问题。
变式练习
1、父子俩在长400米的环形跑道上散步,他俩同时从同一地点出发,如果相背而行,4分钟相遇;如果同向而行,8分钟父亲可以追上儿子。
在跑道上走一圈,父亲和儿子各需要多少分钟?
2、张华和王明在长600米的环形跑道上跑步,张华比王明跑得快,他俩同时从同一地点出发,如果相背而行,6分钟相遇;如果同向而行,25分钟后再次相遇。
两人跑一圈各要几分钟?
自主学习二
例2:甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后411 分钟遇到丙,再过4
33分钟第二次遇到乙。
已知乙的速度是甲的速度的3
2,湖的周长为600米,求丙的速度。
思路导航:先通过画图理解题意,甲第一次与乙相遇后到甲第二次与乙相遇,刚好共同行( )圈。
可先求出甲、乙的速度和,再求出甲、乙的速度。
然后同理求出甲、丙的速度和,就可以求出丙的速度。
变式练习
1、环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?
2、甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?
达标检测
1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙反向。
在甲第一次遇到乙后411分钟第一次遇到丙;再过4
33分钟第二次遇到乙。
已知甲的速度与乙的速度比为3:2,湖的周长为2000米,求三人的速度?
2、兄妹两人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
哥哥每秒走1.3米,妹妹每秒走1.2米。
他们第10次相遇时,妹妹还要走多少米才能回到出发点?
3、如图所示:A 、B 是圆的直径两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
求这个圆的周长。
4、在300米的环形跑道上,甲、乙两人同时并排起跑。
甲平均每秒跑5米,乙平均每秒跑4.4米,两人起跑后第一次相遇在起跑线前面多少米处?
随机应变
5、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?
基本方法:
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:
距离=速度×时间速度=距离÷时间时间=距离÷速度,同时还要弄清楚运动轨迹。