小学生数学公式大全:方阵问题公式

合集下载

方阵问题公式

方阵问题公式

方阵问题公式
(1)实心方阵:(外层每边人数)2=总人数。

(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。

或者是(最外层每边人数-层数)×层数×4=中空方阵的人数。

总人数÷4÷层数+层数=外层每边人数。

例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一先看作实心方阵,则总人数有10×10=100(人)
再算空心部分的方阵人数。

从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10—2×3=4(人)
所以,空心部分方阵人数有4×4=16(人)
故这个空心方阵的人数是100—16=84(人)
解二直接运用公式。

根据空心方阵总人数公式得
(10—3)×3×4=84(人)。

方阵问题公式

方阵问题公式

方阵问题公式
(1)实心方阵:(外层每边人数)2=总人数。

(2)空心方阵:(最外层每边人数)2—(最外层每边人数-2×层数)2=中空方阵的人数。

或者是(最外层每边人数—层数)×层数×4=中空方阵的人数。

总人数÷4÷层数+层数=外层每边人数.
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一先看作实心方阵,则总人数有10×10=100(人)
再算空心部分的方阵人数。

从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10-2×3=4(人)
所以,空心部分方阵人数有4×4=16(人)
故这个空心方阵的人数是100—16=84(人)
解二直接运用公式。

根据空心方阵总人数公式得
(10—3)×3×4=84(人)。

小学数学《方阵问题》

小学数学《方阵问题》

小学数学《方阵问题》方阵问题[含义]将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

[数量关系](1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)x4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数x每边人数空心方阵:总人数=(外边人数)-(内边人数)内边人数=外边人数-层数x2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)x层数x4[解题思路和方法]方阵问题有实心与空心两种。

实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解22x22=484(人)答:参加体操表演的同学一共有484人。

例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

解10*10-(10-3x2)*(10-3x2)=84(人)答:全方阵84人。

练习题1.同学们围成一个正方形做游戏,每边站20人,四个顶点都有人,最外圈一共有()人.A. 72B.76C.802.一个8x8的方阵(每列8人,有8列),如果想增加两行、两列,排成一个10x10的方阵,那么需要增加()人。

A.32B. 36C.40D.443.王大爷在一个正方形鱼池边上植树,每隔4米种一棵,每边等距离植10棵树(四个角上都植有树),鱼池的一周长()米。

A.160B.156C.164D.1444.四年级同学举行队列表演,共组成4个方队,每个方队排成6行,每行6人。

最外圈的同学穿蓝色运动服,其余同学穿红色运动服。

一共要准备()套红色运动服。

A.80B.64C. 36D. 165.若干名学生排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有学生()人.A.902B.136C.240D.3606.一张正方形餐桌配4把椅子,一张圆形餐桌配6把椅子,某饭店买了5张正方形餐桌配把椅子,又买了4张圆形餐桌配-_把椅子,两次一共配了____把椅子。

方阵问题的所有公式

方阵问题的所有公式

方阵问题的所有公式
方阵问题是有关矩阵数学方面的一类问题,在很多科学和工程领域中都有广泛的应用,例如信号处理、控制系统、统计分析、密码学等。

因此,对方阵问题的研究对于科学研究和工程应用都非常重要。

方阵问题涉及到多个数学概念,例如矩阵乘法、求逆、秩、特征值等,同时还涉及到各种公式,它们可以帮助我们更加深入和准确地理解方阵问题。

下面将介绍方阵问题的一些常用公式,供大家参考学习。

一、矩阵的乘法
对于两个方阵A、B,其对应乘法公式为:A*B=C,其中C的元素Cij等于A的第i行所有元素与B的第j列所有元素的乘积之和:
c_{ij}=sum_{k=1}^{n}a_{ik}b_{kj}
二、求逆
求n阶方阵A的逆矩阵A-1,其公式为:A-1=1/det(A)adj(A) 其中det(A)表示A的行列式,adj(A)表示A的伴随矩阵,它是关于A的余子式组成的矩阵。

三、秩
定义:n阶方阵A的秩为r,若A有r个线性无关列,则A的秩为r,其公式为:
r=min {m,n}-rank A
其中m、n分别表示矩阵A的行数和列数,rank A表示A的秩,min{m,n}表示m与n的最小值。

四、特征值
定义:n阶方阵A的特征值为Λ,若矩阵A与n维向量x有定义: Ax=lambda x
其中,λ为常数,则λ称为A的特征值,向量x称为A的特征向量,其公式为:
det left[A-lambda I right]=0
其中I为n阶单位矩阵。

以上就是关于方阵问题的一些常用公式,从上述公式可以看出,方阵问题的公式十分复杂,涉及到多个数学概念,因此对于了解和研究方阵问题非常有必要,也是科学研究和工程应用的重要组成部分。

五年级数学方阵公式

五年级数学方阵公式

五年级数学方阵问题公式如下:
(1)实心方阵:(外层每边人数)2=总人数。

(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。

或者是:
(最外层每边人数-层数)×层数×4=中空方阵的人数。

总人数÷4÷层数+层数=外层每边人数。

例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一先看作实心方阵,则总人数有:
10×10=100(人)
再算空心部分的方阵人数。

从外往里,每进一层,每边人数少2,则进到第四层,每边人数是:
10-2×3=4(人)
所以,空心部分方阵人数有:
4×4=16(人)
故这个空心方阵的人数是:
100-16=84(人)
解二直接运用公式。

根据空心方阵总人数公式得:(10-3)×3×4=84(人)。

小学方阵问题基本公式

小学方阵问题基本公式

小学方阵问题基本公式方阵问题基本公式:(1)N排N列的实心方阵人数为N×N人;(2)M排N列的实心长方阵人数为M×N人;(3)N排N列的方阵,最外层有4N-4人;(4)在方阵或者长方阵中,相邻两圈人数,外圈比内圈多8人;(5)空心正M边形阵,若每边有N个人,则共有MN-M个人;(6)方阵中:方阵人数=最外层人数÷4+12。

方阵问题两大常见思维方法:(1)重叠点思维:若有边与边的重叠情况,把各边点数相加时重叠点计算了两次,因此需要再减去重叠点个数,才是最终的全部数目;(2)逆向法思维:如果需要计算“某种形状”的“某种外层”的数目,用整体数目减去内部的数目是一种常用的思维方法。

【例1】(国家2002A类-9、国家2002B类-18)某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?()A.256人B.250人C.225人D.196人[答案]A[解析]根据公式:方阵人数=最外层人数÷4+12=(60÷4+1)2=256(人)。

【例2】(浙江2003-18)某校的学生刚好排成一个方阵,最外层的人数是96人,则这个学校共有学生()。

A.600人B.615人C.625人D.640人强华教育公务员考试辅导[答案]C[解一]根据公式:方阵人数=最外层人数÷4+12=(96÷4+1)2=625(人)。

[解二]数字特性法:方阵的人数应该是一个完全平方数,所以结合选项,选择C。

【例3】(广西2022-11)参加阅兵式的官兵排成一个方阵,最外层的人数是80人,问这个方阵共有官兵多少人?()A.441B.400C.361D.386[答案]A[解析]根据公式:方阵人数=最外层人数÷4+12=(80÷4+1)2=441(人)。

【例4】(国家2022一类-44、国家2022二类-44)小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。

小学生数学公式大全:方阵问题公式

小学生数学公式大全:方阵问题公式

方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。

(2)空心方阵:(最外层每边人数) 2-(最外层每边人数-2层数)2=中空方阵的人数。

或者是(最外层每边人数-层数)层数4=中空方阵的人数。

总人数4层数+层数=外层每边人数。

例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一先看作实心方阵,则总人数有1010=100(人)再算空心部分的方阵人数。

从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10-23=4 (人)所以,空心部分方阵人数有44=16故这个空心方阵的人数是100-16=84(人)解二直接运用公式。

根据空心方阵总人数公式得(10-3)34=84(人)。

小升初数学方阵问题,记住六个知识点和两类方阵核心公式拿满分

小升初数学方阵问题,记住六个知识点和两类方阵核心公式拿满分

小升初数学方阵问题,记住六个知识点和两类方阵核心公式拿
满分
方阵问题
一、方法思维
1、方阵可以分为实心方阵和空心方阵。

2、方阵的基本特点是:方阵中,里一层总比外一层的一边少 2 个物体,里一层物
体的个数一定比上一层物体总个数少 8 个。

3、实心方阵(核心公式):
物体个数=最外层的一边个数的平方=每边数×每边数;
每层数=(每边数—1)×4;每边数=每层数÷4+1
方阵最外层每边数=(方阵最外层总数÷4)+1
4、空心方阵(核心公式):
外边数=总数÷4÷层数+层数
物体的总数=(最外层一边个数—层数)×层数×4
=(最外层层数+最内层层数)×层数÷2
内层数=外层数-8
每层数=(每边数—1)×4;
5、去掉一行、一列的总人数=去掉的每边人数×2-1
6、实心方阵的总人数是一完全平方数,空心方阵的总人数是 4 的倍数。

二、典型例题
1、有一个正方形的稻田,四个角上都放 1 个稻草人,如果每边放5 个,四边共
放多少个稻草人?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。

(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2层数)2=中空方阵的人数。

或者是(最外层每边人数-层数)层数4=中空方阵的人数。

总人数4层数+层数=外层每边人数。

例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一先看作实心方阵,则总人数有1010=100(人)再算空心部分的方阵人数。

从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10-23=4(人)所以,空心部分方阵人数有44=16故这个空心方阵的人数是100-16=84(人)解二直接运用公式。

根据空心方阵总人数公式得(10-3)34=84(人)。

相关文档
最新文档