分式方程及其增根问题
分式方程的增根和无解

分式方程的增根和无解
增根和无解是分式方程中常见的两种情况。
增根是指分式方程化为整式方程后,产生的使分式方程的分母为$0$的根。
分式方程的增根问题是分式方程去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大。
无解是指分式方程本身就是一个矛盾等式,不论未知数取何值都不能使方程两边的值相等。
分式方程无解包括两种情况:一种情况是分式方程变形后,整式方程本身无解;另一种情况是整式方程有解,但这个解使原方程的分母为$0$,即为分式方程的增根,所以原分式方程无解。
总的来说,分式方程的增根和无解是两个不同的概念,增根是分式方程的一种特殊情况,而无解则是分式方程的一种极端情况。
(完整版)分式方程无解增根专题

分式方程专题一:知识梳理如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
二:例题精讲例题1:若方程﹣=1有增根,则它的增根是,m=.【解答】解:由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=±1,分式方程去分母得:6﹣m(x+1)=x2﹣1,把x=1代入整式方程得:6﹣2m=0,即m=3;把x=﹣1代入整式方程得:6=0,无解,综上,分式方程的增根是1,m=3.故答案为:1;3.反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.(2)关于x的方程+=2有增根,则m=.(3)若关于x的分式方程=﹣有增根,则k的值为.例题2:若关于x的方程的解为正数,则m的取值范围是.【解答】解:方程两边都乘以x﹣2,得:﹣2+x+m=2(x﹣2),解得:x=m+2,∵方程的解为正数,∴m+2>0,且m+2≠2,解得:m>﹣2,且m≠0,故答案为:m>﹣2且m≠0.反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.(2)关于x的方程的解是负数,则a的取值范围是.例题3:若关于x的分式方程=a无解,则a的值为.【解答】解:两边同乘以x+1,得x﹣a=ax+a移项及合并同类项,得x(a﹣1)=﹣2a,系数化为1,得x=,∵关于x的分式方程=a无解,∴x+1=0或a﹣1=0,即x=﹣1或a=1,∴﹣1=,得a=﹣1,故答案为:±1.反馈:(1)关于x的方程无解,则k的值为.(2)若关于x的分式方程无解,则m的值为.(3)若关于x的分式方程无解,则m=.三:典型错题1.在中,x的取值范围为.2.要使方式的值是非负数,则x的取值范围是.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=,B=.6.若解分式方程产生增根,则m=.7.若关于x的方程是非负数,则m的取值范围是.8.关于x的分式方程有解,则字母a的取值范围是9.已知,则的值为.10.已知a2+b2=9ab,且b>a>0,则的值为.参考答案:例题1:反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.【解答】解:去分母得:2x﹣a=x+1,由分式方程有增根,得到x+1=0,即x=﹣1,把x=﹣1代入得:﹣2﹣a=0,解得:a=﹣2,故答案为:﹣1;﹣2(2)关于x的方程+=2有增根,则m=.【解答】解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:(3)若关于x的分式方程=﹣有增根,则k的值为.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣例题2:反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.(2)关于x的方程的解是负数,则a的取值范围是.【解答】解:把方程移项通分得,∴方程的解为x=a﹣6,∵方程的解是负数,∴x=a﹣6<0,∴a<6,当x=﹣2时,2×(﹣2)+a=0,∴a=4,∴a的取值范围是:a<6且a≠4.故答案为:a<6且a≠4.例题3:反馈:(1)关于x的方程无解,则k的值为.【解答】解:去分母得:2x+4+kx=3x﹣6,当k=1时,方程化简得:4=﹣6,无解,符合题意;由分式方程无解,得到x2﹣4=0,即x=2或x=﹣2,把x=2代入整式方程得:4+4+2k=0,即k=﹣4;把x=﹣2代入整式方程得:﹣4+4﹣2k=﹣12,即k=6,故答案为:﹣4或6或1(2)若关于x的分式方程无解,则m的值为.【解答】解:两边都乘以(x﹣2),得x﹣1=m+3(x﹣2).m=﹣2x+5.分式方程的增根是x=2,将x=2代入,得m=﹣2×2=5=1,故答案为:1.(3)若关于x的分式方程无解,则m=.【解答】解:方程两边都乘以(x+1)(x﹣1),得:m﹣(x﹣1)=0,即m=x﹣1,∵关于x的分式方程无解,∴x=1或x=﹣1,当x=1时,m=0,当x=﹣1时,m=﹣2,故答案为:0或﹣2.典型错题:1.在中,x的取值范围为0<x≤1.2.要使方式的值是非负数,则x的取值范围是x≥1或x<﹣2.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=﹣12,B=17.6.若解分式方程产生增根,则m=﹣2或1..7.若关于x的方程是非负数,则m的取值范围是m≥﹣2且m≠﹣1 .8.关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0.9.已知,求的值.【解答】解:将两边同时乘以x,得x2+1=3x,===.10.已知a2+b2=9ab,且b>a>0,求的值.【解答】解:∵a2+b2=9ab,∴a2+b2+2ab=11ab,a2+b2﹣2ab=7ab,即(a+b)2=11ab,(a﹣b)2=7ab,∵b>a>0,即b﹣a>0,∴a+b=,b﹣a=,则原式=﹣=﹣=﹣.。
专题12 分式方程的无解与增根(含答案)

专题12 分式方程的无解与增根知识解读1.分式方程增根的定义方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 2.分式方程无解有两种可能(1)将分式方程通过“去分母”变成整式方程后,整式方程是“0x =1”的形式,即整式方程无解;(2)整式方程求得的解,使得原分式方程的分母等于0,即求得的根为增根。
3.验根的方法(1)代人原方程检验,看方程左、右两边的值是否相等,如果相等,则未知数的值是原方程的解,否则就是原方程的增根;(2)代人最简公分母检验,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根.前一种方法虽然计算量大,但是能检查解分式方程中有无计算错误,后一种虽然简单,但不能检查解方程的过程有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。
培优学案典例示范一、分式方程增根的讨论 例1若方程233x mx x -=--有增根,则m 的值为 ( ) A. -3 B .3 C .0 D .以上都不对【提示】如果这个方程有增根,则这个增根为x =3,x =3虽然不是233x mx x -=--的解,但却是这个方程去分母之后得到的整式方程的解。
【技巧点评】方程有增根,一定存在使公分母等于0的未知数的值.解这类题的一般步骤:①把分式方程化成整式;方程;②令公分母为0,求出x 的值;③把x 的值代入整式方程,求出字母系数的值。
跟踪训练1.当m 为何值时,解方程225++111mx x x =--会产生增根?二、分式方程的无解 例2若关于x 的分式方程311x a x x--=-无解,则a = . 【提示】分式方程无解,需要就分式方程有增根和整式方程无解两种情况讨论。
【技巧点评】已知分式方程的无解,可先考虑去分母,将它化成整式方程,然后讨论是整式方程无解,还是分式方程的根为增根。
跟踪训练2.当k 时,分式方程,0111x k x x x x +-=--+无解.三、分式方程解的讨论 例3 已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为 。
分式方程增根的例题

分式方程增根的例题
在解析分式方程增根的例题的过程中,我们可以清楚地看到分式方程增根的具体步骤和方法。
首先,假设我们有一个分式方程:x/2 + 1 = 0。
那么,我们可以首
先将方程重写为:x/2 = -1,然后乘以2得到:x = -2。
这就是增根后的结果。
再来看一个更复杂一些的例子,假设我们有一个分式方程:2/(x-3) + 1 = 0。
首先,我们可以将这个方程重写为:2/(x-3) = -1,然后两边同时乘以x-3,得到:2 = -(x-3)。
最后,解开括号,将方程重写为:2 = -x + 3。
解这个方程,我们可以得到:x = 1。
这就是增根后的结果。
以上只是两个简单的例子,分式方程的增根需要逐步推理和运算,并不是一蹴而就的。
在遇到复杂的分式方程时,可能需要更多的步骤进行处理。
但无论如何,分式方程增根的基本原理都是相同的,那就是通过一系列数学操作,将分母消除,从而使得x变量的次数降低,以便于求解。
分式方程中增根问题的探究(教案)

-难点3:针对实际问题,如速度、浓度等问题,学生需要根据实际情况构建分式方程,并注意避免增根。例如,在求解两个物体同时从不同地点出发,相向而行的问题时,学生需要建立正确的分式方程,并考虑到物体相遇时的时间不能为零。
五、教学反思
在今天的课堂上,我们探讨了分式方程中的增根问题。这个概念对学生来说可能有些抽象,但我发现通过实际例子的引导,学生们能够逐渐理解增根的含义及其在方程求解过程中的影响。我尝试了不同的教学方法,有一些收获和反思。
首先,我发现当学生们面对具体的分式方程时,他们能够更好地理解增根的概念。通过将抽象的理论与具体的案例结合起来,学生们能够看到增根是如何产生的,以及我们如何避免它们。这种方法有助于学生将理论知识与实际应用联系起来,增强了他们对知识点的记忆和理解。
(4)培养学生分析问题、解决问题的能力,特别是在面对含增根的分式方程时。
2.教学难点
(1)识别增根产生的具体原因,如分母为零的情况,以及如何通过变换避免;
(2)对于含增根的分式方程,如何进行有效求解,特别是在涉及到多个增根的情况下;
(3)在实际问题中,如何构建分式方程并避免增根问题。
举例:
-难点1:分析产生增根的原因,如对于方程$\frac{x}{x-2} = \frac{3}{x+1}$,学生需要理解当$x=2$或$x=-1$时,分母为零,从而导致增根。难点在于引导学生发现并排除这些值。
3.重点难点解析:在讲授过程中,我会特别强调增根的定义和避免增根的方法这两个重点。对于难点部分,我会通过举例和对比来帮助大家理解。
分式方程的增根和无解

分式方程的增根和无解黄石市白马山学校 胡优武知识重点:同学们在平时解答分式方程时,经常对分式方程的增根和无解混淆不清,容易错解、漏解。
为了学生好区分这两个概念,特制定以下例子加以说明。
(一)所求出的根使分式方程分母为零,这个根叫增根。
假定分母为零的值不一定是分式方程的增根。
例1:若解关于x 的分式方程234222+=-+-x x mx x 会产生增根,求m 的值. 解:方程两边都乘最简公分母(x+2)(x-2),得2(x+2)+mx=3(x-2)∵最简公分母为(x+2)(x-2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=-4.把x=-2代入整式方程,得m=6.综上,可知m=-4或6.本例具有常规性,一般学生都可以看出增根是x=±2,从而求出两个m 的值。
例2:关于分式方程xx x x x +=-+-2227163增根的情况,说法正确的是( ) A .有增根是0和-1 B .有增根是0和1、-1C .有增根是-1D .有增根是1一般的学生会假定最简公分母x(x+1)(x-1)=0,得出B 选项,那么就错了。
大家先看看解答过程。
解:方程两边乘以最简公分母为x (x+1)(x-1),得3(x+1)-6x=7(x-1),x=1;当x=1时,x (x+1)(x-1)=0,x=1是增根.原方程无解故选D .以上说明面对分式方程增根时,不能通过假定分母为零的所有x 的值是方程增根,必须动手计算。
(二)分式方程得的无解,要从两个角度分析,①无解:使分式方程分母为零的根叫增根,此时分式方程无解。
②无解:分式方程化成整式方程ax=b , 当 a=0 ,b ≠0时,方程无解。
例3:若关于x 的分式方程131=---xx m x 无解,求m 的值. 解:方程两边同时乘以x (x-1)得,x (x-m )-3(x-1)=x (x-1),整理得 (m+2)x=3①当x=0时原分式方程无解,此时0=3,无意义;②当x=1时原分式方程无解,此时解得m=1.③当m+2=0时,即m=-2时,整式方程(m+2)x=3无解,即原分式方程无解.故m=1或-2.上面的第③步,是学生最容易遗漏的。
分式方程的增根

分式方程的增根
分式方程在数学中具有非常重要的意义,它是用来解决特定问题的有
效工具。
本文将阐述分式方程的定义以及存在增根的情况,以及如何求解
分式方程增根的过程。
分式方程是一种用于解决特定问题的数学方式。
分式方程可以用参数
组合而成,它以未知数x和各种参数组合而成,其形式如下:f(x)=0 。
可以通过求导来求解分式方程。
如果该方程的导数小于0,意味着该方程有增根。
增根的定义为求解分式方程时,当x的取值产生一定的变化时,该方程的未知数x也会有所变化。
如果该方程的导数大于0,意味着该函数有负根,即x的变化会导致f(x)的变化减少。
因此,如何确定分式方程的增根是一个相当重要的步骤。
首先,通过
解导数确定是否存在增根,如果存在,则需要将分式方程变为一元一次方程,然后再解求根公式求解未知数x,从而得出其增根。
同时,要在获得分式方程的增根的同时,考虑到其他的变量,这样才
能得出最终的结果。
如果该分式方程中有其他变量,可以先将其带入到分
式方程中,然后解决该方程,最后确定出分式方程的增根。
总结起来,求解分式方程的增根,需要满足以下几个步骤:首先,通过解导数确定是否存在增根,其次,将分式方程转换为一元一次不等式,然后解求其增根,最后考虑其他变量,从而最终确定出分式方程的增根。
总的来说,分式方程是一种常见的数学问题,它的作用可以用于解决复杂的特定问题,它还具有增根的特性,所以一旦发现一个分式方程有增根,要仔细考虑如何求解该方程的增根,从而最终得出有效的结果。
分式方程及其增根问题

分式方程及其增根问题文章来源:现代教育报·思维训练作者:都卫华点击数:2101 更新时间:2007-3-14 8:32:53解分式方程的基本方法是通过去分母把分式方程转化为整式方程,解分式方程时,有可能产生增根(使方程中有的分母为零的根),因此解分式方程要验根(其方法是把求得的根代入最简公分母中,使分母为零的是增根,否则不是).【例1】解方程 .解:方程两边同乘x(x+1),得5x-4(x+1)=0.化简,得x-4=0. 解得x=4.检验:当x=4时,x(x+1)=4×(4+1)=20≠0,∴x=4是原方程的解.【例2】解方程解:原方程可化为,方程两边同乘(x+1)(x-1),得(x+1)2-4=(x+1)(x-1).化简,得2x-3=-1.解得x=1.检验:x=1时(x+1)(x-1)=0,x=1不是原分式方程的解,所以原分式方程无解.【小结】去分母时,方程两边同乘以最简公分母,不能漏乘常数项.【例3】解方程 .解:原方程可变形为 .解得x=.检验:当x=时,(x-7)(x-5)(x-6)(x-4)≠0,所以x=是原方程的解.【小结】此题若直接去分母,就会出现三次式,且计算较为复杂,该类型题的简单解法为:只把方程等号两边转化为两个分式之差,且等号两边分母的差相等;再把方程等号两边的分式分别通分,会得到两个同分子的分式相等,从而得分母相等,此解法叫做“分组通分法”.【例4】若关于x的方程有增根x=-1,求k的值.解:原方程可化为 .方程两边同乘x(x+1)(x-1)得x(k-1)-(x+1)=(k-5)(x-1).化简,得3x=6-k.当x=-1时有3×(-1)=6-k,∴k=9.【小结】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程及其增根问题
解分式方程的基本方法是通过去分母把分式方程转化为整式方程,解分式方程时,有可能产生增根(使方程中有的分母为零的根),因此解分式方程要验根(其方法是把求得的根代入最简公分母中,使分母为零的是增根,否则不是).
【例1】解方程 .
解:方程两边同乘x(x+1),得5x-4(x+1)=0.
化简,得x-4=0. 解得x=4.
检验:当x=4时,x(x+1)=4×(4+1)=20≠0,
∴x=4是原方程的解.
【例2】解方程
解:原方程可化为,
方程两边同乘(x+1)(x-1),得(x+1)2-4=(x+1)(x-1).
化简,得2x-3=-1.解得x=1.
检验:x=1时(x+1)(x-1)=0,x=1不是原分式方程的解,所以原分式方程无解.
【小结】去分母时,方程两边同乘以最简公分母,不能漏乘常数项.
【例3】解方程 .
解:原方程可变形为 .
解得x=.
检验:当x=时,(x-7)(x-5)(x-6)(x-4)≠0,
所以x=是原方程的解.
【小结】此题若直接去分母,就会出现三次式,且计算较为复杂,该类型题的简单解法为:只把方程等号两边转化为两个分式之差,且等号两边分母的差相等;再把方程等号两边的分式分别通分,会得到两个同分子的分式相等,从而得分母相等,此解法叫做“分组通分法”.
【例4】若关于x的方程有增根x=-1,求k的值.
解:原方程可化为 .
方程两边同乘x(x+1)(x-1)得
x(k-1)-(x+1)=(k-5)(x-1).
化简,得3x=6-k.
当x=-1时有3×(-1)=6-k,∴k=9.
【小结】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.。