共价有机骨架材料COFsppt课件

合集下载

共价有机骨架材料COFs汇总.

共价有机骨架材料COFs汇总.

A. Thomas, et al., Angew. Chem. Int. Ed., 2008, 47, 3450-3453.
11
2.4 其他合成方法
单层COFs的合成
W. R. Dichtel, et al., Science, 2011, 332, 228-231.
12
COF-103的BET 4210m2 /g
⑤很多开放位点
储存气体的良好“容器”
O. M. Yaghi, et al., Science, 2007, 316, 268-272.
7
3D COFs的构建
Y. Yan, et al., J. Am. Chem. Soc., 2015, 137, 8352-8355.
8
二、COFs合成方法
2.1 溶剂热法
50 2
50 2
[EtOH] -H P-COF 50 2
[EtNH ] -H P-COF 2 50 2
15
Carbon dioxide adsorption capacity D. Jiang, et al., J. Am. Chem. Soc., 2015, 137, 7079-7082.
3.2 在催化中的应用
A. 骨架杂原子配位金属引入催化位点 骨架官能团衍生化引入催化位点
设计策略
B.单体导入官能团作为催化位点
16
骨架杂原子配位金属引入催化位点
Entry
1 2 3 4
R
X Time(h) Yield(%)
I
3
96
I
2
97
Br 2.5
98
Br 3
97
W. Wang, et al., J. Am. Chem. Soc., 2011, 133, 19816-19822.

共价有机骨架材料COFPPT精选文档

共价有机骨架材料COFPPT精选文档

1.2.1 按形成的共价键分类
①反应可逆
A.硼氧六环
②构建单元立体构型保持
单体、寡 聚物相互 B.硼酸酯 交换 “Error checking”
C.三 嗪
刚性结构
D.亚 胺
E. 腙
W. Wang, et al., Chem. Soc. Rev., 2013, 42, 548-568.
5
COFs材料的分类
187
1200
COF-103 C24H24B4O8Si
12
1.54
3530
70.5
175
1190
zeolites
--
--
--
1250
25.5
86
370
mesoporous silicas
--
--
-- 450-1070
--
14-65
--
MOF-5
C24H12O13Zn4 12,15
--
3800
76
120(300K) 970(40bar)
⑤很多开放位点
储存气体的良好“容器”
O. M. Yaghi, et al., Science, 2007, 316, 268-272.
7
3D COFs的构建
Y. Yan, et al., J. Am. Chem. Soc., 2015, 137, 8352-8355.
8
二、COFs合成方法
2.1 溶剂热法
50 2
50 2
[EtOH] -H P-COF 50 2
[EtNH ] -H P-COF 2 50 2
Carbon dioxide adsorption capacity

00004-热固性共价有机骨架材料(COFs)的分子设计合成

00004-热固性共价有机骨架材料(COFs)的分子设计合成

构筑单元多为刚性对称结构
Inoganic Zeolites
A concise network approach for Framework Solids: consider molecules as nodes and noncovalent interactions as node connections Sharma, C.V.K., Broker, G.A., et al., J.Am.Chem.Soc., 1999, 121:1137-1144
Dalian University of Technology
Framework Solids
Typic structure
Characteristic
四面体和AlO4四面体为基本结构单元,通过桥 四面体为基本结构单元, 由SiO4四面体和 四面体和 四面体为基本结构单元 氧连接构成的一类具有笼形或孔道结构的晶体化合物, 氧连接构成的一类具有笼形或孔道结构的晶体化合物, 小分子可通过这些通道,最大尺寸为15A。 小分子可通过这些通道,最大尺寸为 。 亚稳结构,适当条件下会转化为更稳定的致密结构, 亚稳结构,适当条件下会转化为更稳定的致密结构, 耐水解性差,含有金属化合物, 耐水解性差,含有金属化合物,固体比重大
Mckeown, N B., et al., Chem. Eur. J., 2005, 11:2610 Mckeown, N B., et al., Angew. Chem. Int. Ed., 2006, 45:1804-1807 Mckeown最近三年首次提出本征有机聚合物 最近三年首次提出本征有机聚合物 微孔材料( 微孔材料(PIMs)的概念,并设计了一系列 )的概念, 全刚性共价有机骨架材料。 全刚性共价有机骨架材料。

共价有机骨架材料COFs

共价有机骨架材料COFs
1.2.2 按空间构型分类:2D COFs 和3D COFs
2D COFs的构建方法:
D. Jiang, et al., Chem. Soc. Rev., 2012, 41, 6010-6022.
6
3D COFs的构建方法
3D COFs的特点: ①通过共价键连接扩展形成网状结构 ②具有较大的BET值(可达4000m2g-1) ③更高的热稳定性(400-500℃) ④密度小(最低至0.17cm-3g-1)
17
单体导入官能团作为催化位点
A. 骨架杂原子配位金属引入催化位点 骨架官能团衍生化引入催化位点
设计策略
B.单体导入官能团作为催化位点
16
骨架杂原子配位金属引入催化位点
Entry
1 2 3 4
R
X Time(h) Yield(%)
I
3
96
I
2
97
Br 2.5
98
Br 3
97
W. Wang, et al., J. Am. Chem. Soc., 2011, 133, 19816-19822.
187
1200
COF-103 C24H24B4O8Si
12
1.54
3530
70.5
175
1190
zeolites
--
--
--
1250
25.5
86
370
mesoporous silicas
--
--
-- 450-1070
--
14-65
--
MOF-5
C24H12O13Zn4 12,15
--
3800
76
120(300K) 970(40bar)

共价有机框架化合物

共价有机框架化合物

共价有机框架化合物共价有机框架化合物是近年来备受研究关注的一类新型功能材料。

其独特的分子结构和丰富的性质使其在催化、分离、能源等领域具有广泛的应用前景。

本文将对共价有机框架化合物的定义、研究现状以及应用进行探讨。

一、定义共价有机框架化合物简称COFs,是一类由有机分子通过共价键形成的二维或三维网络结构。

其分子结构中含有多个功能基团,可形成具有孔道和表面活性中心的材料。

与传统的无机材料和有机分子材料相比,COFs具有独特的结构和性质,包括高度可控性、多孔性、可重复性等。

二、研究现状当前,COFs的研究主要集中在以下几个方面:1.合成方法COFs的合成方法包括基于聚合物的方法、基于配位反应的方法、基于无机模板的方法等。

其中,基于聚合物的方法是目前最常用的一种方式,通过有机分子自身的聚合来构建COFs。

2.结构调控COFs的结构调控是实现其物理和化学性质调控的关键。

研究人员通过引入具有不同性质的有机分子或功能基团,调节COFs的孔径大小、孔径结构、表面性质等,以满足不同领域的应用需求。

3.应用前景COFs在催化、分离、能源等领域具有广泛的应用前景。

例如,COFs作为催化剂可用于制备高附加值化合物;COFs作为分离材料可用于分离有机分子、气体分子等;COFs作为电极材料可用于锂离子电池、超级电容器等。

三、应用举例1. COFs在催化领域的应用Tanaka等人制备了一种铜-酞菁COFs,在催化芳基硫醚化反应中,表现出优异的反应活性和高度选择性。

此外,由于其结构可控性,研究人员还可以通过结构设计优化催化剂的催化性能。

2. COFs在分离领域的应用Chen等人制备了一种二咯-脲COFs,使用其作为载体固定铜离子,成功实现了对氨基酸的分离。

由于COFs具有可控的孔道结构和表面性质,有望成为一种新型的分离材料。

3. COFs在能源领域的应用Liu等人利用COFs作为锂离子电池的电极材料,制备出高性能的锂离子电池。

共价有机骨架材料COF

共价有机骨架材料COF

A. Thomas, et al., Angew. Chem. Int. Ed., 2008, 47, 3450-3453.
11
2.4 其他合成方法
单层COFs的合成
W. R. Dichtel, et al., Science, 2011, 332, 228-231.
12
COF-103的BET 4210m2 /g
3.2 在催化中的应用
A. 骨架杂原子配位金属引入催化位点 骨架官能团衍生化引入催化位点
设计策略
B.单体导入官能团作为催化位点
16
骨架杂原子配位金属引入催化位点
Entry
1 2 3 4
R
X Time(h) Yield(%)
I
3
96
I
2
97
Br 2.5
98
Br 3
97
W. Wang, et al., J. Am. Chem. Soc., 2011, 133, 19816-19822.
动力学控制
无序多孔材料
热力学控制
O. M. Yaghi, et al., Science, 2005, 310, 1166-1170.
COFs
3
COF-1和COF-5的构建
COF-5
O. M. Yaghi, et al., Science, 2005, 310, 1166-1170.
4
1.2 COFs材料的分类
高比 表面
2.5 COFs的性质
热稳定 共价键连接,300-500℃ 性高
规整结构,有序孔
多孔 晶体
COFs
孔径范 从微孔到介孔 围宽
结构 多样
低密度
COF-108低至 0.17cm3g-1

cof结构解析

cof结构解析

cof结构解析
共价有机骨架材料(COFs)是由有机结构单元通过共价键连接而形成的晶态有机多孔材料。

由于其独特的结构特性,COFs在吸附、催化等领域有广阔的应用前景。

然而,由于许多COFs的晶体尺寸较小,传统的X射线衍射法和粉末衍射法解析结构非常困难。

为了解决这个问题,可以采用MicroED技术,这是一种基于冷冻透射电镜的结构解析技术。

该技术通过电子对微小的晶体进行衍射,收集电子衍射数据并进行数据解析。

由于所需的晶体尺寸极小,微纳米尺寸的晶体就可以产生足够高的信噪比衍射信号。

这种技术可以快速、高效地提供高分辨率的衍射数据,大幅降低对样品形状、纯度和尺寸的要求。

除了MicroED技术,还可以通过其他方法解析COF结构。

例如,可以通过X射线衍射、电子显微镜等技术来表征COF的分子排列方式,这些方法可以揭示COF的结构有序性和稳定性。

此外,可以通过气体吸附、孔隙体积测定、孔道直径分布等方法来表征COF的孔道形貌,这些参数可以反映COF在吸附、催化等应用中的性能。

以上内容仅供参考,建议查阅关于COF的书籍或者咨询化学领域专业人士获取更准确的信息。

共价有机骨架材料COFs文件.ppt

共价有机骨架材料COFs文件.ppt
高比 表面
2.5 COFs的性质
热稳定 共价键连接,300-500℃ 性高
规整结构,有序孔
多孔 晶体
COFs
孔径范 从微孔到介孔 围宽
结构 多样
0.0
低密度
COF-108低至 0.17cm3g-1
结构单元多样化 13
三、 COFs的应用
3.1 气体储存
Material
Composition
pore Vp,DR/ size/Å cm3g-1
5
COFs材料的分类
1.2.2 按空间构型分类:2D COFs 和3D COFs
2D COFs的构建方法:
D. Jiang, et al., Chem. So0c..0Rev., 2012, 41, 6010-6022.
6
3D COFs的构建方法
3D COFs的特点: ①通过共价键连接扩展形成网状结构 ②具有较大的BET值(可达4000m2g-1) ③更高的热稳定性(400-500℃) ④密度小(最低至0.17cm-3g-1)
SBET/ m2g-1
H2 uptake/ CH4 uptake/ CO2 uptake/
mg g-1
mg g-1
mg g-1
COF-1
C3H2BO
9
0.3
750
14.8
40
230
COF-5
C9H4BO2
27
1.07
1670Leabharlann 35.889870
COF-102
C25H24B4O8
12 1.55
3620
72.4
A. Thomas, et al., Angew. Ch0.e0m. Int. Ed., 2008, 47, 3450-3453.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共价有机骨架聚合物(COFs)的 合成及应用
报 告 人:× × 时 间: × ×
.
1
目录
一、COFs材料介绍 二、 COFs材料合成方法 三、 COFs材料应用 四、小结和展望
.
2
一、COFs材料介绍
1.1 COFs的概念 共价有机骨架聚合物(Covalent organic frameworks) 简称COFs,是以轻元素C、O、N、B等以共价键连 接而构建,经热力学控制的可逆聚合形成的有序多孔 结构的晶态材料。
动力学控制
无序多孔材料
热力学控制
O. M. Yaghi, et al., Scie.nce, 2005, 310, 1166-1170.
COFs
3
COF-1和COF-5的构建
COF-5
O. M. Yaghi, et al., Sc.ience, 2005, 310, 1166-1170.
4
1.2 COFs材料的分类
400℃,40h
不同的单体
CTF( Covalent TriazineBased Frameworks )系 列材料
A. Thomas, et al., Angew. Ch.em. Int. Ed., 2008, 47, 3450-3453.
11
2.4 其他合成方法
单层COFs的合成
W. R. Dichtel, et al., Scien. ce, 2011, 332, 228-231.
.
17
单体导入官能团作为催化位点
TFP-DABA
Entry
1 3 4 5
TFP-DABA loading[mol%]
5 7.5 10
-
T[oC]
100 100 100 100
Fructose Conversion[%]
67 84 >99 5
HMF Selectivity[%]
Yield[%]
97
65
12
COF-103的BET 4210m2 /g
高比 表面
2.5 COFs的性质
热稳定 共价键连接,300-500℃ 性高
规整结构,有序孔
多孔 晶体
COFs
孔径范 从微孔到介孔 围宽
结构 多样
.
低密度
COF-108低至 0.17cm3g-1
结构单元多样化 13
三、 COFs的应用
3.1 气体储存
Material
8
二、COFs合成方法
2.1 溶剂热法
溶剂:均三甲苯/二氧六环混合
脱气 密封
120℃,3d
Pyrex tube
特点:对COFs材料具有较好的普适性,但合成时间 较长,温度较高
O. M. Yaghi, et al., Sc.ience, 2005, 310, 1166-1170.
9
2.2 微波辅助法合成COFs
14
COFs孔道功能化储存二氧化碳的研究
CO2 uptake(mg g-1)
-NH
160
2
140
-OH
120
-COOH
小结:孔道修饰策略得到了一
100
RCOO-
80
Et-
60
40
系列由直接缩合反应难以得到 的孔道多样化的COFs,并且经 过修饰的COFs表现出了明显
20
优化的CO2吸附能力。
0
H P-COF 2
Composition
pore Vp,DR/ size/Å cm3g-1
SBET/ m2g-1
H2 uptake/ CH4 uptake/ CO2 uptake/
mg g-1
mg g-1
mg g-1
COF-1
C3H2BO
9
0.3
750
14.8
40
230
.07
1670
35.8
97
81
97
97
n.d.
n.d.
D. Zhao, et al., ChemSus.Chem., 2015, 8, 3208-3212.
18
四、小结和展望
小结:
① COFs材料具有热稳定性高、比表面大等优点,在气体储存、 催化以及电子器件领域很有应用前景;
② 硼基COFs有高的结晶度和规整的孔道结构,但是对水和质 子性溶剂不稳定;基于亚胺、腙、三嗪等的COFs稳定有所 提升,但是一般具有较差的结晶度以及有限的孔道。
1.2.2 按空间构型分类:2D COFs 和3D COFs
2D COFs的构建方法:
D. Jiang, et al., Chem. Soc.. Rev., 2012, 41, 6010-6022.
6
3D COFs的构建方法
3D COFs的特点:
①通过共价键连接扩展形成网状结构 ②具有较大的BET值(可达4000m2g-1) ③更高的热稳定性(400-500℃)
89
870
COF-102
C25H24B4O8
12
1.55
3620
72.4
187
1200
COF-103 C24H24B4O8Si
12
1.54
3530
70.5
175
1190
zeolites
--
--
mesoporous silicas
--
--
MOF-5
C24H12O13Zn4 12,15
--
1250
-- 450-1070
④密度小(最低至0.17cm-3g-1)
⑤很多开放位点
储存气体的良好“容器”
O. M. Yaghi, et al., Scie.nce, 2007, 316, 268-272.
7
3D COFs的构建
Y. Yan, et al., J. Am. Chem.. Soc., 2015, 137, 8352-8355.
[Et] -H P-COF 25 2
[MeOAc] -H P-COF [AcOH] -H P-COF
50 2
50 2
[EtOH] -H P-COF 50 2
[EtNH ] -H P-COF 2 50 2
Carbon dioxide adsorption capacity
.
15
D. Jiang, et al., J. Am. Chem. Soc., 2015, 137, 7079-7082.
3.2 在催化中的应用
A. 骨架杂原子配位金属引入催化位点 骨架官能团衍生化引入催化位点
设计策略
B.单体导入官能团作为催化位点
.
16
骨架杂原子配位金属引入催化位点
Entry
1 2 3 4
R
X Time(h) Yield(%)
I
3
96
I
2
97
Br 2.5
98
Br 3
97
W. Wang, et al., J. Am. Chem. Soc., 2011, 133, 19816-19822.
1.2.1 按形成的共价键分类
①反应可逆
A.硼氧六环
②构建单元立体构型保持
单体、寡 聚物相互 交换
B.硼酸酯
“Error checking”
C.三 嗪
刚性结构
D.亚 胺
E. 腙
W. Wang, et al., Chem..Soc. Rev., 2013, 42, 548-568.
5
COFs材料的分类
溶剂:均三甲苯/二氧六环/乙酸混合
微波条件下反应
100℃,60min
microwave tube
特点:合成时间短,反应温度相对更低
TpPa-COF
L. Wang, et al., Chem. Com. mun., 2015, 51, 12178-12181.
10
2.3 离子热法合成COFs
ZnCl2
--
3800
25.5 -76
86
370
14-65
--
120(300K) 970(40bar)
MOF-177
C54H30O13Zn4 11,17
--
4750
75.2
--
O. M. Yaghi, et al., J. Am. Ch. em. Soc., 2009, 131, 8875-8883.
1490(40bar)
展望:
① 合成:开发高效合成方法,缩短反应时间,增加合成量 ② 结构:开发更多新型的COFs材料,得到集高稳定性、高
结晶度以及多孔性于一体的COFs ③ 应用:拓展应用范围,深化研究领域
.
19
Thank you !
.
20
相关文档
最新文档