交通《运筹学》试卷(A卷)参考答案及评分标准

合集下载

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学试题及答案解析

运筹学试题及答案解析

运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。

5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。

6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中对偶问题的最优解: Y =(4,0,9,0,0,0) (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分) MaxZ=3X 1+4X 2X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8X 1,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。

运筹学试卷A卷+答案

运筹学试卷A卷+答案

学年度第一学期期末考试《运筹学》(八)卷专业班级姓名学号一、单选题(每题的备选答案中只有一个最佳答案,每题2分,共30分)I、运筹学的主要内容包括:()A.线性规划B.非线性规划C.存贮论D.以上都是2、下面是运筹学的实践案例的是:()A.丁谓修守B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是3、规划论的内容不包括:()A.线性规划B.非线性规划C.动态规划D.网络分析4、关于运筹学的原意,卜冽说法不正确的是:Λ.作业研究B.运作管理C.作战研究D.操作研究5,运筹学模型:A.在任何条件下均有效B.只有符合模型的简化条件时才有效C.可以解答管理部门提出的任何问题D.是定性决策的主要工具6、最早运用运筹学理论的是:Λ.二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B.美国最早将运筹学运用到农业和人口规划问逸上C.二次世界大战后,英国政府将运筹学运用到政府制定计划D.50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上7、下列哪些不是运筹学的研究范用:A.库存控制B.动态规划C.排队论D.系统设计8、对运筹学模型的下列说法,正确的是:A.在任何条件下均有效B.只有符合模型的简化条件时才有效C.可以解答管理部门提出的任何问题D.是定性决策的主要工具9、线性规划具有多重最优解是指()A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大丁•零10.图解法通常用于求解有()个变量的线性规划问题。

A.1B.2C.4D.5Ik以下不属于运筹学求解目标的是:A.最优解B.次优解C.满意解D.劣解12、线性规划问返的最优解()为可行解。

A.一定B.不一定C.一定不D.无法判断13、将线性规划问感转化为标准形式时,下列说法不正确的是:A.如为求Z的最小值,需转化为求-Z的垠大值B.如约束条件为W,则要增加一个松驰变量C.如约束条件为2,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变易14、关于图解法,下列结论最正确的是:A.线性规划的可行域为凸集。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案一、名词解释1、需求:对存储来说,需求就是输出。

最基本的需求模式是确定性的,在这种情况下,某一种货物的未来需求都是已知的。

2、决策活动:决策活动是人们生活中最常见的一种综合活动,是为了达到特定的目标,运用科学的理论和方法,分析主客观条件,提出各种不同的方案,并从中选取最优方案的过程。

3、行动方案:在实际生活和生产活动中,对同一问题,可能出现几种自然情况及几种反感供决策者选择,这几构成了一个决策问题,出现的几种可供选择的方案,称作行动方案(简称方案),记作Ai 。

4、损益值:把各种方案在不同的自然因素影响下所产生的效果的数量,称作损益值(也有人称为益损值,它因效果的含义不同而不同,效果可以是费用的数量,也可以是利润的数量),用符号ija 表示。

5、确定型决策:确定型决策就是指在知道某个自然因素必然发生的前提下所作的决策。

6、风险型决策:风险型决策问题是指决策者根据以往的经验及历史统计资料,可以判明各种自然因素出现的可能性大小(即概率)。

通过自然因素出现的概率来做决策,这样做是需冒一定的风险的,故称风险型决策。

7、期望值法:期望值法就是决策者根据各个方案的期望值大小,来选择最优方案。

如果损益值代表的是损失,则选择期望值最小的方案作为最优方案;如果损益值代表的是收益,则选择期望值最大的作为最优方案。

8、不确定型决策:不确定型决策问题是指决策者对各种自然因素发生的概率是未知的,存在两个或两个以上的自然因素,并且各个自然因素出现的概率是不知道的。

二、选择题1、在实际工作中,企业为了保证生产的连续性和均衡性,需要存储一定数量的物资,对于存储方案,下列说法正确的是( C )A 应尽可能多的存储物资,以零风险保证生产的连续性B 应尽可能少的存储物资,以降低库存造成的浪费C 应从多方面考虑,制定最优的存储方案D 以上说法都错误2、对于第一类存储模型——进货能力无限,不允许缺货,下列哪项不属于起假设前提条件( A ) A 假设每种物品的短缺费忽略不计 B 假设需求是连续,均匀的C 假设当存储降至0时,可以立即得到补充D 假设全部定货量一次供应3、对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件( D )A、需求是连续,均匀的B、进货是连续,均匀的C、当存储降至零时,可以立即得到补充D、每个周期的定货量需要一次性进入存储,一次性满足4、对于同一个目标,决策者“选优”原则不同,导致所选的最优方案的不同,而影响“选优”原则确定的是决策者对各种自然因素出现的可能性的了解程度。

西安交通大学17年9月课程考试《运筹学》作业考核试题满分答案

西安交通大学17年9月课程考试《运筹学》作业考核试题满分答案

西安交通大学17年9月课程考试《运筹学》作业考核试题
一、单选题(共37道试题,共74分。


1.下列结论正确的有
A.运输问题的运价表第r行的每个Cij同时加上一个非零常数k,其最优调运方案不变
B.运输问题的运价表第p列的每个Cij同时乘以一个非零常数k,其最优调运方案不变
C.运输问题的运价表的所有Cij同时乘以一个非零常数k,其最优调运方案变化
D.不平衡运输问题不一定存在最优解
正确答案:A
2.m+n-1个变量构成一组基变量的充要条件是
A.m+n-1个变量恰好构成一个闭回路
B.m+n-1个变量不包含任何闭回路
C.m+n-1个变量中部分变量构成一个闭回路
D.m+n-1个变量对应的系数列向量线性相关
正确答案:B
3.运输问题的数学模型属于
A.0-1规划模型
B.整数规划模型
C.网络模型
D.以上模型都是
正确答案:C
4.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量()
A.正确
B.错误
C.不一定
D.无法判断
正确答案:B
5.设P是图G从vs到vt的最短路,则有
A.P的长度等于P的每条边的长度之和
B.P的最短路长等于vs到vt的最大流量
C.P的长度等于G的每条边的长度之和
D.P有n个点n-1条边
正确答案:A
6.动态规划求解的一般方法是什么?()
A.图解法
B.单纯形法
C.逆序求解
D.标号法
正确答案:C
7.线性规划模型中,决策变量()是非负的。

A.一定
B.一定不
C.不一定。

运筹学考试题a卷及答案

运筹学考试题a卷及答案

运筹学期末考试题〔a卷〕注意事项:1、答题前,考生务必将自己的##、班级填写在答题卡上.2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分.3、考试结束,将试卷和答题卡一并交回.一、单项选择题<每小题1分,共10分>1:在下面的数学模型中,属于线性规划模型的为〔〕2.线性规划问题若有最优解,则一定可以在可行域的〔〕上达到.A.内点 B.顶点 C.外点 D.几何点3:在线性规划模型中,没有非负约束的变量称为〔〕A.多余变量 B.松弛变量 C.自由变量D.人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为〔〕A.两个B.零个C.无穷多个D.有限多个5:原问题与对偶问题的最优〔〕相同.x为自由变量,那么对偶问A.解B.目标值C.解结构D.解的分量个数6:若原问题中i题中的第i个约束一定为〔〕A.等式约束B."≤〞型约束C."≥〞约束 D.无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部〔〕A.小于或等于零B.大于零C.小于零D.大于或等于零 8:对于m个发点、n个收点的运输问题,叙述错误的是< >A.该问题的系数矩阵有m×n列B.该问题的系数矩阵有m+n行C.该问题的系数矩阵的秩必为m+n-1 D.该问题的最优解必唯一9:关于动态规划问题的下列命题中错误的是〔〕A、动态规划分阶段顺序不同,则结果不同B、状态对决策有影响C、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D、动态规划的求解过程都可以用列表形式实现10:若P为网络G的一条流量增广链,则P中所有正向弧都为G的〔〕A.对边B.饱和边C.邻边D.不饱和边二、判断题〔每小题1分,共10分〕1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的.〔〕2:单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解.〔〕3:一旦一个人工变量在迭代中变为非基变量后,该变量与相应列的数字可以从单纯形表中删除,而不影响计算结果.〔〕b c值同时发生改变,反映到最终单纯形表中,不会出现原问题与对4:若线性规划问题中的,i j偶问题均为非可行基的情况.〔〕5:若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解.〔〕6:运输问题的表上作业法实质上就是求解运输问题的单纯形法.〔〕7:对于动态规划问题,应用顺推或逆推解法可能会得出不同的最优解.〔〕8:动态规划的基本方程是将一个多阶段的决策问题转化为一系列具有递推关系的单阶段的决策问题.〔 〕 9:图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意.〔 〕10:网络最短路线问题和最短树问题实质上是一个问题.〔 〕 三、 填空题〔每空1分,共15分〕1:线性规划中,满足非负条件的基本解称为________,对应的基称为________. 2:线性规划的目标函数的系数是其对偶问题的________;而若线性规划为最大化问题,则对偶问题为________.3:在运输问题模型中,1m n +-个变量构成基变量的充要条件是________.4:动态规划方法的步骤可以总结为:逆序求解________,顺序求________、________和________.5:工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;对不定步数问题,用迭代法求解,有________迭代法和________迭代法两种方法.6:在图论方法中,通常用________表示人们研究的对象,用________表示对象之间的某 联系.7:一个________且________的图称为树. 四、计算题〔每小题15分,45分〕1:考虑线性规划问题: 〔a 〕:写出其对偶问题; 〔b 〕:用单纯形方法求解原问题; 〔c 〕:用对偶单纯形方法求解其对偶问题; 〔d 〕:比较〔b 〕〔c 〕计算结果.2:某公司打算在三个不同的地区设置4个销售点,根据市场预测部门的估计,在不同的地区设置不同数量的销售店,每月可得到的利润如下表所示.试问各个地区应如何设置销售店,3:对下图中的网络,分别用破圈法和生长法求最短树. 五、简答题<每小题10分,共20分>1.试述单纯形法的计算步骤,并说明如何在单纯形表上判断问题是具有唯一最优解、无穷多最优解和无有限最优解.2.简述最小费用最大流问题的提法以与用对偶法求解最小费用最大流的原理和步骤.##政法学院2008—2009学年度第一学期《运筹学》期末考试参考答案与评分标准〔a 卷〕单项选择题<每小题1分,共10分>1.B2.B3.C4.C5.B6.A7.D8.D9.A 10.D 判断题〔每小题1分,共10分〕1.T2.F3.T4.F5.T6.T7.F8.T9.F 10.F 填空题〔每空1分,共15分〕1:基本可行解、可行基;2:右端常数、最小化问题;3:不含闭回路;4:最优目标函数、最优策略、最优路线、最优目标函数值;5:函数、策略;6:点、边;7:无圈、连通. 计算题〔每小题15分,45分〕 1:解 a 〕:其对偶问题为------〔3分〕------〔5分〕d 〕:对偶问题的实质是将单纯形法应用于对偶问题的求解,又对偶问题的对偶即原问题,因此〔b 〕、〔c 〕的计算结果完全相同. --------<2分> 2:解 该问题可以作为三段决策问题,对1,2,3地区分别设置销售店形成1,2,3三个阶段. k x 表示给地区k 设置销售店时拥有分配的数量,k u 表示给地区k 设置销售店的数量. 状态转移方程为:1k k k x x u +=-;阶段效应题中表所示;目标函数:31max ()kk k R gu ==∑;其中()k k g u 表示在k 地区设置k u 个销售店时的收益; ------〔3分〕 首先逆序求解条件最有目标函数值集合和条件最有决策集合:3k =时,333333334400()max{(4,)(,)}u x g x f u x x u f =+≤≤≤≤, 其中44()0f x =于是有:'333(0)(0)0,(0)0f g u ===, '333(1)(1)10,(1)1f g u ===,333(2)(2)14,'(2)2f g u ===, 333(3)(3)16,'(3)3f g u ===,333(4)(4)17,'(4)4f g u === .------〔3分〕2k =时,22222222233000()max {(4)()},,u x x g x u x u f x f ≤≤=+≤≤≤≤,于是有:222'332020(0)max{()()}0,(0)0u f g u f x u ≤≤=+==,2'22022331(1)max{()()}12,(1)1u f g u f x u ≤≤=+==,2'22022332(2)max{()()}22,(2)1u f g u f x u ≤≤=+==,2'22022333(3)max{()()}27,(3)2u f g u f x u ≤≤=+==,2'22022334(4)max{()()}31,(4)23u f g u f x u or ≤≤=+==. ------〔3分〕3k =时,111,404,x u x ≤=≤=于是有:1'11122014(4)max{()()}47,(4) 2.u g u f x u f ≤≤=+== .------〔3分〕因此,最优的分配方案所能得到的最大利润位47,分配方案可由计算结果反向查出得:123***(4)2,(2)1,(1)1u u u ===.即为地区1设置两个销售店,地区2设置1各销售店,地区3设置1个销售店. ------〔3分〕 3:解 破圈法〔1〕:取圈3121,,,v v v v ,去掉边13[,]v v .〔2〕:取圈2432,,,v v v v ,去掉边24[,]v v . 〔3〕:取圈2352,,,v v v v ,去掉边25[,]v v .〔4〕:取圈34553,,,,v v v v v ,去掉边34[,]v v . 在图中已无圈,此时,6p =,而15q p =-=,因此所得的是最短树.结果如下图,其树的总长度为12. .------〔6分〕.------〔3分〕生长法2v 3v 4v 5v 6v1S {2} 6 ∞∞∞2v 3 8 9 ∞ 2S {3} 8 9 ∞ 3v 5 3 ∞ 3S5{3}∞简答题<每小题10分,共20分> 1:单纯形法的计算步骤第一步:找出初始可行解,建立初始单纯形表.第二步:判断最优,检验各非基变量j x 的检验数1j B j j C B P C σ-=-.(1) 若所有的0j σ≤,则基B 为最优基,相应的基可行解即为基本最优解,计算停止. (2) 若所有的检验数0j σ≤,又存在某个非基变量的检验数所有的0k σ=,则线性规划问题有无穷多最优解.(3) 若有某个非基变量的检验数0j σ>,并且所对应的列向量的全部分量都非正,则该线性规划问题的目标函数值无上界,既无界解,停止计算.第三步:换基迭代(1) 当存在0k σ>,选k x 进基来改善目标函数.若检验数大于0的非基变量不止一个,则可以任选其中之一来作为进基变量.(2) 进基变量k x 确定后,按最小比值原则选择出基变量r x .若比值最小的不止一个,选择其中之一出基.(3) 做主元变换.反复进行上述过程就可以找到最优解或判断出没有有限最优解. 2:最大流问题就是在一定条件下,要求流过网络的物流、能量流或信息流等流量最大的问题.如果已知流过弧(,)i j v v 的单位流量要发生ij c 的费用,要求使总费用为最小的最大流流量分配方法.即在上述最大流问题上还应增加关于费用的目标:minij ijx c∑.这种问题称为最小费用最大流问题.模型可以描述为:采用对偶法求解最大流最小费用问题,其原理为:用福德—富克逊算法求出网络的最大流量,然后用Ford 算法找出从起点s v 到终点t v 的最短增广链.在该增广链上,找出最大调整量ε,并调整流量,得到一个可行流.则此可行流的费用最小.如果此时流量等于最大流量,则目前的流就是最小费用最大流,否则应继续调整.对偶法的步骤归纳如下:第0步:用最大流方法找出网络最大流量max f ,并以0流作为初始可行流.第一步:对于当前可行流,绘制其扩展费用网络图.第二步:用Ford 算法求出扩展费用网络图中从s v 到t v 的最短路.第三步:在最短路线对应的原网络中的增广链上,调整流量,得到新的可行流.第四步:绘制可行流图.若可行流的流量等于最大流量max f ,则已找到最小费用最大流,算法结束;否则从第一步开始重复上述过程。

《运筹学》_期末考试_试卷A_答案

《运筹学》_期末考试_试卷A_答案

一、判断题(共计10分,每小题1分,对的打√,错的打X )1。

无孤立点的图一定是连通图.2.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解.3。

如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题.5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与σj>0对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

7.度为0的点称为悬挂点.8。

表上作业法实质上就是求解运输问题的单纯形法。

9。

一个图G 是树的充分必要条件是边数最少的无孤立点的图。

10.任何线性规划问题都存在且有唯一的对偶问题。

①②③④⑤⑥⑦⑧⑨二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日.如劳动力本身用不了时可外出打工,春秋季收入为25元/人日,秋冬季收入为20元/人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 /每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0。

3人日,年净收入2元 /每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:大豆玉米麦子秋冬季需人日数春夏季需人日数年净收入(元/公顷)试决定该农场的经营方案,使年净收入为最大.205030003575410010404600x ,x三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中45为松弛变量,问题的约束为⎽形式(共8分)x1x21/2-1/2-4x3100x41/2-1/6-4x501/3-2x3x15/25/2010c j-zj(1)写出原线性规划问题;(4分)(2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

运筹学试题及规范标准答案(两套)

运筹学试题及规范标准答案(两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选岀一个正确答案, 分。

每小题1分,共10分)1 .线性规划具有唯一最优解是指A .最优表中存在常数项为零B •最优表中非基变量检验数全部非零C •最优表中存在非基变量的检验数为零D •可行解集合有界2 •设线性规划的约束条件为则基本可行解为3 min Z = 3工]+4勺,;f] + 工2 > 4,2工1+ 工2 - 2,心花一Q 则A •无可行解B .有唯一最优解 medn 答案选错或未选者,该题不得A . (0, 0, 4, 3) B. (3, 4, 0, 0) C • (2, 0,1,0) D • (3, 0, 4, 0)C .有多重最优解D .有无界解4 .互为对偶的两个线性规划任意可行解X和丫,存在关系C . Z >W5 .有6个产地4个销地的平衡运输问题模型具有特征A .有10个变量24个约束B .有24个变量10个约束C .有24个变量9个约束D .有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B .标准型的目标函数是求最小值C .标准型的常数项非正D•标准型的变量一定要非负7. m+n — 1个变量构成一组基变量的充要条件是8 .互为对偶的两个线性规划问题的解存在关系A .原问题无可行解,对偶问题也无可行解B •对偶问题有可行解,原问题可能无可行解C .若最优解存在,则最优解相同D •一个问题无可行解,则另一个问题具有无界解9.有m 个产地n 个销地的平衡运输问题模型具有特征mn 个变量 m+n 个约束 …m+n-1 个基变量m+n — 1 个基变量,mn — m — n — 1 个非基变量10 •要求不超过第一目标值、恰好完成第二目标值,目标函数是m+n — 1 个变量恰好构成一个闭回路m+n — 1 个变量不包含任何闭回路m+n — 1 个变量中部分变量构成一个闭回路m+n — 1 个变量对应的系数列向量线性相关B •有 m+n 个变量 mn 个约束C •有 mn 个变量m+n — 1约束A •有D •有20.对偶问题有可行解,则原问题也有可行解 X15 分)12.凡基本解一定是可行解 X 同1914.可行解集非空时,则在极点上至少有一点达到最优值 15.互为对偶问题,或者同时都有最优解,或者同时都无最优解17.要求不超过目标值的目标函数是 二說+18.求最小值问题的目标函数值是各分枝函数值的下界19.基本解对应的基是可行基 X 当非负时为基本可行解,对应的基叫可行基min ZP i d iP 2 (d 2 d 2)minP 2(d 2d 2)min P i d iP 2(d 2 d 2)minP i d iP 2(d 2 d 2)二、判断题 (你认为下列命题是否正确,对正确的打;错误的打“X”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009级《运筹学》试卷(A 卷)参考答案及评分标准
一.设A 、B 产品的产量为x 1,x 2,用于销售的C 产品的产量为x 3,需处理的C 产品的产量为x 4. 1.
⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤=--≤+≤+-++=-0
13000217003211002..273max 413432212
14321x x x x x x x x x t s x x x x z 2.
1234125126
234
3717max 37221100231700..201300
-=++-++
=⎧⎪
++=⎪⎪--=⎨⎪+=⎪⎪≥⎩z x x x x x x x x x x s t x x x x x x
3.
12412
123
3431243min 10001700130023232721,,0,=+++≥⎧⎪
++≥⎪⎪
-+≥⎨
⎪-≥-⎪⎪≥⎩w y y y y y y y y y y y y y y y 无约束
4.在2中引入人工变量x 8,则有
12348
12
512
623483718max 37221100231700..2013000
-=++--++=⎧⎪
++=⎪⎪
--+=⎨⎪+=⎪⎪≥⎩z x x x x Mx x x x x x x s t x x x x x x x 于是得到初始基可行解为:0(0,0,0,0,1100,1700,1300,0)=X ,则初始单纯形表为: 二.(1)本运输
c j 3 7
2 -1 0 0 -M 0 x 1 x 2 x
3 x
4 x
5 x
6 x 8 x
7 C B X B b 0 x 4 1100 1 2 1 0 0 0 0 x 5 1700 2 3 0 1 0 0 -M x 7 0 2 -1 -1 0 0 1 0 0 x
8 1300
1 0 0 0 1
σj
3
2M +7
-M +2
-M-1
问题的线性规划模型为:
⎪⎪⎪
⎪⎪⎩⎪⎪
⎪⎪⎪⎨
⎧==≥=++=++=++=++=+++=+++=++++++++++++++=4,3,2,1;3,2,1,010
1414121515
20.16141712206781115410min 3424143323133222123121113433323124232221
14131211343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x x x x z ij
(5分)
(2)用最小元素法确定初始调运方案,如下表 (5分)
(3)用位势法计算非基变量的检验数,结果如下表 (5分)
(4)因为非基变量x 14检验数小于0,所以当前解不是最优解。

(2分)
用闭回路法进行解的调整。

取非基变量x 14,其闭回路
x 14
x 11=6 x 14=6
x 11
及调整过程如右图, 得新的调运方案如下表 (3分)
三.1构造最大流模型,并设初始可行流0f 为0流。

如图1.(10分)
图1
2.用标号法求最大流 (10分)
(1)①对f 0进行标号,得一可增广链s-s 1-v 1-t 1-t 。

如图2
图2
②调整流量,得新的可行流f 1,如图3。

图3
(2) ①对f1进行标号,得一可增广链s-s1-t1-t。

见图3。

②调整流量,得新的可行流f2,如图4。

图4
(3) ①对f2进行标号得一可增广链s-s1-t2-t。

见图4。

②调整流量,得新的可行流f3,如图5。

1
图5
(4) ①对f3进行标号得一可增广链s-s1-v2-t2-t。

见图5。

②调整流量,得新的可行流f4,如图6。

2
图6
(5) ①对f4进行标号得一可增广链s-s2-v2-t2-t。

见图6。

②调整流量,得新的可行流f5,如图7。

图7
(6) ①对f5进行标号得一可增广链s-s2-t2-t。

见图7。

②调整流量,得新的可行流f6,如图8。

图8
(7) ①对f6进行标号得一可增广链s-s2-t2-t。

见图8。

②调整流量,得新的可行流f7,如图9。

图92
(8) ①对f 7进行标号, 当标到s 1时,标号不能继续进行,即不存在可增广链。

则f 7就是最大流。

其流量为:20)812(1010=+=+=W 。

四.由题意,本问题属于M/M/1/∞/∞/FCFS 的排队问题,已知8,6==μλ,所以
175.08
6
<==
ρ (2分) (1)空闲概率为:
25.010=-=ρP (2分)
(2)平均逗留时间:
小时)(5.06
81
1=-=-=
λμs W (2分) (3)修车铺内平均逗留车辆数,即平均队长为:
 (辆)375
.0175
.01=-=
-=
ρ
ρ
s L (2分)
(4)∑∑=∞
=-=2
03
2P 1P
P n n n n

>,而
1875.0)1(1=-=ρρP ,1406.0)1(22=-=ρρP ,所以
4219.0P 1P 2
02=-=∑=n n > (2分)
五.
六.证明:
必要性:由定理3,若),(*
*
y x 是G 的解,则必有
),(),(),(****j x E y x E y i E ≤≤,因此,在(1)(2)中,只需取),(*
*y x E v =即可。

充分性:设有v y x ,,*
*满足条件(1)(2),则有
∑∑∑=≥n
j
j n j
m i
i
ij
v v y x a
y j
***
(3)
∑∑∑=≤m
i
j m i
n j
i
ij
v v x y a
x j
***
(4)
(3)(4)表明,),(*
*
y x E v =,则(1)(2)中的第一式即为定理3的条件,则),(*
*
y x 为G 的解。

证毕。

相关文档
最新文档