指对幂函数经典练习题
指对幂函数经典练习题

(三)指数对数函数练习题 1、若函数x a a a y ⋅+-=)33(2是指数函数,则有 ( )A 、21==a a 或B 、1=aC 、2=aD 、10≠>a a 且2、指数式b c =a (b >0,b ≠1)所对应的对数式是 ( )A .log c a =bB .log c b =aC .log a b =cD .log b a =c3、若210,5100==b a ,则b a +2=4、函数y =)12(log 21-x 的定义域为 ( )5、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) 6、若关于x 的方程335-+=a a x 有负根,则实数a 的取值范围是_ ____________. 7、当0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.8、函数1241++=+x x y 的值域是 .9、设1052==ba ,则=+ba 11 。
10、函数11+=-x a y )10(≠>a a 且的图象必经过定点 . 11、若43-->a a )1,0(≠>a a ,则a 的取值范围是 .12、函数f (x )=|lg x |,则f (41),f (31),f (2)的大小关系是 13、已知函数3234+⋅-=x x y 的值域为[7,43],试确定x 的取值范围. 14、已知ab >0,下面四个等式中,正确命题为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab 15、已知x =2+1,则lo g 4(x 3-x -6)等于 ( ) 16、已知m >0时10x =lg (10m )+lgm 1,则x 的值为 ( ) A .2 B .1 C .0 D .-117、若log a b ·log 3a =5,则b 等于 A .a 3 B .a 5 C .35 D .53 18、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 19、函数x y -=1)21(的单调递增区间是 ( ) 20、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。
指数函数、对数函数、幂函数练习题大全(标准答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是 ( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a ax m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+===。
指对幂函数经典练习题

高一数学期末复习幕函数、指数函数和对数函数1、 若函数y = (a 2 - 3a ■ 3) a x 是指数函数,则有 A 、a = 1 或a = 2 B a=1 c 、a=22、 下列所给出的函数中,是幕函数的是 A3 A . y = _X D 、 B . y=χj 3 C. y =2χ3 3、 1.指数式b c =a (b>0, b ≠ 1)所对应的对数式是 A . Iog C a=b4、 若 100a=5, 10b =2,则 2a b = B B .log c b=a C. Iog a b=C D . Iog b a=C 5、 若Xy = O ,那么等式.4x 2y 3 = -2xy.., y 成立的条件是 A 、X 0,y0 B 、X 0, y :: 0 C 、x ::0, y 0 D 6、 函数y= log I (2x -1)的定义域为 V 21 A .( — , +∞) B . : 1 , +∞ )2 7、若函数log 2(kx 2+4kx+3)的定义域为 K 丿B.卜3丿4 9、图中曲线是对数函数 C 3, C 4的a 值依次为G 4 3 1 A .虫丽弔 B . 10、函数 y=lg (A. X 轴对称 C . (a 0且 a = 1(D . y = χ3 -1((、X 0, y 01 C . ( , 1] D . (-∞, 1)2 R 则k 的取值范围是 p 3l 0,4 —P 巧y=log a x 的图象,已知1)的图象关于 1 X B . y 轴对称 C a 3 (DD . (-=0] 3,::aZ ,雳'1⅛四个值,则相应于.原点对称 C i ,.直线y =x 对称11、 若关于X 的方程5x =丿亠 有负根,则实数a 的取值范围是 __________________a -3 12、 当X 0时,函数y =(a 2-8)X的值恒大于1,则实数a 的取值范围是_C2,13、函数y =4x 2x 11的值域是 _____________________________a b11 14、设 2=5 = 10,贝U a b15、 函数y =a x ' ∙1 (a 0且1)的图象必经过定点 ________________________16、 若a a^ (a ∙ 0,a =1),则a 的取值范围是 _________________________ .20、若2x ⑷-4 =0,z =4x-2 4y • 5,求Z 的取值范围21、已知函数y =4x -3 2X ■ 3的值域为[7 , 43],试确定X 的取值范围117、函数 f (x ) =IIg x| ,贝U f (), 418、 已知a x ∙a 公=U ,其中a >0,XX(1) a 2 a ;(2)1f (丄),f (2)的大小关系是3X R ,试用U 将下列各式分别表示出来:3x3xa 2a 乏19、求 Iog 2.56.25也1⅛+ln e+21W 的值.作业1、下列函数一定是指数函数的是A 、 y = 2 1B 、 y = χ3C 、 y=3^x2、已知ab>0,下面四个等式中,正确命题的个数为a1①Ig ( ab ) =lga+lgb ②Ig =Iga -lgb ③ Ib2A . 0B . 13、已知 X= 2+1 U Iog 4 (3 A.-2D . 51 • 0 ,贝y a 、b 的关系是 3 1 v b v aB . 1 v a v bC . 0V a v b V 1若函数y =a x ∙m-1(a ∙0,a=1)的图象在第-A 、a 1B 、a 1 且 m :: 0C9、 函数y =(2)^^的单调递增区间是-X -6) C . 2等于x 3 5 B.—44、已知 m>0 时 10 =lg (10m ) 1+∣gm则X 的值为A . 2 5、6、A .7、1 5、已知 Iog a 3 Iog b3D . 0 V b v a v 1 三、四象限内,则(0 :: a 1且 m 0 D 、 0 ::④ lg ( ab )=—--Iog ab 10D 、(~4D . y = X 42,一 3,一 4,:'I 厂 3:::0 厂 40 :::〉1■■ 3:2 心 4:::0- -3:'3 厂 2:::0 - -4F 列函数中既是偶函数又是 4A . y = X 3= Ig- b2C . 0B . 1D .-1 33 5 5 a B . a C . 3 ((1≡ 1 - 9A 、(―汽十②)B 、(0,+°o) C (1,+c °)10、 如图1 — 9所示,幕函数y =x >在第一象限的图象, 比较Od 2—,1的大小( )< :2 < 1 < :4 ::: 1”:1 <:-1 :::1 - : I(-]0)上是增函数的是32B . y 二 X 2D 、 (0,1)A . B.C. D . 11、12、函数y=x∣x∣,x∙ R,满足( )A.奇函数是减函数B.偶函数又是增函数C奇函数又是增函数D.偶函数又是减函数13、若-1 :::X :::O ,则下列不等式中成立的是( )A、55x :: 0.5xB、5x:: 0.5x:: 5」C 5x:: 5」::0.5x D 0.5x::5「:5x14、下列命题中正确的是( ) A•当〉=0时函数y=x>的图象是一条直线B. 幕函数的图象都经过(0, 0)和(1, 1)点C若幕函数y=x>是奇函数,则y=x>是定义域上的增函数D•幕函数的图象不可能出现在第四象限15、____________________________________________________ 若xc2,则%∕x2—4x+4—|3—x|的值是_________________________________________________ .16、满足等式Ig (X- 1) +Ig (X-2) =lg2 的X 集合为_________________ 。
高一数学指对幂函数典型例题

(每日一练)高一数学指对幂函数典型例题单选题1、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b答案:A解析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ; 由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45;由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45. 综上所述,a <b <c .故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.2、函数y =log a (3x −1)(a >0,a ≠1)的图象过定点( )A .(23,1)B .(−1,0)C .(23,0)D .(0,−1) 答案:C解析:利用真数为1可求得定点的坐标.对于函数y =log a (3x −1)(a >0,a ≠1),令3x −1=1,可得x =23,则y =log a 1=0, 因此,函数y =log a (3x −1)(a >0,a ≠1)的图象过定点(23,0). 故选:C.3、函数f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0),满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[13,1)C .a ∈(0,13]D .a ∈[13,2) 答案:C解析:根据条件可知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ⩽1,解出a 的范围即可.解:∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,因为f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0)∴ {0<a <1a −2<0(a −2)×0+3a ⩽a 0,解得0<a ⩽13, ∴a 的取值范围是(0,13].故选:C .4、设2a =5b =m ,且1a +1b =2,则m =( )A .√10B .10C .20D .100答案:A解析:根据指数式与对数的互化和对数的换底公式,求得1a =log m 2,1b =log m 5,进而结合对数的运算公式,即可求解.由2a =5b =m ,可得a =log 2m ,b =log 5m ,由换底公式得1a =log m 2,1b =log m 5,所以1a +1b =log m 2+log m 5=log m 10=2,又因为m >0,可得m =√10.故选:A.5、函数y =ln (3−4x )+1x的定义域是( ) A .(−∞,34)B .(0,34) C .(−∞,0)∪(0,34)D .(34,+∞)答案:C解析:根据具体函数定义域的求解办法列不等式组求解.由题意,{3−4x >0x ≠0 ⇒x <34且x ≠0,所以函数的定义域为(−∞,0)∪(0,34). 故选:C。
幂函数、指数函数、对数函数专练习题(含答案)

高中数学对数函数、指数函数、幂函数练习题1.函数f (x )=x21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2.函数x y 2log =的定义域是A.(0,1]B.(0,+∞)C.(1,+∞)D.[1,+∞)3.函数y =A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)4.若集合{|2},{|xM y y N y y ====,则M N ⋂=A.}1|{≥y yB.}1|{>y yC.}0|{>y yD.}0|{≥y y5.函数y=-11-x 的图象是 6.函数y =1-11-x ,则下列说法正确的是A.y 在(-1,+∞)内单调递增B.y 在(-1,+∞)内单调递减C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减7.函数y =的定义域是A.(2,3)B.[2,3)C.[2,)+∞D.(,3)-∞ 8.函数xx x f 1)(+=在]3,0(上是 A.增函数B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9.的定义域是函数 )2(x lg y -= A.(-∞,+∞)B.(-∞,2)C.(-∞,0]D(-∞,1]10.的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=-11.21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 12.的定义域是函数xx x y -+=||)1(013.函数y =A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14.下列四个图象中,函数xx x f 1)(-=的图象是15.设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16.设a =20.3,b =0.32,c =log3.02,则Aa >c >bB.a >b >cC.b >c >aD.c >b >a17.已知点(39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x-=D.1()()2xf x =18.已知幂函数αx x f =)(的部分对应值如下表:则不等式1)(<x f 的解集是A.{}20≤<x x B.{}40≤≤x x C.{}22≤≤-x x D.{}44≤≤-x x19.已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.定义运算a ?b =?a ≤b ?,b ?a >b ?)),则函数f (x )=1?2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A?B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a 的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________. 三、解答题10.求函数y =211.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题 1、已知32a=,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为() A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于() A 、m n +B 、m n -C 、()12m n +D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是()A 、lg5lg7B 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于()A 、13B C D6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于()A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是()A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞9、若log 9log 90m n <<,那么,m n 满足的条件是() A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是() A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是()A 、12log (1)y x =+B 、2log y =C 、21log yx =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是()A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题13、若2log 2,log 3,m na a m n a+===。
指对幂函数测试题(含有答案)

实验中学指对幂函数测试题一、选择题:1.函数)1,0(≠>-=a a a a y x 的图像可能是( )A. B. C. D.2.设11{3,2,1,,1,2,3}23α∈----,则使幂y=x a 为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A. 1B. 2C. 3D. 43.某种产品今年的产量是a ,如果保持5%的年增长率,则经过x 年()x N *∈,当年该产品的产量y=( )A ()15y a x =+%B 5y a x =+%C ()115x y a -=+% D ()15xy a =+%4.若函数23()(23)m f x m x -=+是幂函数,则m 的值为 ( )A .1-B .0C .1D .25.函数x a a a x f ⋅+-=)33()(2是指数函数 ,则a 的值是( )A.1=a 或2=aB.1=aC.2=aD.0>a 或1≠a6.幂函数213112xy,x y ,x y ,x y --====在第一象限内的图象依次是图中的曲线( )A. 2134,,,C C C CB. 2314C ,C ,C ,CC. 4123C ,C ,C ,CD. 3241C ,C ,C ,C7.为了得到函数2log 1yx 的图象,可将函数2log yx 的图象上所有的点的( )A.纵坐标缩短到原来的12倍,横坐标不变,再向右平移1个单位长度 B.纵坐标缩短到原来的12倍,横坐标不变,再向左平移1个单位长度C.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度8.函数lg xy x=的图象大致是9.已知函数()2030x x x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是A .9B .19 C .9- D .19- 10.已知函数()f x 满足(2)(2)f x f x -=+,且21,(1,1],()1|2|,(1,3]m x x f x x x ⎧⎪-∈-=⎨--∈⎪⎩ 其中m>o .若方程3()f x x =恰有5个实数解,则m 的取值范围为( )A .158()3B .15(7) C .48(,)33D . 4(7)311.若幂函数()322233-+++=m mx m m y 的图像不过原点,且关于原点对称,则m 的取值是( )A .2-=mB .1-=mC .12-=-=m m 或D .13-≤≤-m12.函数)1,0(23≠>-=+a a a y x 的图像恒过定点A ,若点A 在直线1-=+nym x 上,且0,>n m ,则n m +3的最小值为 ( )A. 13B. 16C.2611+.D. 28.二、填空题:13.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于_____________ 14.函数2)23x (lg )x (f +-=恒过定点15.已知函数()10x f x =,且实数,,a b c 满足()()()f a f b f a b +=+,()f a +()f b +()f c =()f a b c ++,则c 的最大值为 .16.函数的递增区间是______.三、解答题:17.已知函数f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =λ·3ax – 4x 的定义域为[0,1]。
幂指对函数

幂函数.指数函数和对数函数练习题一、选择题:1. 下列命题中,真命题是()A、幂函数中不存在既不是奇函数,又不是偶函数的函数;B、如果一个幂函数不是偶函数,那么它一定为奇函数;C、图像不经过点)1,1(-的幂函数,一定不是偶函数;D、如果两个幂函数有三个公共点,那么这两个函数一定相同。
2.已知函数2()lg(f x x x=++,若()f a M=,则()f a-=()A.22a M- B. 22M a- C.22M a- D.22a M-3. 要得到函数xy212-=的图像,只需将函数xy⎪⎭⎫⎝⎛=41的图像()A、向左平移1个单位B、向右平移1个单位C、向左平移21个单位D、向右平移21个单位4.若函数)(xfy-=的图像经过第三、四象限,那么)(1xfy--=的图像经过()A、一、二象限B、二、三象限C、三、四象限D、一、四象限5.若函数()(1)(0,1)xf x a b a a=-+>≠的图像在第一、三、四象限,则必有()A、01,0a b<<>B、01,0a b<<<C、1,0a b><D、1,0a b>>6.要使函数12xy m+=+的图像不经过第二象限,则实数m的取值范围是()A、1m≤-B、1m<-C、2m≤-D、2m≥-7.设函数212log()y x x a=-+的定义域为R,则实数a的取值范围是()A、a R∈B、14a>C、14a≤D、14a≥8.函数()f x的图像与函数1()()2xg x=的图像关于直线y x=对称,则函数2(2)f x x-的单调递减区间是()A、[1,)+∞B、(,1]-∞C、(0,1]D、[1,2)9.函数1xxeye=+的值域是()A、(0,1)B、[0,]eC、[,)e+∞D、(,)(,)e e-∞+∞10.如果21122log(1)log2a aa a+++≤,则实数a的取值范围是()A、1(,)2+∞B、1(,)2-∞C、11(,)22-D、1(0,)211.函数lg(3)(),0,1axf x a a a-=>≠在定义域[1,1]-上是减函数,则实数a的取值范围是()A、(1,3)B、(1,)+∞C、(3,)+∞D、(0,1)二、填空题:12.函数(1)xy+=的定义域是。
高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学期末复习幂函数、指数函数和对数函数
1、若函数x
a a a y ⋅+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13
-=x y
3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c
4、若210,5100==b
a ,则
b a +2= ( ) A 、0 B 、1 C 、2 D 、3
5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0><y x D 、0,0<<y x
6、函数y =)12(log 2
1-x 的定义域为 ( )
A .(
21,+∞) B .[1,+∞) C .( 2
1
,1] D .(-∞,1) 7、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是 ( )
A .⎪⎭
⎫ ⎝⎛43,0
B .⎪⎭
⎫⎢⎣⎡43,0
C .⎥⎦⎤
⎢⎣⎡4
3,0 D .⎪⎭
⎫ ⎝⎛+∞-∞,43
]0,(
8、函数3
4
x y =的图象是 ( )
第9题 A . B . C . D .
9、图中曲线是对数函数y =log a x 的图象,已知a 取431
3,,,
3510
四个值,则相应于C 1,C 2,
C 3,C 4的a 值依次为 ( )
A .101,53,34,3
B .53,101,34,3
C .101,53,3,34
D .5
3
,101,3,34
10、 函数y =lg (x
+12
-1)的图象关于 ( )
A .x 轴对称
B .y 轴对称
C .原点对称
D .直线y =x 对称
11、若关于x 的方程33
5-+=
a a x
有负根,则实数a 的取值范围是_ ____________. 12、当0>x 时,函数x
a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.
13、函数12
41
++=+x x y 的值域是 . 14、设1052==b
a ,则=+b
a 11 。
15、函数11
+=-x a y )10(≠>a a 且的图象必经过定点 .
16、若43-->a a )1,0(≠>a a ,则a 的取值范围是 . 17、函数f (x )=|lg x |,则f (41),f (3
1),f (2)的大小关系是 18、已知u a a x
x =+-,其中a >0, R x ∈,试用u 将下列各式分别表示出来:
(1)2
2
x x a
a -+ ; (2) 2
32
3x x a
a -+.
19、求log 2.56.25+lg 100
1
+ln e +3log 122+的值.
20、若0442=-+y x , 5424+⋅-=y
x z , 求 z 的取值范围.
21、已知函数3234+⋅-=x
x y 的值域为[7,43],试确定x 的取值范围.
作业
1、下列函数一定是指数函数的是 ( ) A、1
2+=x y B 、3
x y = C 、x
y -=3 D 、x
y 23⋅=
2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg
b a =lg a -lg b ③b
a
b a lg )lg(212= ④lg (ab )=10log 1ab
A .0
B .1
C .2
D .3
3、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )
A .
23 B .45 C .0 D .2
1
4、已知m >0时10x =lg (10m )+lg m
1
,则x 的值为 ( )
A .2
B .1
C .0
D .-1
5、下列图像正确的是 ( )
A B C D
6、若log a b ·log 3a =5,则b 等于 ( ) A .a 3 B .a 5 C .35 D .53
7、5、已知03
1
log 31log >>b a
,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1
8、若函数)1,0(1≠>-+=a a m a y x
的图象在第一、三、四象限内,则 ( ) A 、1>a B 、1>a 且0<m C 、010><<m a 且 D 、10<<a
9、函数x
y -=1)
2
1(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(
10、 如图1—9所示,幂函数α
x y =在第一象限的图象,
比较1,,,,,04321αααα的大小( )
A .102431<<<<<αααα
B .104321<<<<<αααα
C .134210αααα<<<<<
D .142310αααα<<<<<
11、下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( )
A .y x =43
B .y x =32
C .y x =-2
D .y x
=-14
1α
3α
4α
2α
12、 函数R x x x y ∈=|,|,满足 ( ) A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数 13、若01<<-x ,则下列不等式中成立的是 ( ) A 、 x
x
x
5.055<<-B 、 x
x
x
-<<55.05 C 、x x
x 5.05
5<<- D 、 x x x 555.0<<-
14、下列命题中正确的是
( )
A .当0=α时函数α
x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点
C .若幂函数αx y =是奇函数,则α
x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限
15、若2<x ,则|3|442x x x --+-的值是_____ _____.
16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。
17、若y x x 25552
=⋅,则y 的最小值为__ ______.
18、 log a
3
2
<1,则a 的取值范围是 . 19、f (x )=)12(log 12+-x a 在(-2
1
,0)上恒有f (x )>0,则a 的取值范围 ___.
20、求函数 |
1|21-⎪
⎭
⎫
⎝⎛=x y 的定义域、值域.
21、已知1,2222
>=+-x x x ,求22x x --的值
22、已知函数2
222(log )3log 3x x y =-⋅+[1,2]x ∈的值域
答案:
1-5 CBDBC 6-10 CBACC
11、a<-3 12、a>3或者a<-3 13、()1,+∞ 14、1 15、()1,2a ∈ 16、a>1 17、11()()(2)43
f f f >> 18、2u + 2(1)u u +- 19、
13
2
20、()3,21- 21、[]2,3x ∈
1-5 CBBCB 6-10 CDBAC 11-14 CCBD
15、 -1 16、{3} 17、18-
18、1a a >2或者0<<3
19、(-1,2-)∪(1,2)
20、(],0,1R 原函数的定义域为原函数的值域为 21、-2
22、[]2,3-原函数的值域为
一.1. C 2. C 3 B 4. D 二.1. B 2. C 3. 4. 5. 6. 7. B 8. B 9. C 10. C 11. 12.
三 。
1 B 2. 3. 4. 5.
6. 7. A 8. 9. C 10. 11.
(奇偶性) 1. A 2. B 3. 4. C 5. D 6. 7. 8.C 9. C
(三)图像、定点 1. B 2. B 3. ()1,2 4. B 5.A 6. D 7.D。