最新初中数学全等三角形常见题目型训练基础测试卷
三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
全等三角形基础测试题

全等三角形基础测试题( 练习时间60分钟)班别姓名学号成绩(一) 精心选一选6小题(每小题4分,共24分)1、使两个直角三角形全等的条件是()A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等2、如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B =30°,则∠D 的度数为( ).A .50°B .30°C .80°D .100°3、如图,在△ABC 和△DEF 中,给出以下六个条件中:① AB=DE ;②BC=EF ;③AC=DF ;④∠A=∠D ; ⑤∠B=∠E ;⑥∠C=∠F 。
以其中三个作为已知条件, 不能判断△ABC 和△DEF 全等的是( )A .①⑤②B 、①②③C 、④⑥①D 、②③④4、下列说法中不正确的是( )A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等5、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( ) A .带①去 B .带②去 C .带③去 D .①②③都带去6、如图,∠B=∠C=90,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,∠MAB 的度数是( ) A .35° B .45° C .55° D .65°(二) 细心填一填6小题(每小题4分,共24分)7、如图示,AC ,BD 相交于点O ,△AOB ≌△COD ,∠A=∠C ,则其它对应角分别为______________________, 对应边分别为_____________________.8、已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有对全等三角形.9、△ABC 中,∠B =60°,∠C =80°,O 则∠OAC =______,∠BOC =________.10、将一张长方形纸片按如图所示的方式进行折叠,其中BC BD ,为折痕,则BCD ∠的度数为.OC BA第8题BD 第7题图ODACBABCE DF(第3题)DA BC M(第6题) O DCB A(第2题)11、EO =12= 13、(6分ACD ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中∴△ABD ≌△ACD ( )14、(6分)已知:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)15、(8分)已知:如图,点A 、E 、F 、C 在同一直线上,AD ∥BC ,AD=CB ,AE=CF 。
全等三角形基础测试卷及答案

全等三角形基础测试一、填空题1.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.2.如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= °.3.把两根钢条AA?、BB?的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。
8.如图5,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件,则有ΔAOC≌ΔBOC。
9.如图6,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF=10.如图7,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠ =∠或∥,就可证明ΔABC≌ΔDEF。
11.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AC=DF12.已知,如图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO(B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO13.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC 的哪三条线交点.()(A)高(B)角平分线(C)中线(D)垂直平分线已知14.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.15.下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F,AC=DF(B)AB=DE,BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F(D)AB=DE,△ABC的周长等于△DEF的周长16.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.(A)1个(B)2个(C)3个(D)4个1.如图,AB=DF,AC=DE,BE=FC,问:ΔABC与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。
中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。
中考数学复习《全等三角形》专项练习题-附带有答案

中考数学复习《全等三角形》专项练习题-附带有答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图,在△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB,若BC=7,BD=4,则DE的长为()A.5 B.4 C.3 D.26.如图,在△ABC中,点D在AC上,BD平分∠ABC,延长BA到点E,使得BE=BC,连接DE.若∠ADE=38°,则∠ADB的度数是()A.68°B.69°C.71°D.72°7.如图∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,若AD=3,BE=1则DE的长是()A.2 B.5C.3 D.428.如图,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED;②AC+BE=AB;③DA平分∠CDE;④∠BDE=∠BAC;⑤S△ABD:S△ACD=AB:AC.其中结论正确的个数有()A.5个B.4个C.3个D.2个二、填空题9.如图,已知OB=OC,若以“SAS”为依据证明△AOB≌△DOC,还需要添加的条件是.10.如图,在△ABC中,已知AD=DE,AB=BE,∠A=80°,则∠CED=度.11.如图,已知△ABC中BD、CE分别是∠ABC、∠ACB的平分线,BD、CE交于点O,∠A=70°则∠BOE=.12.如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠DAM=35°则∠MAB等于.13.如图∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.若AD=2.5cm,DE=1.7cm则BE= cm.三、解答题14.如图,AB=CD,DE⊥AC,BF⊥AC,点E,F是垂足,AE=CF,求证:(1)△ABF≌△CDE;(2)AB∥CD.15.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,且E为AB的中点.(1)求证:△ADE≌△BDE;(2)求∠B的度数.16.如图∠A=∠B,AE=BE点D在AC边上∠CED=∠AEB,AE交BD于点F.(1)求证:△AEC≌△BED;(2)求证:DE平分∠BDC.17.如图,已知△ABC,△ADE都是等腰直角三角形,连接BD,CE.(1)求证:△BAD≌△CAE;(2)若延长BD交CE于点F,试判断BF与CE的位置关系,并说明理由.18.如图,△ABC在平面直角坐标系中的位置如图,其中点A(0,a),点B(b,0)分别在x轴和y轴上,且a和b满足:|a−1|+(b+3)2=0,若点C在第四象限∠BAC=90°,且AB=AC.(1)请直接写出点A和点B的坐标;(2)求点C的坐标;(3)若AC交x轴于M,BC交y轴于D,E是线段AC上一点,且CE=AM,连DE,求证:AD+DE=BM.参考答案1.D2.D3.D4.A5.C6.C7.A8.A9.OA=OD10.10011.55°12.35°13.0.814.(1)证明:∵AE=CF∴AE+EF=CF+EF,即AF=CE又∵BF⊥AC,DE⊥AC∴∠AFB=∠CED=90°在Rt△ABF与Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)(2)证明:∵Rt△ABF≌Rt△CDE∴∠C=∠A∴AB∥CD15.(1)证明:∵DE⊥AB ∴∠AED=∠BED=90°∵E为AB的中点∴AE=BE在△AED和△BED中{AE=BE∠AED=∠BEDDE=DE∴△AED≌△BED(SAS)(2)解:∵△AED≌△BED∴∠B=∠DAE∵AD平分∠CAB∴∠CAD=∠DAE∵∠C=90°∴∠B+∠CAD+∠DAE=90°∴3∠B=90°∴∠B=30°.16.(1)证明:∵∠CED=∠AEB∴∠CED+∠AED=∠AEB+∠AED∴∴∠AEC=∠BED在△AEC和△BED中{∠A=∠BAE=BE ∠AEC=∠BED∴△AEC≌△BED(2)证明:∵△AEC≌△BED∴∠C=∠BDE,CE=DE∴∠C=∠EDC∴∠BDE=∠EDC∴DE平分∠BDC17.(1)证明:∵△ABC,△ADE都是等腰直角三角形∴AB=AC,∠BAC=∠DAE=90°,AD=AE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE在△BAD和△CAE中∵AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS)(2)解:BF⊥CE,理由如下:如图,设AC与BF交于点G∵△BAD≌△CAE∴∠ABD=∠ACE∵∠AGB=∠CGF∴∠BFC=∠BAC=90°∴BF⊥CE.18.(1)A(0,1)(2)解:如图1,过A作MN⊥BM于M,MN⊥CN于N∴∠M=∠N=90°∵∠BAC=90°∴∠MAB+∠ABM=90°=∠MAB+∠CAN∴∠ABM=∠CAN∵∠M=∠N=90°,∠ABM=∠CAN,AB=AC∴△ABM≌△CAN(AAS)∴AN=BM=1,CN=AM=3∴C(1,−2);(3)证明:如图2,过C作CF⊥AC,交y轴于F∴∠BAM=∠ACF=90°∵∠BAC=90°∴∠ABM+∠BAO=90°=∠CAF+∠BAO∴∠ABM=∠CAF∵∠BAM=∠ACF=90°,∠ABM=∠CAF,AB=AC ∴△ABM≌△CAF(AAS)∴AF=BM,AM=CF=CE∵∠BAC=90°,且AB=AC.∴∠ACB=45°=∠DCF∵CF=CE,∠ACB=∠DCF,CD=CD∴△CDF≌△CDE(SAS)∴DF=DE∴BM=AF=AD+DF=AD+DE∴AD+DE=BM.。
全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
人教版数学八年级上册【全等三角形】基础测试题+答案

基础巩固
1.下列说法中,不正确的是( ). A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形 C.形状、大小都相同的两个三角形是全等三角形 D.能够完全ABD≌△BAC,B,C 和 A,D 分别是对应顶点,如果 AB=4 cm, BD=3 cm,AD=5 cm,那么 BC 的长是( ).
A.5 cm B.4 cm C.3 cm D.无法确定
3.如图所示,△ABC≌△ADC,∠ABC=70°,则∠ADC 的度数是( )
A.70°B.45° C.30° D.35° 4.如图所示,△ABC 与△DBE 是全等三角形,即△ABC≌△DBE,那么图中相等的 角有( )
A.1 对 B.2 对 C.3 对 D.4 对 5.如图所示,△ABC 与△DEF 是全等三角形,即△ABC≌△DEF,图中相等的线段 有( ).
4.D 点拨:因为△ABC≌△DBE,根据全等三角形的对应角相等,得∠A=∠D,∠C =∠E,∠ABC=∠DBE. 又由∠ABC=∠DBE, 得∠ABC-∠DBC=∠DBE-∠DBC, 即∠ABD=∠CBE. 5.D 点拨:由全等三角形的对应边相等得三组对应边相等, 即 AB=DE,AC=DF,BC=EF. 又由 BC=EF,得 BC-CF=EF-CF, 即 BF=EC.
参考答案
1.A 点拨:选项 A 中,形状相同的两个图形,大小不一定相同,所以不一定是 全等形.选项 B、C、D 均正确,只要两个图形形状、大小相同,放在一起能够完 全重合,它们一定是全等形.全等三角形是全等形的特殊情形. 2.A 点拨:因为△ABD≌△BAC,所以 BC=AD=5 cm. 3.A 点拨:因为△ABC≌△ADC,所以∠ADC=∠ABC=70°.
最新全等三角形经典题型50题(含答案)

最新全等三角形经典题型50题(含答案)连接CF,BD。
因为AC平分∠BAD,所以∠CAE=∠CAD。
又∠CEB=90°,所以∠BEC=∠BAE。
因为EF=EB,所以∠XXX∠XXX。
所以∠XXX∠BAE+∠XXX∠CAE+∠BEF=∠CAF。
所以三角形BCF和三角形CAF全等。
所以CF=AC。
又因为∠B+∠D=180°,所以∠XXX∠BAC。
所以三角形BDC和三角形BAC相似。
所以XXX。
又∠CAE=∠CAD,所以三角形CAE和三角形CAD相似。
所以XXX。
因为CE⊥AB,所以CE=BD。
所以AE/AD=BD/CD。
所以AE/AD=AB+BD/CD。
所以AE/AD=AB/CD+BD/CD。
所以AE/AD=AB/AC+BD/AC。
所以AE/AD=AB+BD/AC。
所以AE=AD+BE。
AF=AB又因为,∠ABE=2∠C,∠XXX∠BAC-∠CAE=3∠C-90,∠ABF=180-∠ABE-∠BAF=5∠C-90所以,∠XXX-∠ABF=2∠C-90,∠BEF=180-∠ABE-∠FBE=3∠C因此,△XXX和△ABC相似所以,BE/AB=EF/BC,即BE=(AB×EF)/BC又因为,AC=AB+BC,所以AC-AB=BC所以,AC-AB=BC=(AB×EF)/BE=2BE所以,PC-PB<AC-AB成立。
AB=AF。
BF=2BE。
∠XXX∠ABC-∠ABE=3∠C-2∠C=∠CBF=CFAC-AB=AC-AF=CF=BF=2BE已知AB为线段,其中E为中点,AF=BD=5,AC=7,求DC。
作AG∥BD,交DE延长线于G。
因为AGE全等于BDE,所以AG=BD=5.又因为AGF∽CDF,所以AF=AG=5.所以DC=CF=2BE=2A。
在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC。
延长AD至H交BC于H,BD=DC。
所以∠XXX∠DCB,∠1=∠2.DBC+∠1=∠DCB+∠2,∠XXX∠XXX。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学全等三角形常见题目型训练基础
测试卷
初中数学全等三角形常见题型训练基础测试卷
一、单选题(共4道,每道25分)
1.如图,在AB、AC上各取一点D、E,使得AE=AD,连接CD、BE相交于点O,再连接AO.若∠CAO=∠BAO,则图中全等三角形共有()
A.3对
B.4对
C.5对
D.6对
2.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若
∠1=∠2=∠3,AC=AE。
求证:△ABC≌△ADE.
证明:∵∠1=∠2=∠3
∴∠1+∠DAC=∠2+∠DAC
即∠BAC=∠DAE
又∵∠3=∠B+ ,∠2=∠B+
∴∠E=∠C
在△ABC和△ADE中
∴
①∠DAC,②∠E,③∠C,④,⑤,⑥△ABC≌△ADE(ASA),⑦△ABC≌△ADE(AAS), 以上空缺处依次填写正确的顺序为()
A.①②⑤⑦
B.②③⑤⑦
C.①③④⑥
D.②③④⑥
3.如图,四边形ABCD为正方形,∠ABE=∠DCE=90°,AB=BC=CD=AD,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,∠ABF=∠CBF,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.
解:垂直.理由如下:
在△ABF与△CBF中
∴
∴∠BAF=∠BCF
在Rt△ABE和Rt△DCE中
∴
∴∠BAE=∠CDE
∴∠BCF=∠CDE
∵∠CDE+∠DEC=90°
∴∠BCF+∠DEC=90°
∴DE⊥CF
①,②,③,④
,⑤Rt△ABE≌Rt△DCE(HL),⑥△ABE≌△DCE(SAS),⑦△ABF≌△CBF(SAS),⑧△ABF≌△CBF(SSS), 以上空缺处依次填写正确的顺序
为()
A.①⑦④⑥
B.②⑧③⑤
C.①⑦③⑤
D.②⑧④⑥
4.如图,四边形ABCD中,AB=CD,BC=AD.求证:∠A=∠C.
证明:如图,_________________
在△ABD和△CDB中
________________
∴________________
∴∠A=∠C(全等三角形对应角相等)
①作直线BD,②连接BD,③作射线
BD,④,⑤,⑥△ABD≌△CDB(SSS),⑦△ABD≌△BCD(SSS),⑧△ABD≌△CDB(SAS), 以上空缺处依次填写正确的顺
序为()
A.②⑤⑥
B.②⑤⑦
C.①⑤⑧
D.②⑤⑧。