《月历中的数学问题》教学设计

合集下载

月历中的数学问题

月历中的数学问题
28 29 30 31
(4)这个结论对于任何一个月的月历 都成立吗?
活动三:验证规律
(1)月历中数的排列规律是什么?
12 3456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
行:从左往右,依次大1 列:从上往下,依次大7
2.如果框出的9个数的和为100,求 正中心的数是多少?
3.和为216的9个数有吗? 思考:你的答案是否合理,为什么?
活动五:知识拓展
如图的10×5(行×列)的数阵,是 由一些连续奇数组成的.
若用如图所示的平行四边形框出四 个数:
(1)设框中的第一行
第一个数为x,用含x
的代数式表示另外三
个数;
(2)若这样框出的 四个数的和是200, 求出这四个数; (3)能否框出这样 的四个数,它们的和 为256,为什么?
(2)设3x3的方框中正中心的数为X, 那么其他8个数用含X的代数式 怎么表示?这9个数的和是多少?
12 3456
7 8 9 10 11 12 13
14 15 16 17 18 196 27
28 29 30 31
在某月历表中用3X3的方框框出9个数:
1.如果框出9个数的和为90,你能 求出这9个数吗?
教育部审定2012人教版
七年级数学上册第二章数学活动
主讲人:湖北省应城市西河中学 鲁红
游戏规则:
1:在月历表中任意画一个3X3的正 方形框。 2:圈出正中心的数并计算出框中9 个数的和,记录下来。 3:学生说正中心的数是多少,让老 师猜正方形框中9个数的和是多少。
活动二:探究规律
(1)下图是某月的月历,方框中的 9个数的和与方框中正中心的数有什 么关系?

人教版七年级数学上册第二章数学活动《月历中的数学问题》教学设计GY

人教版七年级数学上册第二章数学活动《月历中的数学问题》教学设计GY

人教版七年级数学上册第二章数学活动《月历中的数学问题》教学设计教学目标:1、知识技能:经历探究月历中的数学奥秘的过程,进一步巩固用字母表示数、用字母表示规律,积累综合运用数学知识、技能和方法解决简单问题的经验。

2、问题解决:通过动手操作、观察、猜想、归纳等数学活动,能够从数学的角度发现和提出问题,综合运用所学过的知识和已有的知识经验,去解决新的数学问题,学会与他人合作交流。

3、情感与态度:通过设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;在合作交流的过程中,分享和积累数学活动经验,体会数学的应用价值。

认识知识来源于生活,体会数学就在身边,能积极参与到课堂讨论中去,体验数学学习的乐趣,增强学数学的兴趣和信心。

教学重点:用正方形框出的数与数之间的规律,学会用字母表示它们之间的规律。

教学难点:用字母表示规律,并运用发现的规律解决问题教学策略分析:1、积极引导学生参与发现规律,让学生自己通过观察、思考、猜想、验证等过程,完全参与到教学过程中,体会数学学习的乐趣。

2、重视知识之间的联系,学生已经学会了用字母表示数,通过这节课体会从一般到特殊和从特殊到一般的过程,体会建立模型来解决问题的数学思想。

3、整个教学过程采用“问题情境---数学建模---解释运用---联系拓展”的结构来进行,充分让学生从数学的角度发现和提出问题,并综合运用所学过的知识和已有的知识经验,去解决新的数学问题。

学情分析:通过前一阶段的学习,学生已经学习了“有理数的运算”“整式的加减”等相关知识,已经具备了初步的数学符号表达能力,本节是特意为学生提供一个创新思维空间,让学生经历“探索规律”的活动过程。

通过对生活中日历的观察与分析,从不同角度进行思考,用学过的字母表示数、代数式等知识去探索日历中数与数之间的变化规律;再用去括号、合并同类项等知识去验证规律。

然后将问题拓展到数阵中的问题,用从日历中探索到的方法进一步探索规律,从而解决问题。

2024年日历中的数学教学设计(精选5篇)1

2024年日历中的数学教学设计(精选5篇)1

2024年日历中的数学教学设计(精选5篇)日历中的数学教学设计1一、引入课题日历已经是我们日常生活、生产中必不可少的工具,我们聪明的祖先,在上千年前就根据日月星辰的变化规律,制定了这个记载时间流逝的工具。

今天,就让我们一起来探索日历中的规律吧!二、观察月历,规律分类通过观察月历,我们发现月历中所呈现的规律特别多,但归纳起来,大体可以分为以下几种类型:1横向型2.纵向型3.左上到右下型4.左下到右上型5.综合型,比如“工”字型,“ 3×3”方框型等。

三、观察月历,探索规律1.横向型如图所示,如果我们横向圏定三个数字,它有什么规律呢?因为横向是一列连续的正整数,所以后边的数总比前边的数大1。

若前面的数是16的话,则中间的数为17,最后面的数是18,若换成字母,中间数为X,则前一个数为X-1,后面一个数为X+1。

三个数的和为中间一个数的3倍。

2.纵向型如果我们纵向圏定三个数字,它有什么规律呢?因为纵向是不同周次的同一天,所以下边的数总比上边的数大7。

若中间的数是8的话,则上面的数为1,下面的数是15,若换成字母,中间数为X,则上面的数为X-7,下面的数为X+7。

三个数的和为中间一个数的3倍。

3.左上到右下型如果我们从左上到右下圏定三个数字,它有什么规律呢?显然,左边的数字总比右边的数字小1,上边的数字又总比下边的数字小1,所以右下的数总比左上的数大8。

当然,我们也可以这样思考,上面的数总比下面的数小7,左边的数总比右边的数小1,所以右下的数总比左上的数大8。

三个数的和为中间一个数的3倍。

若中间的数是9的话,则左上的数为1,右下的数是17,若换成字母,中间字母为X,则左上的数为X-8,右下数为X+8。

4.左下到右上型如果我们从左下到右上圏定三个数字,它又有什么规律呢?显然,左边的数总比右边的数小1,下面的数又总比上面的数大7,所以,右上的数总比左下的数小6。

我们也可以这样去理解,下面的数总比上面的数大7,左边的数又总比右边的数小1,所以,右上的数总比左下的数小6。

月历中的数学问题教学文案

月历中的数学问题教学文案

月历中的数学问题月历中的数学问题教学内容:七上教科书第73页“数学活动3”。

教学目标:1、经历观察、探究月历表的过程,发现月历表中数与数之间的规律;2、经历用整式表达所发现的规律的过程,体会式子比数字更具有一般性的事实;3、会合理的设未知数,列方程,正确求解方程并判明解的合理性。

4、通过对月历中规律的拓展,让学生认识到我们探索的一些规律和解决问题的方法具有广泛的应用。

教学过程:一、观察“月历表”,了解信息。

二、探索月历表中的规律1、出示“学习要求” (1)在自己的月历表上找一找,数与数之间有什么样的规律?(2)找好的同学跟自己组里的同学合作交流,看看你们找的规律一样吗?2、全班交流(根本的规律是横着从左往右依次大一,竖着从上往下依次大7。

)(设计意图:让学生先自主探究规律,再小组合作交流,让学生发挥学习的自主能动性,然后通过教师小结,让学生认清月历中最根本的规律即横着从左往右依次大一,竖着从上往下依次大7.)三、运用规律解决问题。

1、猜一猜“?”表示的是几号。

观察这张2015年12月的月历,你能从表上得到哪些信息? 月历表中可以得到很多的信息,其中月历上数的排列也是有规律的,里面包含着许多与数学有关的问题。

这节课我们就来探索这些数学问题。

(揭示课题:月历中的数学问题) (设计意图:这里设计观察月历表是想让学生将数学与生活联系起来,同时揭示课题。

)2、求几个数的和用一个方形框子圈出月历表上的9个数,老师能一口报出这9个数的总和是多少。

你们也能一口报出这9个数的总和是多少吗?(1)探求“奥秘”,得到计算它们的总和的简便方法:中间数×9。

(2)如果将方框移动位置,多试几次,这一规律还适用吗?这一规律具有普遍性,怎样证明?引导学生设中间一个数为x,再用含x的整式表示其它各数。

(3)用下列框子在月历中框出一些数,如何用含x式子表示它们?反过来,如果我们知道月历表中按一定规律排列的几个数的和,能求出这些数吗?3、已知几个数的和求这几个数张华同学连续四个星期六去参加社区组织的公益劳动,他只告诉我们这四天日期数字的和为70,请你帮他求出他参加公益劳动的第一个星期六是几号?完成后思考:这四天日期数字的和能为40吗?能为86吗?(设计意图:在前一个环节的基础上,体验运用方程解决实际问题的过程;通过进一步设问思考,让学生经历正确求解方程后还要检验方程解的合理性。

数学课件月历中的数学问题

数学课件月历中的数学问题

数学课件月历中的数学问题在数学课件月历中,数学问题起到了重要的作用。

通过每天的数学问题,学生可以巩固课堂上所学的知识,提高数学思维能力,并增强对数学的兴趣。

本文将介绍数学课件月历中数学问题的设计与优化方法,以及其在数学教学中的重要作用。

一、数学课件月历中的数学问题设计原则在设计数学课件月历中的数学问题时,应遵循以下原则:1. 知识点覆盖:数学问题应涵盖当前所学知识点,既能够复习已学内容,又能够引导学生扩展思维,探索新的数学概念。

2. 难易适中:数学问题的难度应根据学生的年级和能力水平来确定,既不能过于简单,也不能过于难解。

难度适中的问题能够激发学生解决问题的兴趣,同时又不至于让他们感到过于挫折。

3. 多样性:数学问题的设计应多样化,不仅涉及经典的计算题和代数题,还可以包含几何题、概率题等不同类型的问题,以培养学生的综合解题能力。

4. 目标明确:每个数学问题都应该有明确的目标和解题方法,学生能够通过思考和计算得出准确的答案。

同时,问题的解题过程也应该能够展示出数学思维的逻辑性和连贯性。

二、数学课件月历中的数学问题设计实例下面是一些在数学课件月历中常见的数学问题设计实例:1. 日历相差问题:给出两个日期,要求计算它们之间相隔的天数。

2. 解方程问题:给出一个简单的一元一次方程,要求学生解出其中的未知数。

3. 几何图形面积问题:给出一个几何图形,让学生计算其面积。

4. 数列问题:给出一个数列的前几项,要求学生找出其中的规律,并计算出后面几项的数值。

5. 按比例画图问题:给出一个图形的尺寸比例,要求学生按照比例在纸上画出图形。

三、数学课件月历中的数学问题的重要作用数学课件月历中的数学问题具有以下重要作用:1. 复习与巩固:数学问题为学生提供了复习和巩固已学内容的机会,通过不断解决问题,学生能够将知识转化为技能,并在实践中加深对知识的理解和记忆。

2. 提高解题能力:通过数学问题的解答,学生能够提高解题的技巧和方法,培养数学思维的灵活性和逻辑性,从而更好地解决各种数学问题。

七年级数学上册《月历中数学》优秀教学案例

七年级数学上册《月历中数学》优秀教学案例
3. 设计不同难度层次的问题,使学生在解决问题的过程中,逐步掌握日期推算的方法。
(三)小组合作
1. 将学生分成若干小组,每组学生共同探讨月历中的数学规律,培养学生的合作精神和团队意识。
2. 教师引导小组进行讨论,鼓励学生发表自己的观点,倾听他人的意见,提高学生的沟通能力。
3. 小组内共同解决实际问题,总结规律,促进学生对数学知识的理解和应用。
二、教学目标
(一)知识与技能
1. 理解年、月、日的关系,掌握平年和闰年的判断方法。
2. 学会使用月历进行日期推算,并能解决实际问题,如计算某一日期是星期几,某一月份有多少天等。
3. 能够运用所学的数学知识,发现月历中的规律,如星期周期性、月份天数分布等。
4. 培养学生的观察能力、逻辑思维能力和问题解决能力,提高数学素养。
4. 教师巡回指导,参与学生的讨论,适时给予提示和引导。
(四)总结归纳
1. 教师邀请各小组代表汇报讨论成果,总结月历中的数学规律。
2. 教师针对学生的回答进行点评,补充讲解,确保学生对知识点的掌握。
3. 教师引导学生反思本节课的学习过程,总结自己在小组合作中的表现,提高自我认知能力。
4. 教师对本节课的知识点进行总结,强调重点和难点,巩固学生的学习成果。
(四)反思与评价
1. 教师在课堂上及时给予学生反馈,指导他们总结规律,提高问题解决能力。
2. 鼓励学生自我反思,总结自己在探究过程中的收获和不足,提高自我认知能力。
3. 设计评价表,让学生对同伴在小组合作中的表现进行评价,培养他们的评价能力和批判性思维。
4. 教师对学生在课堂上的表现进行全面评价,关注学生的知识与技能、过程与方法、情感态度与价值观等多方面的发展。
月历是学生日常生活中常见的事物,他们每天都会接触到。通过观察月历,学生可以直观地感受到时间的变化,同时发现其中蕴含的数学规律。本案例将引导学生运用所学数学知识,对月历中的日期、星期、月份等进行探究,培养他们的观察能力、逻辑思维能力和问题解决能力。

月历中的数学

月历中的数学

月历中的数学一、教材分析:1.教材的地位和作用:《月历中的数学》是苏科版七年级上册第三章《代数式》中的数学活动,本课通过创设学生熟悉的“月历”这一情境,培养学生的观察能力,探索月历中的数字的排列规律,引导学生用字母表示数,发现规律,验证规律,实现从特殊到一般的质的飞跃。

从实际问题中抽象出数量关系,并用数学方法加以解决,这一思想贯穿数学学习的始终,对后续学习具有一定的铺垫作用。

2.教学目标:㈠知识与技能目标学生能发现月历中的数字的排列规律,会用字母表示规律,验证规律,并灵活运用规律解决问题。

㈡过程与方法目标在探索活动中,体验建立数学模型,发展学生观察、猜想、推理、验证、归纳、运用的能力及由特殊到一般的数学思想。

㈢情感与价值目标1.体会数学与生活的联系,感受到生活中处处有数学。

2.培养学生发散思维,培养学生良好的思维习惯。

3.教学重难点:教学重点:观察日历,建立数学模型,发现规律,验证规律,应用规律。

教学难点:1.用字母表示数,发现规律,验证规律;2.应用规律;已知几个数的和,判断能否在月历中框出要求形状的这些数。

二、教法分析:本课以“探究式”体验教学法和“启发式”教学法为主进行教学。

让学生在精心创设的情境中,在教师的引导启发下,通过探究发现,主动构建问题、探索问题和解决问题,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。

教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。

同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

三、学法分析:学情分析:学生已学习过代数式,对字母表示数已经有了初步的认识。

已经初步掌握了用字母表示数的方法、具有一定的探究规律的能力。

对月历中的数学的学习有一定的兴趣和积极性。

但对月历中规律的认识比较肤浅,将问题抽象成数学模型的能力,全面探究问题的能力等方面的发展不够均衡。

学法指导:让每一个学生自主参与整堂课的知识构建,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学” 。

初一数学(人教版)月历中的数学问题-1教学设计

初一数学(人教版)月历中的数学问题-1教学设计
月历中的数学问题教学设计
课程基本信息
课例编号
学科
数学
年级

学期
秋季
课题
月历中的数学问题
教科书
书名: 数学 七年级 上册
出版社: 人民教育出版社 出版日期: 2012 年 6月
教学人员
姓名
单位
授课教师
指导教师
教学目标
教学目标:用整式表示出月历中不同位置上的数字的一般表达式,并探寻一些规律.
教学重点:用整式表示月历中的数量关系,掌握从特殊到一般的探究方法.并尝试从不同角度探究问题,培养应用意识和创新意识.
数缺形时难以直观,形缺数时难以入微,数形结合刚刚好. 所以我们可以从“形”的角度来研究“数”.大家是否可以这样思考?(1)用一个长方形的方框框一些数来研究:第一个问题①框几个数?4个?6个?9个?……第二个问题:②研究什么?这些数之和?之差?或者相等关系?倍数关系?……(2)另外,我们还可以尝试换一个别的图形框框一些数来研究,比如十字行,回字形,工字形,H形…….
分析月历的行与列
月历中到底有什么样的数学知识呢?这是一些什么样的数?通过观察,我们发现月历中的这些数有序的排成了“行”与“列”.我们怎么开始研究呢?
1.关于“行”的思考?(1)这里一共有多少行?(2)同一行这些数是怎么排列的?从左往右,数字依次递增1.(3)同一行这些数中最大的和最小的数是谁?除此以外,我们还可以提出一些关于“行”的问题.比如(4)同一行所有数的和是多少?……怎样来表述我们研究的成果呢?
2.关于“列”的思考?(1)这里一共有多少列?(2)同一列这些数是怎么排列的?从上到下,数字依次递增7.(3)同一列这些数中最大的和最小的数是谁?同样,除此以外,我们还可以提出一些关于“列”的问题.比如(4)同一列所有数的和是多少?……比较列的探究与行的探究,我们还可以怎样来开展研究呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计方案
2829303121222324252627
1415161718192078910111213
6
34521教学活动2 1. (游戏导入)玩一玩 如图是一张某年某月的月历
学生:任意按横排或竖排圈出三个日期,报出这三个日期之和 老师:准确说出这三天分别是几号
教学活动3 探究活动1
如图是某月的月历.问题:
1) 带阴影的方框中的9个数之和是多少?
2)与方框正中心的数有什么关系?
教学活动4 探究活动2
问题2:如果将带阴影的方框移至下图的
位置,问题1中的关系还成立吗?
教学活动5
探究活动3(小组合作)
问题3:不改变带阴影的方框的大小,将方框移动几个
位置试一试,你能得出什么结论?你能证明这个结论吗?
教学活动6 小结
1、探究月历中数之间的关系,先考虑什么问题?
2、利用字母表示数,如何设字母更简便?
3、应用了什么数学知识进行化简得出一般的规律?
4、探究过程中使用了哪些数学思想方法?
教学活动7
课堂练习
1、如图1,如果带阴影的方框里的数是4个,你能得出什么结论?
2、如图2,对于带阴影的框中的4个数,又能得出什么结论?
教学活动8
课外作业
1、若干个偶数排列如图所示,探究框中数之间的关系。

相关文档
最新文档