圆的面积教案

合集下载

《圆的面积》教学设计(优秀7篇)

《圆的面积》教学设计(优秀7篇)

《圆的面积》教学设计(优秀7篇)《圆的面积》教学设计篇一一。

教材内容:本节课内容是求圆的面积二。

教学目标:知识目标:⑴引导学生通过观察了解圆的面积公式的推导过程⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题。

能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

三。

教学重点难点:重点:圆的面积公式的推导过程以及圆的面积公式的应用。

难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

四。

教学流程1.复习迁移,做好铺垫师问:(1)长方形面积公式(2)平行四边形面积公式师:平行四边形面积公式的求法是借住谁来推导出来的?2.创设情景,引入课题用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?问题:(1) 小牛能够吃草的最大面积是一个什么图形?(2)如何求圆的面积呢?3.师生互动,探索新知(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?(2)让学生动手操作:教师将课前准备好的圆分给各小组(前后四人为一组)。

请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

(3)让学生转化的过程进行展示。

(略)(多组学生展示)(4)用多媒体进行验证。

让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

(5)引导归纳:思考1:既然圆的面积无限接近于长方形。

那么我们如何根据长方形的面积来推导圆的面积公式呢?思考2:长方形的长、宽与圆有什么关系呢?再次多媒体展示动画。

圆的面积教学设计教案(精选7篇)

圆的面积教学设计教案(精选7篇)

圆的面积教学设计教案(精选7篇)圆的面积教学设计教案(精选7篇)作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么大家知道正规的教案是怎么写的吗?下面是由给大家带来的圆的面积教学设计教案7篇,让我们一起来看看!圆的面积教学设计教案(精选篇1)教学目标1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点圆面积的计算公式推导和运用。

课前准备一个大圆、剪刀、小正方形。

课时安排:1课时授课人授课时间教学过程一、复习引入,导入新课。

教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。

学生说出自己的见解。

教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎样表示?学生做出回答。

教师引导交流:圆的周长和直径、半径有关。

大家猜想一下,圆的面积与谁有关?二、探索尝试,解释交流。

教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。

大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?全班汇报交流:谁想先来展示一下?(学生回答)教师引导交流:你能让平行四边形的底再直一点吗?学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。

学生领悟:多分几份,平行四边形的底就会直一些。

教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。

教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?师:这样就把求圆转化成了求长方形。

圆的面积教案(优秀7篇)

圆的面积教案(优秀7篇)

圆的面积教案(优秀7篇)圆的面积课堂教学设计篇一教材分析:圆是小学数学平面图形教学中唯一的曲线图形。

本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。

教材将理解“化曲为直”的转化思想在活动之中。

通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。

学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。

学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。

所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。

教学目标:1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。

3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学过程:一、回顾旧知,引出新知1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。

2、学生回答后老师让学生上前展示自己的方法二、创设情境,提出问题1、教师引导观察,说说从中得到那些数学信息?2、老师引导,找出与圆的面积有关的数学问题。

3、学生回答,老师板书(圆的面积)三、探究思考,解决问题1、让学生估计圆的面积大小(1)与同桌说一说你是怎么估的(2)汇报,(3)老师引导有没有更好的方法2、探索圆面积公式(1)学生操作(2)指名汇报。

(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。

)(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?(5)观察汇报:由长方形的面积公式推导圆形的面积计算公式,并说出你的理由。

圆的面积教案(通用6篇)

圆的面积教案(通用6篇)

圆的面积教案(通用6篇)圆的面积教案篇1教学目标:1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

教学重难点:重点:圆的面积计算公式的推导和应用。

难点:在推导圆的面积的过程中理解极限思想(把一条曲线变成一条直线)。

教学准备:教具:多媒体课件、面积转化教具。

学习工具:书籍、计算器、16个教具、作业纸。

教学过程:一、创设情境、揭示课题1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。

从图中,你知道了哪些信息?(复习圆的相关特征)师:那马最多能吃多大面积的草呢?师:圆所围成的平面的大小就叫做圆的面积。

老师:今天我们将继续学习圆的面积。

(透露话题)2、师:你想研究它的哪些问题呢?(引导学生提出疑问)【设计意图:在教学过程的开始,用这个生活中的数学问题来引入新课的学习,既能引起学生的学习兴趣,又能为后面的圆区域的学习打下基础,让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。

】二、猜想验证、初步感知1、实验验证(1)师:猜一猜,圆的面积可能会和它的什么有关系?师:你觉得圆的面积大约是正方形的几倍?(2)师:对我们的估计需要进行?生:验证。

师:用什么方法验证呢?师:下面请大家先数数圆的面积是多少。

师:数起来感觉怎么样?有没有更简洁一点的方法?(引导学生发现可以先数出个圆的方格数,再乘4就是圆的面积)让学生在图1中数数,用计算器计算并填写表格中的第一行。

)圆的半径(cm)圆的面积(cm2)圆的面积(cm2)正方形的面积(cm2)圆的面积大约是正方形面积的几倍(精确到十分位)(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。

圆的面积教案优秀3篇

圆的面积教案优秀3篇

圆的面积教案优秀3篇《圆的面积》教学设计篇一教学目标:1、引导学生推导出圆面积的计算公式,能运用公式灵活的计算,已知圆的半径、直径,求圆的面积。

2、在圆面积公式的推导过程中,通过猜测、观察、对比、发现、尝试等数学方法,探索圆面积的计算公式,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。

3、使学生感受圆的面积的奥秘,培养学生学习数学的兴趣,并将所学知识运用于生活实际。

教学过程:一、创设情境,导入新课。

课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?师:现在你想提什么数学问题?——揭示课题:圆的面积二、探索合作,推导公式。

1、认识圆的面积师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?出示结语:圆所占平面的大小叫做圆的面积[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。

]1、估算圆的面积师:圆的面积有多大呢?我们先来估计一下吧。

如图所示:以这个圆的半径r为边画一个小正方形。

提问:小正方形的面积怎样表示?(板书:r2)大正方形的面积又怎样表示?如果用r 来表示大正方形的面积又如何表示?(4 r2)那么,认真观察一下,与大正方形比,圆的面积与大正方形有什么关系?(老师把学生答案写在黑板上。

)师:很显然,这个圆的面积小于<4 r2.这个估计只能是个大概,要准确地求出圆的面积,还必须找到科学的方法。

[设计意图:巧设估算圆的面积这个环节,使学生对圆面积与r2的倍数关系,获得十分鲜明的表象,让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。

]3、积极动脑,讨论推导方法回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?——引导转化[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。

圆的面积教案优秀5篇

圆的面积教案优秀5篇

圆的面积教案优秀5篇《圆面积公式推导》教学设计篇一圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,教学中我是这样设计的:一、导学激趣,以旧促新。

本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。

但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。

二、大胆猜测,激发探究。

在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。

当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。

这一内容是旧教材所没有的。

学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

三、直观演示,加深理解。

当学生通过估测后,让学生来做个实验讨论。

每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。

这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。

通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。

这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。

学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。

圆的面积教学设计(优秀7篇)

圆的面积教学设计(优秀7篇)

圆的面积教学设计(优秀7篇)圆的面积教案篇一教学目的:通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

重点:圆面积计算公式。

难点:圆面积计算公式的推导。

教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

教学过程:一、复习。

1.口算:2.已知圆的半径是2.5分米,它的周长是多少?3.一个长方形的长是6.2米,宽是4米,它的面积是多少?4.说出平行四边形的面积公式是怎样推导出来的?我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

(板书课题:圆的面积)二、新授。

1.圆的面积的含义。

问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。

)以前学过长方形面积的含义是指长方形所围成平面的大小。

那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。

)2.圆的面积公式的推导。

怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。

但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。

怎样分割呢?教师拿出圆的面积教具进行演示:先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。

(学生试操作,把学具圆拼成一个平行四边形。

)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

向学生说明:如果分的等份越多所拼的图形就越接近长方形。

教师边提问边完成圆面积公式的推导:拼成的图形近似于什么图形?原来圆的面积与这个长方形的。

面积是否相等?长方形的长相当于圆的哪部分的长?长方形的宽是圆的哪部分?长方形的面积=长×宽圆的面积= ×= ×= ×=用S表示圆的面积,那么圆的面积可以写成:3.圆面积公式的应用。

圆的面积数学教案

圆的面积数学教案

圆的面积数学教案圆的面积数学教案【精选5篇】在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,下面给大家分享圆的面积数学教案,欢迎阅读!圆的面积数学教案精选篇1一、教学目标【知识与技能】掌握圆的面积计算公式,并能利用公式正确解决简单问题。

【过程与方法】通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。

【情感、态度与价值观】感受数学与生活的联系,激发学习兴趣。

二、教学重难点【教学重点】圆的面积计算公式。

【教学难点】圆的面积计算公式的推导过程。

三、教学过程(一)导入新课创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。

引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。

(二)讲解新知提出问题:之前的图形面积公式是如何推导的学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。

追问:能否将圆的图形转换成之前的图形组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。

预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。

老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。

学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。

进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系预设1:长方形的面积等于圆的面积;预设2:长方形的长近似等于圆周长的一半;预设3:长方形的宽近似等于圆的半径。

圆的面积数学教案精选篇2【教学内容】《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。

【教学目标】1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的面积教学设计
【教学内容】
人教版小学数学六年级上册“圆的面积”
【教材分析】
《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见几何图形面积的基础上进行教学的。

学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。

学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。

把未知的问题转化成已知的问题,是常用的数学思想和方法。

让学生用这种数学思想和方法来解决新的比较复杂的问题。

教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。

【学情分析】
在本节课之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。

而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。

【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

3、培养学生动手操作、观察分析、概括推理的能力。

渗透转化的数学思想和极限思想。

【教学重点】圆面积公式的推导及应用。

【教学难点】圆面积公式的推导过程。

【教具准备】多媒体课件,圆形纸片
【学具准备】等分好的圆形纸片
【教学设计】
一、创设情境。

草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。

(一位画的是周长,另一位画的是面积)(动画演示)
提出问题:这个范围的大小指圆的周长还是面积?为什么?(板书:圆的面积)
二、探究思考、解决问题
1、估计圆面积大小
(出示插图)
用边长等于半径的小正方形透明塑料片,直接度量圆面积,(如图)观察后得出圆面积比4个小正方形小,好象又比3 个小正方形大一些。

初步猜想:圆的面积相当于r2的3倍多。

由此看出,要求圆的精确面积通过度量是无法得出的。

2、由旧知引入新知
我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
3、探索圆面积公式
(1)学生操作
师:请大家拿出准备好的16等分的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(2)指名汇报
初步汇报:你们把圆转换成了什么图形?(在学生说的同时教师课件演示)学生可能出现的3种情况(随机出示课件)
(3)操作反思
小组内拿出32等分的圆形,剪一剪,拼成一个平行四边形,和用16等分的圆拼成的平行四边形比较你发现了什么? [32等份后拼成的图形更接近于平行四边形] (课件演示)
如果把一个圆等分成64份、128份……拼成的平行四边形会怎样呢? (圆等分的份数越多,拼成的图形越接近于长方形。

)
(4)转化思考:近似平行四边形的底相当于圆的哪一部分?怎样用字母表示?
(圆周长的一半,C/2=πr),它的高是圆的哪一部分?(半径r)(课件演示)(5)观察汇报:
你能否由平行四边形的面积公式得到圆形面积公式呢?并说出你的理由。

[ 因为拼成的平行四边形的底也就是圆形周长的一半,平行四边形的高就是圆形的半径。

而平行四边形面积=底×高,那么,圆形面积=圆周长的1/2×半径即可。

](生说,教师板书)用字母怎么表示圆面积公式呢?(课件演示)S=πr2
你能否由长方形的面积公式得到圆形面积公式呢?(课件演示)并说出你的理由。

(引导学生通过多次不同的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形,从而推导出圆面积计算公式。

同时,利用计算机的演示,
化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。


(6)练习:教材69页第一题。

(学生练习,教师巡视指导)(集体交流)三:拓展应用
下面我们就一起来动脑筋解决以下下面的问题,看谁能过关斩将笑到最后!
1、现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

2、(1)圆的周长计算公式为(),圆的面积计算公式为()。

(2)一个圆的半径是3厘米,求它的周长,列式(),求它的面积,列式()。

(3)一个圆的周长是18.84分米,这个圆的直径是()分米,面积是()平方分米。

3、同学们怎么计算树的横截面的面积,是不是一定把树木锯断?
(同学们讨论答出测出周长后师再出题)
树的周长是18.84平方米,求树的横截面的面积?
(用学到的知识来解决生活中的问题,培养学生的应用能力)
四、简介中国古代数学家的割圆术。

今天我们探究出了圆的面积计算公式,真了不起,在人们没有总结出这个公式的时候,如何计算圆的面积,是各国数学家共同关心的问题。

老师这里有一段小故事,大家一起来读一读:
读了这个故事,你想说点什么?
五、这堂课大家学到了什么?有什么收获?
(学生热烈发言,最后教师总结。


六、课后作业:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?你有哪些方案?
板书设计:
3圆的面积
平行四边形的面积=底×高
长方形的面积=长×宽
圆的面积=πr×r =πr2
S=πr2。

相关文档
最新文档