高中数学人教版必修等比数列教案(系列三)
2020-2021年高一数学等比数列说课教案 人教版

2019-2020年高一数学等比数列说课教案人教版说课内容:一、教材分析二、教法与学法分析三、教学程序设计一、教材分析1.教材的地位、作用数列是刻画离散现象的函数,是一种重要的数学模型,它起着承前启后的作用。
一方面,初中数学的许多内容,在解决数列的某些问题中,得到了充分运用,数列与前面学习的函数等知识有密切联系;另一方面,学习数列又为进一步学习数列的极限等内容作好准备,而等比数列是数列的重要组成部分,它有着广泛的实际应用,如产品规格设计的某些问题要用到等比数列的原理,再如储蓄、分期付款的有关计算也要用到等比数列的一些知识。
掌握了等比数列及其通项公式有利于进一步研究某些等比数列的性质及前n项和公式的推导以及应用,从而极大地提高学生利用数列知识解决实际问题的能力。
同时,本节的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
2.教学目标知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。
能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。
德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。
3.教学重点、难点本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。
本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。
二、教法与学法分析为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。
在这个过程中,力求把握好以下几点:①通过实例,让学生发现规律。
让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
高中数学教案《等比数列》

高中数学教案《等比数列》数学是一门让人很头疼的学科,但是如果教学的时候加上教案可能会容易理解的多。
下面是由小编精心为大家整理的“高中数学教案《等比数列》”,更多优秀的文章尽在,欢迎大家阅读,内容仅供参考,希望对您有所帮助!高中数学教案《等比数列》教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题。
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.教学设计示例课题:等比数列的概念教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,…②8,16,32,64,128,256,…③1,1,1,1,1,1,1,…④243,81,27,9,3,1,,,…⑤31,29,27,25,23,21,19,…⑥1,-1,1,-1,1,-1,1,-1,…⑦1,-10,100,-1000,10000,-100000,…⑧0,0,0,0,0,0,0,…由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)1.等比数列的定义(板书)根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:2.对定义的认识(板书)(1)等比数列的首项不为0;(2)等比数列的每一项都不为0,即问题:一个数列各项均不为0是这个数列为等比数列的什么条件?(3)公比不为0.用数学式子表示等比数列的定义.是等比数列①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是等比数列?为什么不能? 式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.3.等比数列的通项公式(板书)问题:用和表示第项①不完全归纳法②叠乘法,…,,这个式子相乘得,所以(板书)(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式.(板书)(2)对公式的认识由学生来说,最后归结:①函数观点;②方程思想(因在等差数列中已有认识,此处再复习巩固而已).这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题。
等比数列教案设计

一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。
2. 教学难点:等比数列求和公式的推导和应用。
三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
2. 学具准备:笔记本、笔。
四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。
2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。
3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。
4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。
5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。
6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。
7. 课后作业:布置课后作业,巩固本节课所学内容。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。
六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。
2. 教学难点:判断一个数列是否为等比数列的方法。
八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
新教材人教B版高中数学选择性必修第三册教案设计-等比数列的性质

第2课时等比数列的性质学习目标核心素养1.理解等比中项的概念.(易错点)2.掌握等比数列的性质及其应用.(重点)3.熟练掌握等比数列与等差数列的综合应用.(难点、易错点) 1.通过等比数列性质的学习,培养逻辑推理的素养.2.通过等比数列与等差数列的综合应用的学习,提升数学运算素养.在等差数列{a n}中,通项公式可推广为a n=a m+(n-m)d,并且若m+n=p+q,则a m+a n=a p+a q(n,m,p,q∈N+),特别地,若m+n=2p,则a m+a n=2a p.问题:在等比数列中有无类似的性质?1.等比中项定义如果x,G,y是等比数列,那么称G为x与y的等比中项关系式G2=xy结论在等比数列中,中间每一项都是它的前一项与后一项的等比中项[提示]不是.若G是x与y的等比中项,则G2=xy,反之不成立.2.等比数列的性质在等比数列{a n}中,若s+t=p+q(s,t,p,q∈N+),则a s·a t=a p·a q.(1)特别地,当2s=p+q(s,p,q∈N+)时,a p·a q=a2s.(2)对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a1·a n=a2·a n-1=…=a k·a n-k+1=….拓展:(1)“子数列”性质对于无穷等比数列{a n},若将其前k项去掉,剩余各项仍为等比数列,首项为a k+1,公比为q;若取出所有的k的倍数项,组成的数列仍为等比数列,首项为a k,公比为q k.(2)两个等比数列合成数列的性质若数列{a n},{b n}均为等比数列,c为不等于0的常数,则数列{ca n},{a n·b n},⎩⎨⎧⎭⎬⎫a nb n 也为等比数列.1.思考辨析(正确的画“√”,错误的画“×”) (1)任意两个实数都有等比中项. ( ) (2)在等比数列{a n }中,a 2·a 8=a 10.( ) (3)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( )(4)若数列{a n }的奇数项和偶数项分别成等比数列,且公比相同,则{a n }是等比数列.( )[答案] (1)× (2)× (3)× (4)×2.已知等比数列{a n },a 1=1,a 3=19,则a 5等于( ) A .±181 B .-181 C.181 D .±12 C[在等比数列中,a 23=a 1·a 5,所以a 5=a 23a 1=181.]3.(教材P 34练习AT3改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16 D .32 C [∵{a n }是等比数列, ∴a 2·a 6=a 24=16.]4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11=________. 25 [∵{a n }是等比数列, ∴a 8·a 11=a 9·a 10=a 7·a 12,∴a 8a 9a 10a 11=(a 9a 10)2=(a 7a 12)2=52=25.]等比中项的应用A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-9(2)在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10=________.(1)B(2)1316 [(1)因为b 2=(-1)×(-9)=9,a 2=-1×b =-b >0,所以b <0,所以b =-3,且a ,c 必同号.所以ac =b 2=9.(2)由题意知a 3是a 1和a 9的等比中项,∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ),得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.]由等比中项的定义可知:G a =bG ⇒G 2=ab ⇒G =±ab .这表明只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.反之,若G 2=ab ,则G a =bG ,即a ,G ,b 成等比数列.所以a ,G ,b 成等比数列⇔G 2=ab (ab ≠0).[跟进训练]1.已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项. [解] 设该等比数列的公比为q ,首项为a 1, ∵⎩⎨⎧a 1+a 1q +a 1q 2=168,a 1q -a 1q 4=42, ∴⎩⎨⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42. ∵1-q 3=(1-q )(1+q +q 2). 上述两式相除,得q (1-q )=14⇒q =12. ∴a 1=42q -q 4=4212-⎝ ⎛⎭⎪⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5·a 7=a 1q 4·a 1q 6=a 21q 10=962·⎝ ⎛⎭⎪⎫1210=9. ∴a 5,a 7的等比中项是±3.等比数列性质的应用【例2】 (1)已知数列{a n }为等比数列.若a n >0,且a 2a 4+2a 3a 5+a 4a 6=36,则a 3+a 5=________.(2)在2和8之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.(1)6 (2)64 [(1)∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 23+2a 3a 5+a 25=36,∴(a 3+a 5)2=36,又∵a n >0,∴a 3+a 5=6. (2)设a 1=2,a 5=8, ∴a 3=a 1a 5=4,∴a 2·a 3·a 4=a 23·a 3=a 33=43=64.]在等比数列的有关运算中,常常涉及到次数较高的指数运算.若按常规解法,往往是建立a 1,q 的方程组,这样解起来很麻烦.通过本例可以看出:结合等比数列的性质进行整体变换,会起到化繁为简的效果.[跟进训练]2.在等比数列{a n }中,已知a 4+a 7=2,a 5a 6=-8,求a 1+a 10. [解] 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8. 联立⎩⎨⎧ a 4+a 7=2,a 4a 7=-8.可解得⎩⎨⎧ a 4=4,a 7=-2或⎩⎨⎧a 4=-2,a 7=4.当⎩⎨⎧a 4=4,a 7=-2时,q 3=-12,故a 1+a 10=a 4q 3+a 7q 3=-7; 当⎩⎨⎧a 4=-2,a 7=4时,q 3=-2,同理,有a 1+a 10=-7. 即a 1+a 10的值为-7.等比数列的设法与求解1.类比等差数列中相邻三项的设法,想一想:等比数列中的相邻三项如何设运算更方便?[提示] 可设为aq ,a ,aq 或a ,aq ,aq 2(q ≠0). 2.如果四个数成等比数列,如何设更方便运算? [提示] 可设为a q ,a ,aq ,aq 2或a q 3,aq ,aq ,aq 3(q ≠0).【例3】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.[解] 法一:设四个数依次为a -d ,a ,a +d ,(a +d )2a , 由条件得⎩⎪⎨⎪⎧a -d +(a +d )2a =16,a +(a +d )=12,解得⎩⎨⎧ a =4,d =4,或⎩⎨⎧a =9.d =-6.所以,当a =4,d =4时,所求四个数为0,4,8,16; 当a =9,d =-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法二:设四个数依次为2a q -a ,aq ,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧2a q -a +aq =16,aq +a =12.解得⎩⎨⎧a =8,q =2,或⎩⎪⎨⎪⎧a =3,q =13.当a =8,q =2时,所求四个数为0,4,8,16; 当a =3,q =13时, 所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.合理地设出所求数中的三个数,根据题意再表示出另一个数是解决这类问题的关键,一般地,三个数成等比数列,可设为aq ,a ,aq ;三个数成等差数列,可设为a -d ,a ,a +d .[跟进训练]3.三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则这三个数成等差数列,求这三个数.[解] 设三个数依次为aq ,a ,aq , ∵a q ·a ·aq =512,∴a =8. ∵⎝ ⎛⎭⎪⎫a q -2+(aq -2)=2a , ∴2q 2-5q +2=0, ∴q =2或q =12,∴这三个数为4,8,16或16,8,4.1.在数列{a n }中,a 2n =a n -k ·a n +k (n ,k ∈N +,n >k )是{a n }成等比数列的必要不充分条件.2.等比数列的常用性质:(1)如果m +n =k +l ,则有a m a n =a k a l ; (2)如果m +n =2k ,a m ·a n =a 2k ;(3)若m ,n ,p 成等差数列,a m ,a n ,a p 成等比数列;(4)在等比数列{a n }中,每隔k 项(k ∈N +)取出一项,按原来的顺序排列,所得的新数列仍为等比数列;(5)如果{a n },{b n }均为等比数列,且公比分别为q 1,q 2,那么数列⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫b n a n ,{|a n |}仍是等比数列,且公比分别为1q 1,q 1q 2,q 2q 1,|q 1|;(6)等比数列的项的对称性:在有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=a 3·a n -2=….3.根据等比中项和等比数列的性质巧设等比数列中的项:当三个数成等比数列且知这三个数的积时,一般将这三个数设为aq ,a ,aq ;当有五个数成等比数列时,常设为a q 2,aq ,a ,aq ,aq 2.1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列D [因为a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.]2.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .±4 B .4 C .±14 D.14 A [a 4=a 1q 3=18×23=1,a 8=a 1q 7=18×27=16,∴a 4与a 8的等比中项为±16=±4.]3.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.7 [∵a 6a 10=a 28,a 3a 5=a 24,∴a 24+a 28=41. 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49.∵数列{a n }各项都是正数,∴a 4+a 8=7.]4.在递增等比数列{a n }中,a 1a 9=64,a 3+a 7=20,求a 11的值. [解] 在等比数列{a n }中, ∵a 1·a 9=a 3·a 7,∴由已知可得a 3·a 7=64且a 3+a 7=20. 联立得⎩⎨⎧ a 3=4,a 7=16,或⎩⎨⎧a 3=16,a 7=4.∵{a n }是递增等比数列,∴a 7>a 3. ∴取a 3=4,a 7=16, ∴16=4q 4,∴q 4=4. ∴a 11=a 7·q 4=16×4=64.。
人教版高中数学必修五《数列》2.4等比数列(3)

例1、在四个正数中,前三个成等差数列,和为48, 后三个成等比数列,积为8000,求这四个数。 小结
思考 若四个数成等比数列通常怎么设呢? 结论
2012年3月28日星期三
小结
2、本题利用了构造辅助数列的方法。
2012年3月28日星期三
2012年3月28日星期三
1、有四个数,其中前三个数成等差数列,后三个数 成等比数列,且第一个数与第四个数的和是16,第二个数 与第三个数的和是12,求此四个数。 2、李政道博边五个猴子分 一堆苹果,第一个猴子把苹果分成五等份,还多一个,把 多的一个扔到海里,取走一份;第二个猴子把剩下的分成 五等份,也多一个,把多的一个扔到海里,取走一份;以 后的3只猴子都是如此办理,问最初至少有多少个苹果? 最后至少剩下多少个苹果?
2012年3月28日星期三
等比数列
等比数列的性质4
三个成等比的设法
课时作业13
2012年3月28日星期三
§2.4 等比数列
第三课时
2012年3月28日星期三
1、等比数列的通项公式
2、等比数列的性质1
2012年3月28日星期三
3、等比数列的性质2
4、等比数列的性质3
2012年3月28日星期三
探究
例
自选1 自选
自选2 自选
2012年3月28日星期三
结论 等比数列的性质4:
2012年3月28日星期三
等比数列教案设计模板

一、教学目标1. 知识与技能:理解并掌握等比数列的定义、通项公式及其性质,能够运用等比数列的知识解决实际问题。
2. 过程与方法:通过观察、类比、归纳等推理方法,提高学生的分析、综合、抽象、概括等逻辑思维能力。
3. 情感态度价值观:培养学生对数学知识的兴趣,激发学生探索未知、勇于挑战的精神。
二、教学重难点1. 重点:等比数列的定义、通项公式及其性质。
2. 难点:等比数列的性质应用。
三、教学过程一、导入1. 复习等差数列的概念和性质。
2. 提出问题:等差数列与等比数列有何异同?引导学生思考,为新课做好铺垫。
二、新课讲授1. 等比数列的定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(非零),那么这个数列就叫做等比数列。
2. 等比数列的通项公式:已知等比数列的首项为a1,公比为q(q≠0),则等比数列的通项公式为:an = a1 q^(n-1)。
3. 等比数列的性质:(1)等比数列的前n项和公式:S_n = a1 (1 - q^n) / (1 - q)(q≠1)。
(2)等比数列的相邻项之比:q = a_n / a_n-1。
(3)等比数列的倒数数列也是等比数列,且公比为1/q。
4. 举例说明等比数列在生活中的应用,如:人口增长、细菌繁殖等。
三、课堂练习1. 完成课本中的例题,巩固所学知识。
2. 做一些变式练习,提高学生的解题能力。
四、课堂小结1. 回顾本节课所学内容,总结等比数列的定义、通项公式及其性质。
2. 强调等比数列在生活中的应用,激发学生对数学知识的兴趣。
五、作业布置1. 完成课本中的练习题。
2. 预习下一节课的内容。
六、板书设计1. 等比数列的定义2. 等比数列的通项公式3. 等比数列的性质4. 等比数列在生活中的应用七、教学反思1. 本节课的教学目标是否达成?2. 学生对等比数列的定义、通项公式及其性质掌握程度如何?3. 如何改进教学方法,提高学生的学习兴趣和积极性?通过以上教案设计模板,教师可以根据实际教学情况进行调整,以达到最佳教学效果。
等比数列教案范文

等比数列教案等比数列教案范文作为一无名无私奉献的教育工作者,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么你有了解过教案吗?下面是小编精心整理的等比数列教案范文,希望能够帮助到大家。
等比数列教案1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n—1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
高中数学 2.4等比数列教案(3) 新人教A版必修5

等比数列(一)教学设计教材分析:等比数列是一种特殊的数列,它有着非常广泛的实际应用:如存款利息、购房贷款、资产折旧等一些计算问题.教材将等比数列安排在等差数列之后,有承前启后的作用.一方面与等差数列有密切联系,另一方面为进一步学习数列求和等有关内容做好准备.设计理念:长期以来的课堂教学太过于重视结论,轻视过程.为了应付考试,为了使公式定理应用达到所谓“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化.在概念公式的教学中往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策.数学是思维的体操,是培养学生分析问题,解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受,必须让学生有追求过程的体验.基于以上原因,在设计本节课时,我考虑的不是简单地告诉学生等比数列的定义及其通项公式,而是将内容按照“问题情境——学生活动——数学建构——数学运用——回顾反思”的顺序展开,通过列举生活中的大量实例,给出等比数列的实际背景,让学生自己去发现,去探索其意义,公式.从发现等比数列定义及通项公式的过程中让学生体会到:有些看似陌生的知识并不都是高不可攀的事情,通过我们的努力,也可以做一些看似数学家才能完成的事.在这个过程中,学生在课堂上的主体地位得到充分发挥,极大地激发了学生的学习兴趣,也提高了他们提出问题,解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念.教学目标:A.知识目标:理解等比数列的概念,推导并掌握通项公式.B.能力目标:(1)通过公式的探索,发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力.(2)通过通项公式的探求过程,培养学生用不完全归纳法去发现并解决问题的能力.C.情感目标:(1)公式的发现反映了普遍性寓于特征性之中,从而使学生受到辨证唯物主义思想的熏陶.(2)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度.(3)培养学生勇于探索、善于猜想的学习态度,调动学生主动参与课堂教学的积极性,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点、难点:等比数列的定义、通项公式的推导;通项公式的初步应用.教学方法:发现式教学法,类比分析法.教学多媒体选择:电脑.教学过程:一、问题情境首先请同学们看以下几个事例:(电脑显示)情境1:国王奖赏国际象棋发明者的事例,发明者要求:在第1个方格放1颗麦粒,在第2个方格上放2颗麦粒,在第3个方格上放4颗麦粒,在第4个方格上放8颗麦粒,依此类推,直到第64个方格子.国王能否满足他的要求呢?情境2:“一尺之棰,日取其半,万世不竭.”情境3:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价格依次为多少?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想,发现:1、上述例子可以与数列联系起来.(有了等差数列的学习作基础)2、得到以下3个数列:① 1,2, 22,…,263② 1,12,14, (12)⎛⎫ ⎪⎝⎭,… ③ 36,36×0.9,36×092,…,36×09n ,…通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数).三、数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数列,谁能试着给这样的数列取个名字?(学生通过联想、尝试得出最恰当的命名)等比数列2、归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比.(引导学生经过类比等差数列的定义得出)3、对等比数列概念深化理解问题1:上述三例的公比分别为多少?问题2:你能举一个公比小于0的等比数列吗?问题3:等比数列与等差数列在定义上有许多密切关系,那么有没有这样的数列,它既是等差数列又是等比数列呢?问题4:形如a ,a ,a ,…(R a ∈)的数列既是等差数列,又是等比数列对吗?(对问题4,学生作短暂的讨论)(1)形如a ,a ,a ,…的数列一定是等差数列,但未必是等比数列.当a =0时,数列的每一项均为0,不能作比,因此不是等比数列;当a ≠0时,此数列 为等比数列.(2)等比数列的各项均不为0,且公比也不为0.4、问题:刚才我们得到了等比数列的概念,是用文字语言来表达的,但是在使用时往往需要符号化,下面试将等比数列定义的内容用数学表达式写出.(提示可类比等差数列,由学生活动得出)(1)对于数列{}n a ,若1n na q a +=(*∈N n ,q 为常数 ),则称这个数列为等比数列,常数q 叫做等比数列的公比.(2){}n a 是等比数列⇔1n na q a +=(*∈N n ,q 为常数 ),此式可来证明一个数列是否为等比数列.5、探索问题: 在学习等差数列时,我们可以用公差d ,项数n 以及首项1a 表示数列的任一项,也就是可以表示它的通项公式n a ,那么在等比数列{}n a 中,要表示该数列,需先确定几个条件?怎样用这些条件来表示这个等比数列的每一项?(启发引导,类比等差数列,让学生大胆尝试,讨论回答)(1)知道等比数列的首项和公比就可以求出这个等比数列的任何一项.(2)学生1:∵21a a q =, ()23211a a q a q q a q ===,()234311a a q a q q a q ===,……∴11n n a a q -=.(3)学生2:∵ 1n n a q a +=,∴1n n a q a -=,12n n a q a --=,…,32a q a =,21a q a =. 将各式相乘便有11n n a q a -=,∴11n n a a q -=(*∈N n ,2≥n ), 当1n =时,11n n a a q -=两边均为1a 即等式也成立,说明上式当*n N ∈时都成立.教师点评:(1)寻找通项即寻找项的一般规律,常可先看特殊项,写出几项,再归纳出一般结论,这是探索数列问题常用的一种方法,叫不完全归纳法,但这种方法得出的通项公式还不够严谨,须对其进行证明.(2)方法2就是对方法1得到的结论的一种证明,叫做叠乘法.与推导等差数列通项公式用到的叠加法类似,都必须注意对第一项是否成立进行补充说明.6、问题延伸:对于这个通项公式,我们可以从哪几个方面去认识它呢?(这不是第一次遇到这类公式,在讲等差数列时已讨论过,学生应该知道从什么角度去认识公式)学生类比等差数列得:(1)可以从函数观点去认识,把通项看成n 的解析式.(2)还可以从方程观点去认识,把通项看成一个方程.师生共同小结:(1)当1q =时, 1a a n =,点(),n n a 在直线y=1a 上.当1q ≠时, 函数图象类似于指数函数图象,但它的图象是由一些孤立的点组成.(2)从方程的观点去考虑,方程中有四个量,在n a ,1a ,q 和n 中只要知道其中三个便可求第四个,请学生举例编题(应能编出四类问题).四、数学运用1、例题例1 判断下列数列是否是等比数列?(电脑显示) ①11111,,,,24816--; ②1,2,4,8,16,20;③1,1,1,1,1;④-1,-2,-4,-8,-16;⑤数列{}n a 的通项公式为.)31(21--=n n a解 据数列的定义可知:数列①③④⑤都是等比数列,②不是等比数列.讨论:1、对于等比数列{}n a ,若q >1,则{}n a 一定是递增数列;若0<q <1,则{}n a 一定是递减数列,对吗?(学生例举反例④⑤,判断此结论不正确)2、你能知道等比数列何时为递增数列, 何时为递减数列吗?引导学生从函数的角度去讨论通项公式,结合复合函数的单调性研究,得到:当q >1, 1a >0或0<q <1, 1a <0时, {}n a 是递增数列;当q >1, 1a <0或0<q <1, 1a >0时, {}n a 是递减数列;当q =1时, {}n a 是常数列;当q <0时,{}n a 是摆动数列. 例2 在等比数列{}n a 中,已知3a =20,1206=a ,求n a .解 设等比数列的公比为q ,则⎩⎨⎧==160205121q a q a ,解得 ⎩⎨⎧==251q a .故11125--⨯==n n n q a a . 反思 这种类型的题目主要是方程思想的应用,应用过程主要是三个步骤:设、列、求.2、练习:教科书第50页第1(1)、(3),2,3题.五、回顾小结1、本节课研究了等比数列的概念,得到了其通项公式;2、在研究内容与方法上要与等差数列相类比,把握它们的区别和联系;3、用函数与方程的思想认识通项公式,并加以应用;4、在发现等比数列的定义及其通项公式过程中用了观察,归纳,猜想等数学方法,体现了由特殊到一般的数学思想;在判断数列是否是等比数列及将等比数列与函数图象联系时体现了数学中的分类讨论思想.(小结可先由学生叙述,教师进行补充和整理,小结的目的一方面让学生再次回顾本节课的活动过程、重点、难点所在;另一方面,更是对探索过程的再认识,对数学思想方法的升华,对思维的反思,可为学生以后解决问题提供经验和教训.)为突出与等差数列的对比,可让学生自己填写下表.六、课外作业教科书第48页练习第1题、第3题,第52页习题2.3第1题、第2题(1)、第3题.课后思考:对照等差数列,试猜想等比数列的一些相应性质.七、板书设计八、教学反思对本节课的教学实践与效果进行总结和反思,我认为有以下几点值得探索与反思.1、等比数列是在等差数列之后介绍的,学生对等差数列的研究内容和研究方法已有了一定的了解.因此在教学方法上突出了类比思想的使用,为学生创造好使用的条件,引导学生自己研究等比数列相关内容如定义、表示方法、通项公式.这样从学生的最近发展区出发,不仅符合学生的认知规律,而且充分发挥了学生的主体作用.2、在教学过程中,尽可能“指着走”(在教师的启发与点拨下,学生自主展开),而不是“抱着走”.如:对于等比数列的通项公式应从哪几方面去认识?我只是指出这一研究方向,点拨一下方法(类比等差数列),让学生去联想,去探究,去归纳,去总结;在从方程的观点去认识通项公式时,我让学生自己编题,这样既达到了考查的目的,又发挥了其主观能动性.不过,“教师怎样才能真正成为学生的组织者、引导者、合作者?”,“怎样才能真正做到关注学生的需要,让学生自己也能成为教学的生长点?”这些问题还需值得继续深入思考和探索.3、在进行教学总结时,我指导学生进行规律性知识(等比数列的定义、通项公式)与方法论知识(不完全归纳法、类比法)的归纳总结,通过“多面互动”,让学生自主建构,在动态中生成,从而达到培养学生概括能力的目的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: 2.4等比数列
授课类型:新授课
(第1)
●教学目标
知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;
过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
●教学重点
等比数列的定义及通项公式
●教学难点
灵活应用定义式及通项公式解决相关问题
●教学过程
Ⅰ.课题导入
复习:等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)
等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。
课本P41页的4个例子:
①1,2,4,8,16,…
②1,12,14,18,116
,… ③1,20,220,320,420,…
④10000 1.0198⨯,210000 1.0198⨯,310000 1.0198⨯,410000 1.0198⨯,510000 1.0198⨯,……
观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:从第二项起,第一项与前一项的比都等于同一个常数。
Ⅱ.讲授新课
1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表
示(q ≠0即:1
-n n a a =q (q ≠0) 1︒“从第二项起”与“前一项”之比为常数(q )
{n a }成等比数列⇔n
n a a 1+=q (+∈N n ,q ≠0) 2︒ 隐含:任一项00≠≠q a n 且
“n a ≠0”是数列{n a }成等比数列的必要非充分条件.
3︒ q = 1时,{a n }为常数。
2.等比数列的通项公式1: )0(111≠⋅⋅=-q a q a a n n
由等比数列的定义,有:
q a a 12=;
21123)(q a q q a q a a ===;
312134)(q a q q a q a a ===;
… … … … … … …
)0(1111≠⋅⋅==--q a q a q a a n n n
3.等比数列的通项公式2: )0(11≠⋅⋅=-q a q a a m m n
4.既是等差又是等比数列的数列:非零常数列
探究:课本P56页的探究活动等比数列与指数函数的关系
等比数列与指数函数的关系:
等比数列{n a }的通项公式)0(111≠⋅⋅=-q a q a a n n ,它的图象是分布在曲线1x a y q q
=(q >0)上的一些孤立的点。
当10a >,q >1时,等比数列{n a }是递增数列;
当10a <,01q <<,等比数列{n a }是递增数列;
当10a >,01q <<时,等比数列{n a }是递减数列;
当10a <,q >1时,等比数列{n a }是递减数列;
当0q <时,等比数列{n a }是摆动数列;当1q =时,等比数列{n a }是常数列。
[范例讲解]
课本P57例1、例2、P58例3 解略。
Ⅲ.课堂练习
课本P59练习1、2
[补充练习]
2.(1) 一个等比数列的第9项是94,公比是-3
1,求它的第1项(答案:1a =2916) (2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项(答案:1a =q a 2=5, 4a =3a q =40)
Ⅳ.小结
本节学习内容:等比数列的概念和等比数列的通项公式.
Ⅴ.课后作业
课本P60习题A 组1、2题
●板书设计
●授后记。