相似三角形的预备定理
相似三角形的判定定理

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.2、相似三角形对应边的比叫做相似比.3、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. 强调:①定理的基本图形有三种情况,如图其符号语言: ∵DE ∥BC ,∴△ABC ∽△ADE ;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定 1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.ABCDEF判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.例2、如图,点C、D在线段AB上,△PCD是等边三角形。
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数。
判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。
简单说成:三边对应成比例,两三角形相似.强调:①有平行线时,用预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB ⊥BD,CD ⊥BD,P 为BD 上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P 点在BD 上由B 点向D 点运动时,PB 的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD 是Rt △ABC 中∠A 的平分线,∠C =90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
相似三角形(预备定理)

例。
步骤3
03
根据步骤1和步骤2,得出两个三角形相似的结论。
感谢您的观看
THANKS
性质
相似三角形预备定理具有传递性 、反身性和对称性,即如果两个 三角形相似,则它们的对应边和 对应角都成比例。
预备定理的重要性
基础性
相似三角形预备定理是三角形相似判 定定理的基础,对于理解三角形相似 的概念和性质至关重要。
应用广泛
在几何学、三角函数、解析几何等领 域中,相似三角形预备定理都有广泛 的应用。
等,则这两个三角形相 似。
具体来说,如果$angle A = angle A'$、$angle B = angle B'$、$angle C = angle C'$,则三角形ABC与三角形A'B'C'相 似。
边边判定法
如果两个三角形的三组对应边成比例,则这两个三角形相似。
相似三角形(预备定理)
目录
• 相似三角形预备定理的定义 • 相似三角形的判定方法 • 相似三角形的性质 • 相似三角形在几何中的应用 • 相似三角形的实际应用 • 相似三角形预备定理的证明
01
相似三角形预备定理的定义
定义与性质
定义
相似三角形预备定理是指,如果 两个三角形有两边对应成比例, 且夹角相等,则这两个三角形相 似。
离与实际距离之间的关系。
地形表示
在地图上表示地形起伏时,可以使 用相似三角形来表示不同高度之间 的相对关系。
地理位置定位
在地图上确定地理位置时,可以使 用相似三角形来确定两点之间的相 对位置和距离。
在物理学中的应用(光的折射、反射等)
光学仪器设计
在设计和制造光学仪器(如望远镜和显微镜)时,需要使 用相似三角形来计算透镜的形状和位置,以确保光线正确 地折射和聚焦。
23.2相似三角形的判定(直角三角形)

图3-22
直角相似三角形判定方法 小结
1、(定义法)三个角对应相等,且三条边对应成比例的 两个直角三角形叫作相似三角形. 2、(判定定理1)三边对应成比例的两个直角三角形
相似。 3、(判定定理2)两角对应相等的两个直角三角形 相似。 4、(判定定理3)两边对应成比例且夹角相等的两 个直角三角形相似 5、(特殊)任意两边对应成比例两个直角三角形相似
判断题
1. 两条直角边对应成比例的两直角三 角形相似。 ( ) 2. 有一锐角相等的两直角三角形相 似。 ( ) 3.
一直角三角形的三边分别为3,4, 5,另一直角三角形的两边分别为6, 8,则这两个直角三角形相似。
( ×)Байду номын сангаас
基础练习:
1.在Rt△ABC和Rt△A′B′C′中,已知 ∠C=∠C′=90°,要使 Rt△ABC∽Rt△A′B′C′,应加什么条件?
55° (1)∠A=35° ,∠B′=________。 12 (2)AC=5,BC=4,A′C′=15,B′C′=___。 3 (3)AB=5,AC=___,A′B′=10, A′C′=6。 4 (4)AB=10,BC=6, A′B′=5,A′C′=______. 3a (5)AC:AB=1:3, A′C′=a, A′B′=_____
E F A D B
小结
1.如果一个直角三角形的斜边和一条直角边与另一个直角形的斜 边和一条直角边对应成比例,那么这两个直角三角形相似。 2.直角三角形相似的判定除了本节定理外,前面判定任意三角 形相似的方法对直角三角形同样适用。 3.让学生了解了用代数法证几何命题的思想方法。 4.关于探索性题目的处理。
例1, 已知:∠ABC=∠CDB=90°, AC=a,BC=b,当BD与a,b之间满足怎 样的关系式时,△ABC∽△CDB?
九年级数学上册《相似三角形判定的预备定理》教案、教学设计

三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握相似三角形的定义,能够准确识别相似三角形。
2.掌握相似三角形的判定方法,特别是预备定理的应用。
3.学会运用相似三角形的性质解决实际问题,如计算未知长度、证明线段平行等。
九年级数学上册《相似三角形判定的预备定理》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《相似三角形判定的预备定理》的教学中,学生将掌握以下知识与技能:
1.理解并掌握相似三角形的定义,能够准确区分和识别相似三角形。
2.掌握并运用相似三角形的判定方法,如AA、SSS、SAS等,能够解决实际问题。
3.学会使用相似三角形的性质进行问题求解,如对应边成比例、对应角相等等。
2.相似三角形的判定方法:
- AA(角角相似):如果两个三角形中有两组角对应相等,则这两个三角形相似。
- SSS(边边相似):如果两个三角形的三组对应边成比例,则这两个三角形相似。
- SAS(边角相似):如果两个三角形中有两组对应边成比例且夹角相等,则这两个三角形相似。
3.相似三角形的性质:
-对应角相等,对应边成比例。
5.培养学生的创新意识,鼓励他们在学习过程中提出不同的观点和解决问题的方法,培养他们的创新思维。
二、学情分析
九年级的学生已经具备了一定的几何基础,他们已经掌握了三角形的基本概念、全等三角形的判定及应用等知识。在此基础上,本章节《相似三角形判定的预备定理》的学习,对学生来说既是对已有知识的巩固,也是对几何思维能力的进一步提升。学生在这个阶段,正处于形象思维向抽象思维过渡的关键时期,他们对几何图形的观察、分析、推理能力有待加强。因此,在教学过程中,教师需关注以下学情:
相似三角形的预备定理

相似
∵ DE∥BC ∴∠ADE=∠B, ∠AED=∠C, AD AE
A
过E作EF∥AB交BC于F,则 AE BF
AB AC
AC BC
∵四边形DBFE是平行四边形,∴DE=BF.
D
E
AE DE AD AE DE
AC BC
AB AC BC
∴△ADE∽△ABC.
B
FC
定理:平行于三角形一边的直线和其他两边相交,所构
1.(2010 ·滨州中考)如图,A、B两点被池塘隔开,在AB
外取一点C,连结AC、BC,在AC上取点M,使AM=3MC,作
MN∥AB交BC于N,量得MN=38cm,则AB的长为
.
1.已知EF∥BC,求证: BD DC EG GF
A
E
F
G
F
GE
.已知EF∥BC,FG∥DC,
求证:
相似三角形的判定
提出问题:
如图,在∆ABC中,点D是边AB的 中点,DE∥BC,DE交AC于点E , ∆ADE与∆ABC有什么关系?
A
D B
E C
思考:
改变点D在AB上的位置,请猜想 ∆ADE与∆ABC是否相似? 说明理由.
如图,DE∥BC,△ADE与△ABC有什么关系?说明理由.
证明:在△ADE与△ABC中,∠A= ∠A
解析:与△ABC相似的三角形有3个:
△ADE
△GFC
△GOE
D
A G
O
E
B
F
C
4.如图,已知DE ∥ BC,AE=50cm,EC=30cm,BC=70cm,
∠BAC=45°,∠ACB=40°. (1)求∠AED和∠ADE的大小; (2)求DE的长.
九年级数学上册《相似三角形判定的预备定理》优秀教学案例

3.撰写一篇学习心得,总结自己在学习相似三角形过程中的收获和体会。
五、案例亮点
1.生活化的情景创设,激发学生学习兴趣
本案例以学生熟悉的生活场景为背景,将相似三角形的知识与实际生活相结合,让学生在轻松愉快的氛围中感受几何学的魅力。这种情景创设不仅有助于激发学生的学习兴趣,还能提高他们运用几何知识解决实际问题的能力。
4.通过课堂练习、课后作业和小组讨论等多种形式,巩固所学知识,提高学生的几何解题技巧。
(三)情感态度与价值观
1.培养学生对几何学的兴趣,激发他们探索数学知识的热情,树立学好数学的信心。
2.通过对相似三角形判定方法的学习,让学生认识到几何知识在生活中的重要性,提高他们对数学学科的价值认同。
3.培养学生的耐心和毅力,使他们学会面对困难和挑战时,保持积极的心态,勇于克服问题。
4.反思与评价,促进学生的自我提升
在教学过程中,本案例注重学生的反思与评价,让学生在学习过程中不断总结自己的优点和不足,为后续学习制定合理的学习计划。这种教学策略有助于提高学生的自主学习能力和自我提升意识。
5.重视知识的应用与拓展,提升学生的数学素养
本案例在教授相似三角形判定方法的基础上,强调其在实际问题中的应用,引导学生将所学知识拓展到生活实际和其他几何知识中。这种教学方式有助于提高学生的数学素养,培养他们运用几何知识解决复杂问题的能力。
在小组合作过程中,学生可以相互交流思路、分享经验,共同解决问题。同时,我会引导学生在小组内进行角色分工,确保每个成员都能积极参与,发挥自己的优势,共同为完成学习任务贡献力量。
(四)反思与评价
教学反思是提高教学效果的重要手段。在本章节的教学结束后,我将组织学生进行反思与评价,总结自己在学习相似三角形判定方法过程中的收获和不足。
相似三角形及判定

相似三角形及其判定一、知识导航1、相似三角形定义2、相似三角形判定二、典例精讲:精讲一、相似三角形定义:定义:对应角相等、对应边成比例的三角形,叫做相似三角形.相似用符号“S”表示,读作“相似于”,相似三角形对应边的比值叫做相似比(或相似系数).①记两个三角形相似时,和记两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上②全等是特殊的相似,相似比是1:1.全等要求形状相同与大小相等,而相似只是形状相同③由相似的定义,得相似三角形对应角相等,对应边成比例.④相似三角形有传递性:若AABC s AABC,AABC s AABC,则AABC AABC111222222333111333精讲二、相似三角形的判定:1、预备定理:平行于三角形一边的直线与另外两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、相似三角形的判定定理★判定定理1、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.例1、(1)如图,B,C,D三点共线,且AB丄BD,DE丄BD,AC丄CE.求证:A ABC s A CDE.D(2)如图B,C,D三点共线,且ZB=ZD=ZACE,求证:AABC s ACDE.变式:1、如图,A ABC中,Z ACB=60。
,点P是A ABC内一点,使得Z APB=Z BPC=Z CPA,求证:AAPC s ACPB.2、已知A PQR是等边三角形,ZAPB=120。
,指出图中的相似三角形并证明.例2、(1)已知:如图,A ABC的高AD,BE相交于点F,求证:AF-FD=BF-FE.⑵如图,已知在RtAABC中,ZACB=90°,CD是RtAABC的高.求证:CD2=AD-BD;BC2=AB-BD;AC2二AD-AB.变式:如图,已知在RtAABC中,ZACB=90°,CD是RtAABC的高.若E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF2=BF-CF.★判定定理2、如果一个三角形的两边与另一个三角形的两边对应成比例,且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.例3、(1)如图,已知AD-AB二AE-AC.贝y:①AADE s AACB;②AAEB s AADC正确的是;相似依据是.(2)如图,四边形ABEG、GEFH、HFCD都是边长为2的正方形.①求证:AAEF s ACEA;②求ZAFB+ZACB的值.(3)如图,A ABC是等边三角形,D为CB延长线上一点,E为BC延长线上点.①当BD、BC和CE满足什么条件时,A ADB s A EAC?②当A ADB s A EAC时,求Z DAE的度数.A变式:1、如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.OA-OC二OB-OD,则①②③④哪些对应相似,请写出.2、如图,已知Z BAE=Z CAD,AB=18,AC=48,AE=15,AD=40.3、如图,在A ABC和A ADB中,Z ABC=Z ADB=90。
相似三角形判定-预备定理

创设情景 明确目标
最简单的就是相似三角形.如果∠A =∠A1,∠B=∠B1
AC AB BC ,∠C=∠C1, = =AC , A1 B1 B1C1 1 1
那么△ABC与△A1B1C1相似吗?我们还有其他方法判定两 个三角形相似吗?
已知:DE//BC,且DE分别交AB、AC于D,E .猜 想:△ADE与△ABC有什么关系?并证明。 A 相似。 D B 12
DE AE BC AC
AD AE DE AB AC BC
3
F
B
∴ △ADE与△ABC的对应边成比例 ∴ △ADE ∽ △ABC
三角形的中位线截得的三角形与原三角形相似,
知识要点
平行于三角形一边的定理 A型 平行于三角形一边的直线和其他两边 相交,所构成的三角形与原三角形相似。
你还能画出其 他图形吗?
4. 如图,已知AB是⊙O的直径,C是AB延长线 上一点,BC=OB,CE是⊙O的切线,切点为 D,过点A作AE⊥CE,垂足为E,则 2 CD∶DE的值是_______ .
达标检测 反思目标 5. 如图5,已知菱形ABCD内接于△AEF, AE=5cm,AF=4cm,求菱形的边长.
20 解:求菱形的边长为 cm. 9
证明: ∵ DE // BC
E C
∴∠1 =∠B,∠2 =∠C
且 ∠A= ∠A
∴ △ADE与△ABC的对应角相等
过E作EF//AB交BC于F 又∵ DE // BC BF AE AD AE ∴ AB AC BC AC A
D 2 E C ∴ 四边形DBFE是平行四边形 ∴ DE=BF , ∴ ∴
即: E D 在△ABC中, 如果DE∥BC, C B 那么 AD AE DE , AB AC BC , (上比全, 全比上) AB AC BC AD AE DE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l1
A B
l2
D
l3
E
l4
AB 与 DE 相等吗? C BC EF
F l5
2021/2/4
1
6
平行线分线段成比例定理:
三条平行线截两条直线,所得的对
应线段的比相等.
符号语言:
∵ l3∥l4 ∥l5 ,
l1
l2
∴
AB DE , BC EF , BC EF AB DE
A
AB DE , AC DF
相似三角形的预备定理
回顾:
两个条件要 同时具备
相似多边形的判定:
对应角相等,对应边的比相等
的两个多边形为相似多边形.
2021/2/4
1
2
相似三角形的判定:
符号语言:
A
A′在△ABC和△A´B´C´中,
∵ A A , B B , C C
B
C B′
C′
AB BC CA. AB BC CA
B
C l5
l1 l2
DE
l3
A
l4
B
C
l5
平行于三角形一边的直线截其他 两边(或两边的延长线),所得的对 应线段的比相等.
2021/2/4
1
9
三角形的中位线截得的三角形与原三角形 是否相似?相似比是多少?
2021/2/4
1
A
D
E
B
C
10
提出问题:
如图,在∆ABC中,点D是边AB的 中点,DE∥BC,DE交AC于点E , ∆ADE与∆ABC有什么关系?
2021/2/4
1
5
探究:
如图,任意画两条直线l1、l2,再画三条与l1、 l2相交的平行线l3、l4 、l5.分别度量l3、l4 、l5 在
l1上截得的两条线段AB,BC和在l2上截得的两条 线段DE,EF的长度.
AB 与 DE 相等吗? BC EF
任意平移l5,再度量 AB,BC,DE,EF的长 度.
AC DF AB DE
B
D l3 E l4
BC EF , AC DF
AC DF , C BC EF
F l5
2021/2/4
1
7
练习:
如图,l3∥l4 ∥l5 ,请指出成比例的线段.
l1 l2
A
l3
D
E
l4
B
C l5
l1 l2
DE
l3
A
l4
B
C
l5
2021/2/4
1
8
l1 l2
A
l3
D
E
l4
1
13
探索发现:
变式1:如图,在△ABC中,点D为AB中点,
过点D作DE∥BC交AC于点E,则△ADE与
△ABC相似吗?
A
∵ DE∥BC
D
E
∴△ADE∽△ABC B
C
2021/2/4
1
14
变式2:如图,若点D是AB边 上的任意一点, 过点D作 DE∥BC,量一量,检验△ADE A 与△ABC是否相似。
相似三角形基本模型:“A”型和“X” 型
A
A
A
DE
B
C
B
AC
D B
D
E
B
l
C
D
E
D
l
A
C l
E
2021/2/4
E
B
C
这个两个模型在今后学习的过程中作用很大,你
可要认真1 噢!
24
相似三角形判定的预备定理:
平行于三角形一边的直线与其他两边(或 两边的延长线)相交。所构成的三角形与原 三角形相似。
A
D B
A
2021/2/4
D B
1
E
C
11
思考:
改变点D在AB上的位置,请猜想 ∆ADE与∆ABC是否相似? 说明理由.
2021/2/4
1
12
A
探索发现:
D
E
D
E
B
C
如图,在正△ABC中,点D为AB中点, 过点D作DE∥BC交AC于点E,则△ADE与 △ABC相似吗?
∵ DE∥BC
∴△ADE∽△ABC
2021/2/4
∴△ABC∽△A´B´C´
2、△ABC与△A´B´C´相似比为k, 则△A´B´C´与
△ABC相似比为 1
k
2021/2/4
1
3
对应角___相__等__, 对应边——成—比——例—的两个三
角形, 叫做相似三角形 .
D
A
回顾
B
CE
∠A=∠D, ∠B=∠6E, ∠C=∠F
AB AC BC DE DF EF
从上面的解答中,你获得了那些信息?
2021/2/4
1
18
A
D
E
E
D
A
B
C
预备定理
B
C
平行于三角形一边的直线和其他两边(或两
边的延长线)相交,所构成的三角形与原三角形 相似.
2021/2/4
1
19
相似三角形的预备定理:
平行于三角形一边的直线截其他两边所在的直 线,截得的三角形与原三角形相似。
DE//BC △ADE∽△ABC
1
22
练习:
A
2、如图, 已知DE∥BC,DF∥AC,请
尽可能多地找出图中的相似三角形, D
E
并说明理由。
1. DE∥BC 2.DF∥AC
ΔADE∽ΔABC
B
ΔDBF∽ΔABC
3.ΔADE∽ΔABC ΔDBF∽ΔABC
ΔADE∽ΔDBF
F
C
三角形相似
具有传递 性!
2021/2/4
1
23
这是两个极具代表性的
1
21
练习:
1、如图,已知EF∥CD∥AB,请尽可
能多地找出图中的相似三角形,并 O
说明理由。
E
F
1. EF∥AB
ΔOEF∽ΔOAB
C
D
A
B
2.EF∥CD
ΔOEF∽ΔOCD
3.AB∥CD
ΔOAB∽ΔOCD
或:ΔOEF∽ΔOAB ΔOEF∽ΔOCD
ΔOAB∽ΔOCD
三角形相似
具有传递 性!
2021/2/4
2021/2/4
E ∵ DE∥BC C ∴△ADE∽△ABC
F 6
△ ABC∽ △DEF
相似三角形的—对—应——角—相——等, 各对应边—成——比—例——。
相似比:AB BC AC
DE EF DF
=k
k1 两三角形相似 k=1 两三角形全等
2021/2/4
1
4
思考:
相似三角形与全等三角形有什么内 在的联系呢?
1 当两个三角形的相似比为 时,它们
是全等的,全等是相似的一种特殊情况。
A
D
E
B
C
A
B
C
D
E
E
D
A
B
C
2021/2/4
1
20
判定三角形相似的预备定理:(简称:平行线)
平行于三角形一边的直线和其他两边 相交,所构成的三角形与原三角形相似。
“A”型
“X”型
A
D
E
D
E
O
B (图1) C
B
(图2) C
符号语言: 在△ABC中, ∵ DE∥BC
∴△ADE∽△ABC
2021/2/4
A
DB
若DE ∥ BC则
∠DAE=∠BAC, ∠ADE=∠ A BC, ∠AED=∠ACB,
AD AEDE. AB AC BC
故△ADE∽ △ABC,
2021/2/4
17
B
A
C
E
若DE ∥ BC 则
∠A=∠D, ∠B=∠E, ∠ACB=∠DCE,
D
AB ACBC. DE DC CE
若△ABC∽ △DEC,
∵ DE∥BC
D
E
B
C
∴△ADE∽△ABC
2021/2/4
1
15
变式3:若点D是BA延长线上的
一点,过点D作DE∥BC,与CA的
延长线交于点E,△ADE与
△ABC相似吗?
E
D
A
∵ DE∥BC
G
F
∴△ADE ∽ △ABC B
C
2021/2/4
1
16
如图,已知DE ∥ BC,
则......
C E