复数乘法与乘方

合集下载

复数的运算

复数的运算
的虚部减虚部减去它的得的差是 3, 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。

复数运算法则

复数运算法则

复数运算法则复数是一个十分重要的数学概念,在很多种情况下都需要对其进行各种运算,复数运算法则就是专门用来解决这些运算问题的规则和方法。

一般来说,复数运算法则主要涉及到六大类:1、加减法:复数的加减法的计算原则是:实部加减,虚部加减。

比如:(2 + 3i) + (4 - 5i) = (2+4) + (3-5)i2、乘法:复数的乘法的计算原则是:实部乘虚部的和,实部的平方加虚部的平方的差。

比如:(2 + 3i) * (4 - 5i) = (2*4 + 3*(-5)) + (2*(-5) + 3*4)i3、除法:复数的乘法原则是:实部乘虚部的和,实部的平方减虚部的平方的差,除以实部乘虚部的差。

比如:(2 + 3i) / (4 - 5i) = (2*4 - 3*(-5)) / (2*(-5) - 3*4)i 4、复数乘方:复数乘方的原则是:复数的实部和虚部都相乘,然后求幂,再乘以复数的模的n次方。

比如:(2 + 3i)^3 = (2^3 + 3^3i) * (5^3)5、复数的模:复数的模定义为复数的实部和虚部的平方和的开方,比如:|2 + 3i| = (2^2 + 3^2) =136、复数的余弦定理:复数的余弦定理表达式为:(a + bi)^2 = (a^2 - b^2) + (2ab)i,这个定理可以用来解决很多问题,比如求复数的平方根之类的。

复数运算法则的应用复数运算法则不仅仅可以用在数学上,同样可以用在物理、电子、信号处理等等领域。

在物理中,复数可以用来描述力学领域的各种系统,例如震动振荡系统,复数运算法则可以用来解决这类系统的特定问题。

在电子学中,复数运算法则可以用来描述各种电路系统,例如滤波器系统,它可以用来解决一些特定的问题,比如电子设计中噪声抑制、信号削弱等,也可以用来求解一些复杂的电路系统。

此外,复数运算法则也可以用于信号处理领域,比如滤波、图像处理、数据压缩等,都可以使用复数运算法则来解决各种问题。

复数的四则运算——高中数学湘教版(2019)必修二

复数的四则运算——高中数学湘教版(2019)必修二
所得结果中把i2换成-1,再把实部、虚部分别合并.
2.两个复数的积仍为复数,可推广,任意多个复数的积仍然是一个复数.
微思考
in(n∈N+)有什么规律?
提示 i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N+),即in(n∈N+)是以4为周期的.
微练习
(1)(4-i)(3+2i)=
(2)由已知得z=(6+2i)-(1-3i)=5+5i.
探究二
复数的乘法与除法运算
例 2 计算下列各题:
(1)(1-2i)(3+6i);(2)(5-2i)
6
(4)( 3-i) ;(5)
4+4i
2
(2-i)
;(6)
2-i
;(3)-4-3i ;
2
1+i 8
.
1-i
分析按照复数乘法与除法的运算法则进行计算.
母实数化”,这个过程与“分母有理化”类似.
(2)复数除法运算的结果要进行化简,通常要写成复数的代数形式,即实部
与虚部要完全分开的形式.
变式训练 2 计算下列各题:
(1)(1+i)(1-i)+(-1+i);
(2)
1
2
+
3
i
2
3
2
+
1
i
2
(1+i);
(3)(-2+3i)÷(1+2i);
3+2i
(4)
2-3i
第3章
3.2
复数的四则运算
任何两个实数都可以相加,而且实数中的加法运算还满足交换律与结合律,

复数代数形式的乘除运算

 复数代数形式的乘除运算
如:|z+(1+2i)|表示:_________________
点(-1,-2)的距离
_______________.
x
探究点1 复数乘法运算
我们规定,复数乘法法那么如下:
设z1=a+bi,z2=c+di 是任意两个复数,那么它们的乘积为:
(a+bi)(c+di)= ac+adi+bci+bdi2
5
2
1

i2
(
1

i
)
i2 2
2 2

2

( )
[
]
( )
i
1
1

i
(
1

i
)
(
1

i
)
2
1
1 (
3

2
i
)(

32
i
)4
i

3



3

2
i 3

2
i (
3

23
i
)
(
2
i
) 1
3
注:复数的四则混合运算类似于分式的运算进行通分、
化简等.
1.(2015 新课标高考)若 a 为实数且 (2 ai )(a 2i ) 4i ,
6.(2015 上海高考)若复数 z 满足 3 z z 1 i ,
其中 i 为虚数单位,则 z=

【解析】设 z a bi (a, b R ) ,则
1 1
3(a bi ) a bi 1 i 4a 1且2b 1 z i

复数的四则运算

复数的四则运算
2 2 2 2
先把除式写成分式的形式,再把分子与分母 都乘以分母的共轭复数,化简后写成代数形式 (分母实数化).
例4.计算
1 2 i 解: (1 2i ) (3 4i ) 3 4i (1 2i)(3 4i) (3 4i )(3 4i ) 3 8 6 i 4 i 5 10 i 2 2 3 4 25 1 2 i 5 5
1.对虚数单位i 的规定
① i 2= -1; ②i 可以与实数一起进行四则运算,并且加、 乘法运算律不变.
2. 我们把形如a+b i(其中 a、b R )的数 称为 复数,
记作: z=a+bi, 其中a叫做复数 z的 虚部 实部 b叫做复数 的 . z 全体复数集记 C 为 .

2 3. 由于i2= (-i) = -1,知 i为-1的一个 平方根 、-1的另一个 平方根为-i
→ 练习.在复平面内,点 A 对应的复数为 2+3i,向量OB对 → 应的复数为-1+2i,则向量BA对应的复数为( A.1+5i C.-3-i B.3+i D.1+i )
→ → → 【解析】 ∵BA=OA-OB,
→ 对应的复数为(2+3i) -( -1+2i) =(2+1) +(3-2)i ∴BA =3+i.故选 B.
;
一般地,a(a>0)的平方根为 a 、 - a (a>0)的平方根为 a i
小数 实数 (b=0) 有理数 分数 正分数 零
负分数
无理数 不循环小数
4. 复数z=a+bi
(a、bR) 虚数 (b0)
特别的当 a=0 时 纯虚数
a=0是z=a+bi(a、bR)为纯虚数的 必要但不充分 条件.

高中数学知识点总结复数与复平面

高中数学知识点总结复数与复平面

高中数学知识点总结复数与复平面高中数学知识点总结:复数与复平面一、复数的定义及性质复数是由实数和虚数构成的。

一般表示为z=a+bi,其中a和b分别为实数部分和虚数部分,i为虚数单位,满足i²=-1。

复数的性质如下:1. 加法性质:(a+bi) + (c+di) = (a+c) + (b+d)i2. 减法性质:(a+bi) - (c+di) = (a-c) + (b-d)i3. 乘法性质:(a+bi)(c+di) = (ac-bd) + (ad+bc)i4. 除法性质:(a+bi)/(c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i二、复数的共轭及模对于一个复数z=a+bi,它的共轭复数表示为z*=a-bi,共轭复数z*的实部与z的实部相同,虚部与z的虚部相反。

复数的模(绝对值)表示为|z|=√(a²+b²),它表示复数与原点之间的距离。

三、复平面及复数的表示复平面是一个以实轴和虚轴构成的平面,可以用来表示复数。

实轴表示实数部分,虚轴表示虚数部分。

在复平面上,复数a+bi对应着平面上的一个点,点的横坐标为a,纵坐标为b。

这种表示方式称为直角坐标系表示法。

还有极坐标系表示法,有时候也会用到。

复数a+bi可以表示成模与幅角的形式,其中模表示为|r|=√(a²+b²),幅角表示为θ=tan⁻¹(b/a)。

四、复数的运算1. 复数的加法和减法可以直接按照实部和虚部相加减的规则进行运算。

2. 复数的乘法可以按照乘法性质计算,然后合并实部与虚部得到结果。

3. 复数的除法可以通过将除数的共轭乘以被除数,再除以除数的模的平方来计算。

五、复数的乘方和根1. 对复数z=a+bi进行乘方运算可以使用指数法则,即z^n =(a+bi)^n = r^n * (cos(nθ) + isin(nθ)),其中r为z的模,θ为z的幅角。

各种乘数公式范文

各种乘数公式范文乘数公式是指一种表示乘法运算的公式,可以方便地进行乘法计算。

下面是一些常见的乘数公式。

1.两个整数的乘法公式:a×b=b×a(乘法交换律)a×(b+c)=a×b+a×c(乘法分配律)(a+b)×c=a×c+b×c(乘法分配律)a×0=0(零乘法)a×1=a(乘法单位元)2.平方公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²(a+b)×(a-b)=a²-b²3.立方公式:(a + b)³ = a³ + 3a²b+ 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³(a + b) × (a² - ab + b²) = a³ + b³4.乘方公式:(a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴(a - b)⁴ = a⁴ - 4a³b + 6a²b² - 4ab³ + b⁴5.复数的乘法公式:(a + bi) × (c + di) = (ac - bd) + (ad + bc)i6.三角函数的乘法公式:sin(a + b) = sin a × cos b + cos a × sin bcos(a + b) = cos a × cos b - sin a × sin btan(a + b) = (tan a + tan b) / (1 - tan a × tan b)7.指数与对数的乘法公式:a^m×a^n=a^(m+n)log(base a) (mn) = log(base a) m + log(base a) n这些乘数公式都是在数学和物理学等领域中经常用到的重要公式,它们可以帮助我们简化乘法运算,加快计算速度,提高精确度。

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算一、考点梳理考点1 复数的加减法、乘法运算设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .几个常用结论(1)()i i 212=+,(2)()i i 212-=-,(3)()()22b a bi a bi a +=-+例1.(1)设i 是虚数单位,复数z 1=1+2i ,z 2=1﹣3i ,那么z 1+z 2=( )A .2﹣iB .2+iC .﹣2﹣iD .﹣2+i【分析】利用复数的加法运算即可求解.【解答】解:∵复数z 1=1+2i ,z 2=1﹣3i ,∴z 1+z 2=2﹣i ,故选:A .(2)复数(2+i )2=( )A .4﹣3iB .3﹣4iC .4+3iD .3+4i【分析】直接利用复数代数形式的乘除运算化简即可.【解答】解:因为(2+i )2=3+4i ,故选:D .(3)设z =i 3+1(i 是虚数单位),是z 的共轭复数,则﹣z 2=( )A .3﹣iB .1+3iC .﹣1﹣iD .1﹣2i【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:z =i 3+1=﹣i +1,∴=1+i,∴﹣z2=1+i﹣(1﹣i)2=1+i﹣1+2i﹣i2=1+3i,故选:B.(4)已知复数z1=2+i,z2=﹣1+2i,则z1•z2虚部为()A.﹣4B.4C.3D.3i【分析】利用复数的四则运算求出z1•z2,然后由复数的定义即可得到答案.【解答】解:因为复数z1=2+i,z2=﹣1+2i,所以z1•z2=(2+i)(﹣1+2i)=﹣2+4i﹣i+2i2=﹣2+3i﹣2=﹣4+3i,由复数的定义可知,z1•z2虚部为3.故选:C.(5)已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.4【分析】由题意利用实系数一元二次方程虚根成对定理,韦达定理,求得实数a.【解答】解:∵已知z=2+i是关于x的方程x2+ax+5=0的根,∴2﹣i是关于x的方程x2+ax+5=0的根,∴2+i+(2﹣i)=﹣a,解得a=﹣4,故选:B.【变式训练1】.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【变式训练2】.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i【分析】根据复数代数形式的运算法则,计算即可.【解答】解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.【变式训练3】.若Z=1+i,则|Z2﹣Z|=()A.0B.1C.D.2【分析】由Z=1+i,得到Z2﹣Z=(1+i)2﹣(1+i)=﹣1+i,再求出|Z2﹣Z|.【解答】解:∵Z=1+i,∴Z2﹣Z=(1+i)2﹣(1+i)=1+2i+i2﹣1﹣i=i2+i=﹣1+i,∴|Z2﹣Z|==.故选:C.【变式训练4】.若复数z=m(m﹣1)+(m﹣1)i是纯虚数,实数m=()A.1B.0C.0或1D.1或﹣1【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=m(m﹣1)+(m﹣1)i是纯虚数,∴m(m﹣1)=0,m﹣1≠0,∴m=0,故选:B.【变式训练5】.若2﹣i是关于x的实系数方程x2+ax+b=0的一根,则a+b=()A.1B.﹣1C.9D.﹣9【分析】题目给出的是实系数一元二次方程,2﹣i是该方程的一个虚根,则方程的另一个根为2+i,则根据韦达定理即可求出.【解答】解:因为2﹣i是关于x的实系数方程x2+ax+b=0的一根,根据实系数方程虚根成对原理知,方程x 2+ax +b =0的另一根为2+i ,根据韦达定理得2﹣i +2+i =﹣a ,(2+i )(2﹣i )=b ,∴a =﹣4,b =5,∴a +b =1,故选:A .考点2 复数的除法运算复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 几个常用结论(1)i i -=1, (2) i ii =-+11 , (3) i i i -=+-11 例2.(1)复数=( )A .﹣2﹣9iB .C .﹣D . 【分析】利用复数除法的运算法则,分子分母同乘以分母的共轭复数,即可求出所求.【解答】解:=, 故选:C .(2)复数(i 为虚数单位)的共轭复数是( ) A .i B .﹣i C .1+iD .1﹣i 【分析】利用复数的运算法则求出复数=i ,由此能求出复数(i 为虚数单位)的共轭复数. 【解答】解:复数====i ,∴复数(i 为虚数单位)的共轭复数为﹣i . 故选:B .(3)设z =+i ,则|z |=( ) A . B . C . D .2【分析】先求z ,再利用求模的公式求出|z |.【解答】解:z=+i=+i=.故|z|==.故选:B.(4)=()A.B.C.D.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:D.【变式训练1】.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【变式训练2】.已知z=,则=()A.﹣1+2i B.﹣1﹣2i C.﹣1+3i D.﹣1﹣3i【分析】先根据复数除法的运算法则进行化简,然后根据复数的共轭复数的定义进行求解即可.【解答】解:z==,所以=﹣1﹣3i,故选:D.【变式训练3】.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选:C.【变式训练4】.复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.考点3 解方程例3.(1)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.(2)已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.(3)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.(4)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.(5)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【变式训练1】.若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【变式训练2】.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【变式训练3】.若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【变式训练4】.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【变式训练5】.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.二、课堂检测1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【分析】利用复数的运算法则、纯虚数的定义即可判断出结论.【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.4.=()A.i B.C.D.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.5.若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.6.(多选)设复数z满足=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为﹣iC.在复平面内,z对应的点位于第二象限D.|z|=【分析】利用复数的运算法则化简z,再利用有关知识即可判断出正误.【解答】解:复数z满足=i,∴z===﹣﹣i,则z不是纯虚数,虚部为﹣,在复平面内,z对应的点位于第三象限,|z|==.故说法错误的是ABC.故选:ABC.7.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2【分析】利用复数的模的有关性质和运算,结合共轭复数的概念对各个选项逐一分析判断即可.【解答】解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.8.计算:(2+7i)﹣|﹣3+4i|+|5﹣12i|+3﹣8i=13﹣i.【分析】根据复数的基本运算法则和复数模长的定义进行化简即可.【解答】解:原式=2+7i﹣5+13+3﹣8i=13﹣i,故答案为:13﹣i.9.已知复数z满足1+2zi=i,其中i是虚数单位,则|z|=.【分析】先化简复数z,再直接求模即可.【解答】解:依题意,,故.故答案为:.10.设复数z满足=|1﹣i|+i(i为虚数单位),则复数z=﹣i.【分析】利用复数模的计算公式、共轭复数的定义即可得出结论.【解答】解:复数z满足=|1﹣i|+i=+i=+i,则复数z=﹣i,故答案为:﹣i.11.已知复数在z1=a+i,z2=1﹣i,a∈R.(Ⅰ)当a=1时,求z1•的值:(Ⅱ)若z1﹣z2是纯虚数,求a的值;(Ⅲ)若在复平面上对应的点在第二象限,求a的取值范围.【分析】(Ⅰ)把a=1代入,再由复数代数形式的乘除运算化简得答案;(Ⅱ)利用复数代数形式的减法运算化简,再由实部为0求解;(Ⅲ)利用复数代数形式的乘除运算化简,再由实部小于0且虚部大于0求解.【解答】解:(Ⅰ)当a=1时,z1•=(1+i)(1+i)=1+i+i﹣1=2i;(Ⅱ)由z1﹣z2=(a+i)﹣(1﹣i)=a﹣1+2i是纯虚数,得a﹣1=0,即a=1;(Ⅲ)由=在复平面上对应的点在第二象限,得,即﹣1<a<1.12.已知:复数z=(1+i)2+,其中i为虚数单位.(1)求z及|z|;(2)若z2+a,求实数a,b的值.【分析】(1)利用复数代数形式的乘除运算化简z,再由复数模的计算公式求解;(2)把z代入z2+a,整理后利用复数相等的条件列式求解.【解答】解:(1)∵,∴;(2)由z2+a,得:(﹣1+3i)2+a(﹣1﹣3i)+b=2+3i,即(﹣8﹣a+b)+(﹣6﹣3a)i=2+3i,∴,解得.。

高中数学复数的乘方与开方计算与应用技巧

高中数学复数的乘方与开方计算与应用技巧复数是由实数和虚数构成的数,它在高中数学中有着重要的地位。

复数的乘方与开方计算是复数运算中的基本操作,掌握了这些技巧,能够帮助我们更好地解决数学问题。

本文将以具体的题目为例,详细介绍复数的乘方与开方计算与应用技巧。

一、复数的乘方计算复数的乘方计算是指将复数自乘若干次,求得结果的操作。

在计算复数的乘方时,我们需要注意以下几个关键点。

1. 乘方的定义首先,我们需要了解乘方的定义。

对于任意一个复数a+bi,其中a为实部,b为虚部,a+bi的n次方定义为:(a+bi)^n = (a+bi)(a+bi)(a+bi)……(a+bi)其中,n为自然数。

2. 使用二项式定理在计算复数的乘方时,我们可以使用二项式定理。

二项式定理是指对于任意实数a、b和自然数n,有以下公式成立:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + …… + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n其中,C(n,k)表示组合数,表示从n个元素中选取k个元素的组合数。

3. 利用公式化简在具体计算复数的乘方时,我们可以利用公式对表达式进行化简。

例如,计算(1+i)^4,我们可以利用二项式定理展开:(1+i)^4 = C(4,0)1^4*i^0 + C(4,1)1^3*i^1 + C(4,2)1^2*i^2 + C(4,3)1^1*i^3 +C(4,4)1^0*i^4化简后得:(1+i)^4 = 1 + 4i - 6 - 4i + 1最终结果为-3。

通过以上几个关键点,我们可以更好地计算复数的乘方。

在解决实际问题时,我们可以通过将问题转化为复数的乘方计算来简化计算过程。

二、复数的开方计算复数的开方计算是指将复数开方得到结果的操作。

在计算复数的开方时,我们需要注意以下几个关键点。

1. 复数的模和辐角在计算复数的开方时,我们需要将复数转化为指数形式。

复数的运算

2 2
(a bi) (c di) (a c) (b d )i
(a c) (b d )
复数乘法:按二项式相乘法则进行, 把i2换成-1,然后把实部和虚部分别 合并.
Z1〃Z2=(a+bi)〃(c+di) =ac+adi+bci+bdi2 =(ac-bd)+(ad+bc)i
复数的运算
复数的几种表示方法:
代数表示: Z=a+bi(a,b∈R) 几何表示:复平面上的点Z(a,bx
o z 即表示z=a + bi
定义
设z1=a+bi,z2=c+di,加法规则
z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i 两个复数的和仍然是复数,实部与实部 相加,虚部与虚部相加. 例题
1.(5 + 4 i)- (3 + 2 i)= (5-3)+(4-2)i =2+2i
2. (5 – 6 i) + (-2 - i) - (3 + 4 i) =(5-2-3) +(- 6-1-4 ) i =-11i
几何意义
两个复数相减法,即为 它们对应的向量相减.
oz1 oz2 z2 z1
复数乘方:用二项式定理展开计算.
复数除法:分子、分母同乘以分母的 共轭虚数,根据z〃z =|z|2,使分母 实数化。
z1 a bi (a bi )(c di ) z2 c di (c di )(c di ) ac bd bc ad 2 i 2 2 2 c d c d
1.已知f ( z) 1 z, z1 2 3i, z2 5 i, 求f ( z1 z2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律:当n N i4n (i4 )n 1
i4n i4n1 i4n2 i4n3 0
i4n1 i(i4 )n i
i4n2 i2 (i4 )n i2 1
i4n3 i3 (i4 )n i3 i
例4计算: z 1 i i 2 i 3 i 2006
练习1: 复平面内点A、B分别对应复数 zA=2+5i 和 zB=3-2i ,则向量AB 对应的复数是
1-7i
结论1:
复平面内点A、B分别对应复数 zA 和 zB ,
则向量 AB 对应的复数是 zB -zA
一讲一练2: 复平面内点A、B对应的复数分别为 zA=3+2i 和 zB= -2+4i,则A、B间的距离是 29
课堂小结
一. 数学知识:(1)复数乘法运算 (2)复数乘方运算
二. 数学方法: 虚数单位i的周期性应用
课堂练习:
计算(1 i )2010 2
求值:i 2n3 i 2n1 i 2n1 i 2n3
复数代数形式的乘法运算
复数与平面向量的性质类比
性质
平面向量
复数
向量(a,b)的
复数的乘法
知识回顾
1.复数加减法的运算:
z1 z2 (a c) (b d)i
2.复数加减法运算的几何意义:
复数对应向量满足平行四边形法则
3.两个复数相减的模|z1-z2|的应用
讲解新课
1.复数的乘法:
(a bi)(c di) ac adi bci bdi2
分析: A(3,2), B(2,4)
| AB | (3 2)2 (2 4)2 29.
另解:| AB | | zB zA | | (2 4i) (3 2i) |
| 5 2i | (5)2 22 29.
练习2: 复平面内点A、B对应的复数分别为 zA=6+i
和 zB= 2-2i,则A、B间的距离是5
结论2:
复平面内点A、B对应的复数分别为 zA、zB, 则A、B间的距离是 | zA zB |
一讲一练3:
1.根据复数的几何意义,满足条件 | z (1 i) | 1 的复数z在复平面上对应的点的轨迹是 以(1,1)为圆心,半径为1的圆.
2. 满足条件 | z (2 3i) | 2 的复数z在复 平面上对应的点的轨迹是 以(2,3)为圆心,半径为2的圆.
(a c,b d) (a c) (b d)i
一讲一练1: 复平面内点A、B分别对应复数 zA=2-3i 和 zB=-3+2i ,则向量 BA 对应的复数是
5 - 5i
分析:BA OA OB (2,3) (3,2) (5,5)
另解:其对应复数 (2-3i) -(-3+2i)= 5-5i
规定:i0 1
课堂练习:
已知 z1 1 i , z2 2 i
求 z16 , (z1 z2 )2
应用举例
例3、计算 in (n 1,2,3,,8) 的值,观
察运算结果并找出规律
解:i1 i i2 1 i3 i i4 1
i5 i i6 1 i7 i i8 1
证明:(1()12)
3 2
(1
1( 2
1 3 22
3
i2)3
i
)

(

1 2

3 i)2 2
1 2
3 2
i

(
1 2
)2
32 2
i )12 ( 2
1223i
3( 2
i
3 2)
i
)2
1 2
0;
3 2
i
1( 4
(
1 3 122)2
3
i 2
(
3i)( 1
43
i
2 )2


3 i) 2
13

1
22
44
课堂练习:计算 (1)-2i(4 7i)(1 1 i)
24
(2)(a bi)(a bi)
讲解新课
2、复数的乘方 在复数集C中z,z1,z2∈C及m,n∈N*有:
zmzn=zm+n, (zm)n=zmn, (z1z2)n=z1nz2n.
1 i i2 i .
z 1 i i 2 i 3 i 2006

1 i 2007 1 i

1 1
i i

(1 i)2 (1 i)(1
i)
2i 2

i
.
课堂练习:
1、当n i2 i3 i4 i2010

模为 a2 b2
不能比较大小 大小的比较 模可以比较大小
复数z a bi
的模为 a2 b2
不能比较大小 模可以比较大小
几何意义 加法运算 减法运算
与坐标平面
与复平面的
的点一一对应
点一一对应
(a,b)(c,d) (a bi)(c di)
(a c,b d) (a c) (b d)i (a,b)(c,d) (a bi)(c di)
解: i 4n i 4n1 i 4n2 i 4n3 1 i i2 i31i 1i 0 ,
z 501(1 i i 2 i 3 ) i 2004 i 2005 i 2006
解2:
i 4501 i 45011 i 45012
应用举例
例1、计算 (1)(1 i)(3 2i) 3 3i 2i 2i2
1 5i
(2)(a bi)2 a2 2abi b2i2
a2 2abi b2
a2 b2 2abi
例2 设 1 3 i ,求证:
22
(1)1 2 0;(2) 3 1.
(ac bd) (bc ad)i
说明:(1) 两个复数的积仍然是一个复数;
(2) 把 i 2换成-1,然后实、虚部分别合并.
(3) 即对于任何z1 , z2 ,z3 ∈C,有
z1 z2 z2 z1 , (z1 z2 ) z3 z1 (z2 z3 ), z1(z2 z3 ) z1z2 z1z3.
相关文档
最新文档