五大类吸声材料及吸声结构简介

合集下载

第三讲 吸声材料和吸声结构.ppt

第三讲 吸声材料和吸声结构.ppt

第三讲 吸声材料和吸声结构第一节 吸声材料和吸声结构概述一.定义:吸声材料和吸声结构,广泛地应用于音质设计和噪声控制中。

对建筑师来说,把材料和结构的声学特性和其他建筑特性如力学性能、耐火性、吸湿性、外观等结合起来综合考虑,是非常重要的。

通常把材料和结构分成吸声的、或隔声的、或反射的,一方面是按材料分别具有较大的吸声、或较小的透射、或较大的反射,另一方面是按照使用时主要考虑的功能是吸声、或隔声、或反射。

但三种材料和结构没有严格的界限和定义。

吸声材料:材料本身具有吸声特性。

如玻璃棉、岩棉等纤维或多孔材料。

吸声结构:材料本身可以不具有吸声特性,但材料经打孔、开缝等简单的机械加工和表面处理,制成某种结构而产生吸声。

如穿孔FC 板、穿孔铝板吊顶等。

在建筑声环境的设计中,需要综合考虑材料的使用,包括吸声性能以及装饰性、强度、防火、吸湿、加工等多方面,根据具体的使用条件和环境综合分析比较。

二.作用吸声材料最早应用于对听闻音乐和语言有较高要求的建筑物中,如音乐厅,剧院,播音室等,随着人们对居住建筑和工作的声环境质量的要求的提高,吸声材料在一般建筑中也得到了广泛的应用。

三.分类:吸声材料和吸声结构的的种类很多,根据材料的不同,可以分为以下几类吸声材料(结构)多孔吸声材料共振吸声结构特殊吸声结构纤维状吸声材料颗粒状吸声材料泡沫状吸声材料薄板共振结构亥姆霍兹共振吸声器穿孔吸声结构薄膜共振结构吸声尖劈空间吸声体第二节多孔吸声材料一.吸声原理多孔吸声材料中有许多连通的间隙或气泡,声波入射时,声波产生的振动引起小孔或间隙的空气运动,由于与孔壁或纤维表面摩擦和空气的粘滞阻力,一部分声能转变为热能,使声波衰减;其次,小孔中空气与孔壁之间还不断发生热交换,也使声能衰减。

二.吸声特性主要吸收中、高频声三.多孔性吸声材料必须具备以下几个条件:(1)材料内部应有大量的微孔或间隙,而且孔隙应尽量细小且分布均匀;(2)材料内部的微孔必须是向外敞开的,也就是说必须通过材料的表面,使得声波能够从材料表面容易地进入到材料的内部;(3)材料内部的微孔一般是相互连通的,而不是封闭的。

吸声材料的结构及其发展

吸声材料的结构及其发展

吸声材料的结构及其发展随着工业和城市化的发展,城市噪音问题愈加突出,吸声材料的需求量也随之增多。

在各种噪音环境中,如机房、电力设备房、音乐会厅、广播室、录音室、办公室等,吸声材料都起着重要的作用。

吸声材料不仅要有较高的吸音性能,还要在多方面满足使用者的需求,因此对吸声材料的结构和性能也越来越高。

吸声材料的结构开孔式开孔式吸声材料在材料表面或材料深处形成了一定形状和尺寸的孔洞,材料的吸声作用是通过声波作用于孔洞内部来实现的。

孔的尺寸和孔的形状对吸声性能有很大的影响。

柔性多孔吸声材料此种材料结构通常都具有柔性,即能够在吸声作用的同时具备减小机械振动的效果。

常见的材料有海绵、泡沫合成材料等,这些材料常常用于各类隔音、隔热、隔震、减震等方面。

薄膜式薄膜式吸声材料是一种功能性薄膜材料,它通过在多孔介质、金属或晶体结构表面覆盖或加工出一定规则的几何图形,在某种声波频率下使声波发生反射或干涉相消而导致吸声的效果。

吸声材料的发展纳米吸声材料纳米技术的发展,为吸声材料提供了更好的性能和更多的选择。

纳米材料由于其材料尺寸小,表面积大,对声波的散射和吸收作用显著,使之成为吸声材料领域的一种重要发展方向。

生物基材料传统吸声材料多为人造材料,但随着对生态环境的关注和生物技术的进步,利用生物材料代替传统吸声材料逐渐成为趋势。

生物基材料具有良好的生物相容性、自我修复等特性,在城市生活噪音治理、生态建筑等方面具有广泛的应用前景。

吸声材料的结构和发展都需要不断创新和突破。

吸声材料从传统的开孔式、泡沫型、布贴型演变到更为复杂的薄膜型,从纳米技术的应用到生物基材料的开发都为吸声材料的近期和远期发展带来了更多的新机遇。

建筑声学第三章 吸声材料和吸声结构

建筑声学第三章 吸声材料和吸声结构
四 特殊吸声结构
1、空间吸声体。2、尖劈—强吸声结构(声阻逐渐加大)。
2020/4/24
18
第一节 吸声材料(结构)的分类及吸声特性
3、可变吸声结构 利用改变吸声面和反 射面的方法调整吸声 量(如右图)
4、空气吸收。由于空气的热传导与粘滞性,以及空气中水分 子对氧分子振动状态的影响等造成。声音频率越大,空气吸 收越强烈(一般大于2KHz将进行考虑)。
有时使用平均吸声系数粗略衡量材料的吸声能力。 平均吸声系数:100Hz-5000Hz的1/3倍频带吸声系数的平均值 吸声量:对于平面物体A= S, 单位是平米(或塞宾)
对于单个物体,表面积难于确定,直接用吸声量
2020/4/24
3
概述
吸声量或吸声系数的测量:
1、混响室法
T=0.161V(1/T2-1/T1)/S A= 0.161V(1/T2-1/T1)/n
15
第一节 吸声材料(结构)的分类及吸声特性
狭缝吸音砖内如放入吸声材料则 增大吸声效果 右图为美国某音乐教室。 下图为狭缝吸音砖放入玻璃棉的 情况。
2020/4/24
16
第一节 吸声材料(结构)的分类及吸声特性
共振吸声效果和吸声腔内加入吸声材料 (玻璃棉)后的吸声效果
2020/4/24
17
第一节 吸声材料(结构)的分类及吸声特性
矿棉、玻璃棉、 泡沫塑料、毛毡
2020/4/24
穿孔板、薄膜、薄板
空间吸声体、可变 吸声体、强吸声体、家
具、空气、洞口等
6
第一节 吸声材料(结构)的分类及吸声特性
一 、多孔吸声材料的吸声原理
多孔吸声材料类型:玻璃棉、岩棉、泡沫塑料、毛毡 等具有良好的吸声性能,不是因为表面粗糙,而是因 为多孔材料具有大量的内外连通的微小孔隙和孔洞。

吸声

吸声

第五节噪声控制技术——吸声一、材料的声学分类和吸声特性(一)、吸声材料的分类吸声材料按其吸声机理来分类,可以分成多孔性吸声材料及共振吸声结构两大类。

1.多孔性吸声材料①无机纤维材料,如玻璃棉、岩棉及其制品。

②有机纤维材料,如棉麻植物纤维及木质纤维制品(软质纤维板、木丝板等)。

③泡沫材料,如泡沫塑料和泡沫玻璃、泡沫混凝土等。

④吸声建筑材料,如膨胀珍珠岩、微孔吸声砖等。

2.共振吸声结构由于共振作用,在系统共振频率附近对入射声能具有较大的吸收作用的结构,称为共振吸声结构。

穿孔板吸声结构微穿孔板吸声结构薄板和薄膜吸声结构等。

(二)、吸声系数和吸声量1.吸声系数吸声系数定义为材料吸收的声能与入射到材料上的总声能之比,可用吸声系数来描述吸声材料或吸声结构的吸声特性。

计算式为:式中:Ei—入射声能;Ea—被材料或结构吸收的声能;Er—被材料或结构反射的声能;r—反射系数。

a=0,表示无吸声作用;a=1,表示完全吸收。

一般的材料或结构的吸声系数在0-1之间,a值越大,表示吸声性能越好,它是目前表征吸声性能最常用的参数。

吸声系数是颇率的函数,同一种材料,对于不同的频率,具有不同的吸声系数。

平均吸声系数a:中心频率125,250,500,1 000,2 000,4 000六个倍频程的吸声系数的平均值,称为平均吸声系数a。

2.吸声量吸声材料的实际吸声量按下式计算:A=aS (7-2)吸声量的单位是m2。

房间总的吸声量A可以表示为:右式第一项为所有壁面吸声量的总和,第二项是室内各个物体吸声量的总和。

二、多孔吸声材料(一)、多孔吸声材料的吸声原理内部具有无数细微孔隙,孔隙间彼此贯通,且通过表面与外界相通,当声波入射到材料表面时,一部分在材料表面上反射,一部分则透入到材料内部向前传播。

在传播过程中,引起孔隙中的空气运动,与形成孔壁的固体筋络发生摩擦,由于粘滞性和热传导效应,将声能转变为热能而耗散掉。

声波在刚性璧面反射后,经过材料回到其表面时,一部分声波透回空气中,一部分又反射回材料内部,声波的这种反复传播过程,就是能量不断转换耗散的过程,如此反复,直到平衡,这样,材料就“吸收”了部分声能。

吸声材料有哪些

吸声材料有哪些

吸声材料有哪些
吸声材料是用于消除声音反射和减少噪音传播的建筑材料。

常见的吸声材料包括以下几种:
1. 吸音棉:吸音棉是一种多孔材料,具有良好的吸声性能。

通过其多孔结构,吸音棉能够吸收声音的能量,减少声波的反射。

吸音棉通常用于各类音频室、工业厂房、录音棚等场所。

2. 吸音板:吸音板的主要成分是硬质纤维板,经过特殊工艺加工制成。

吸音板能够利用其多孔结构吸收空气中的声波能量,减少声音的反射。

吸音板常用于会议室、电影院、音乐厅等场所。

3. 吸音砖:吸音砖是一种以橡胶为主要原料的吸声材料。

其独特的结构和材料能够有效消除声音的反射和传播,减少噪音污染。

吸音砖通常用于家庭装修和商业建筑中。

4. 吸音泡沫:吸音泡沫是一种具有开放细胞结构的发泡材料,具有较好的吸声性能。

吸音泡沫能够有效吸收声波能量,降低噪音传播。

吸音泡沫常用于电视录音棚、办公室、家庭影院等场所。

5. 铝蜂窝板:铝蜂窝板是一种由铝合金制成的板材,表面带有蜂窝状的结构。

铝蜂窝板具有良好的吸声效果和轻质的特点,广泛应用于车辆、船舶等交通工具以及建筑墙体和隔音材料。

6. 声学玻璃:声学玻璃是一种特殊结构的玻璃材料,具有良好
的吸声性能。

声学玻璃的结构能够有效阻挡和折射声波,减少噪音的传播。

声学玻璃常用于大型建筑物和音响设备中。

以上是一些常见的吸声材料,它们通过吸收、折射声波能量和降低声音反射来实现减少噪音传播和改善音质的效果。

不同的场所和应用需要选择适合的吸声材料来达到最佳的吸音效果。

吸声材料规格

吸声材料规格

吸声材料规格吸声材料是一种用于消除或减轻环境噪音的材料,它能吸收声音,减少其传播和反射,从而起到降噪的作用。

在建筑、工业设备、航空航天等领域,吸声材料都有着广泛的应用。

本文将介绍吸声材料的规格和相关要求。

一、吸声材料的规格1. 材料种类:吸声材料根据不同的制备方法和用途可分为吸声泡沫、吸声棉、吸声板等不同种类。

2. 形状尺寸:吸声材料的形状多样,包括片状、卷状、块状等。

其尺寸一般为长宽厚三个方向的尺寸。

3. 表面特性:吸声材料的表面特性对其吸声效果有着重要的影响,包括表面形状、粗糙度等。

通常要求表面具有一定的开放孔隙结构,能够有效地吸收声波。

4. 密度:不同的吸声材料其密度差异较大,一般要求密度适中,既能够保证良好的吸声效果,又能够满足其它性能要求。

5. 吸声性能:吸声材料的主要功能是吸收声波,因此其吸声性能是其最重要的规格之一。

吸声性能包括吸声系数、频率特性等。

6. 燃烧性能:吸声材料的燃烧性能对其在建筑和航空航天等领域的应用有着重要的影响,通常要求其具有一定的阻燃性能。

7. 耐久性能:吸声材料在使用过程中需要具有一定的耐久性能,包括抗压性能、耐老化性能等。

二、吸声材料的相关要求1. 生产工艺:吸声材料的生产工艺直接影响其各项性能指标,生产工艺应具备一定的技术水平和设备条件,确保产品的质量稳定可靠。

2. 环保要求:吸声材料在使用过程中需要符合环保要求,不能含有对人体有害的物质,不能对环境造成污染。

3. 应用领域要求:不同的应用领域对吸声材料的性能有着不同的要求,如建筑领域对吸声材料会有防水、耐候等方面的要求;航空航天领域对吸声材料会有耐高温、轻质等方面的要求。

4. 产品标准:吸声材料的产品标准是衡量其品质的重要指标,各国家及行业都有相关的标准和规范,生产吸声材料的企业需要符合相应的标准要求并进行产品认证。

5. 成本控制:吸声材料的生产成本直接影响其市场竞争力,生产企业需要在保证产品质量的前提下尽量控制成本,提高产品的性价比。

吸音材料的吸音原理

吸音材料的吸音原理

吸音材料的吸音原理吸音材料是一种能够减少声波反射和吸收噪音的材料。

它在许多领域中被广泛应用,例如建筑、汽车、航空航天等。

吸音材料的吸音原理是通过改变声波的传播路径和能量分布来实现的。

一般来说,声波在遇到材料时会发生反射、透射和吸收等现象。

而吸音材料主要是通过吸收声波的能量来减少反射和传播。

吸音材料的吸音原理可以从以下几个方面来解释:1. 多孔结构:吸音材料通常具有多孔的结构,这种结构能够使声波在材料中发生多次反射和散射,从而增加声波与材料之间的接触面积,提高能量的吸收效率。

多孔结构的材料通常具有较大的表面积和较小的孔隙尺寸,这样可以增加声波的散射和摩擦,进而增加材料对声波能量的吸收。

2. 摩擦耗能:吸音材料中的多孔结构可以增加声波与材料之间的接触面积,使声波在材料中发生多次反射和散射。

这种多次反射和散射会引起声波与材料之间的摩擦,从而将声波的能量转化为热能。

这种摩擦耗能的过程可以有效地减少声波的反射和传播。

3. 惯性耗能:吸音材料中的多孔结构还可以增加声波与材料之间的接触面积,使声波在材料中发生多次反射和散射。

这种多次反射和散射会引起材料中的空气和材料颗粒的振动,从而将声波的能量转化为材料的惯性能量。

这种惯性能量的转化可以有效地减少声波的反射和传播。

4. 声波吸收层:吸音材料中通常包含一层特殊的吸音材料,这一层材料能够吸收特定频率范围内的声波能量。

这种吸音材料通常具有较好的吸声性能,可以将声波的能量转化为热能或其他形式的能量,从而减少声波的反射和传播。

吸音材料的吸音原理主要包括多孔结构、摩擦耗能、惯性耗能和声波吸收层等。

这些原理使得吸音材料能够有效地吸收声波的能量,减少声波的反射和传播。

吸音材料的应用可以提高环境的舒适性,减少噪音对人体的影响,促进工作和生活的质量。

因此,吸音材料在各个领域中的应用前景非常广阔。

建筑吸声材料与吸声结构

建筑吸声材料与吸声结构

建筑吸声材料与吸声结构引言:在现代建筑中,随着城市化的发展和人口的增加,噪音污染已经成为困扰人们生活的一大问题。

无论是住宅、办公室还是公共场所,都需要采取措施来降低噪音对人们的影响。

建筑吸声材料和吸声结构是一种被广泛应用的方法,可以有效减少噪音对室内的传播,提供更加舒适和安静的环境。

一、建筑吸声材料的分类1.打孔板:打孔板是一种由金属、木材或塑料等制成的材料,表面有均匀分布的孔洞,通过孔洞来吸收和分散噪音的能量。

打孔板通常具有较高的反射率,可以有效降低声波的反射和传播。

同时,打孔板的材料可以根据需要选择,比如金属打孔板具有较强的耐久性和耐火性能,适合用于室外环境。

2.纤维吸声材料:纤维吸声材料通常由岩棉、玻璃棉等材料制成,具有较好的吸声和隔声特性。

它们可以通过增加表面积来提高吸声效果,比如采用薄纤维纤维板或纤维毡,使得声波在纤维间反复散射和吸收。

此外,纤维吸声材料还可以用于构建隔音墙体,从而将噪音隔离在不同区域。

二、建筑吸声结构的设计与应用1.吸声天花板:吸声天花板是建筑中常见的一种吸声结构。

它可以通过在天花板上覆盖吸声材料,如吸声板或纤维吸声材料,来降低室内噪音的反射和传播。

此外,吸声天花板还可以选择具有不同形状和表面纹理的材料,以达到更好的吸音效果。

2.吸声墙壁:吸声墙壁是另一种常见的吸声结构。

它可以采用纤维吸声材料或打孔板等材料进行覆盖,从而减少室内噪音的反射和传播。

吸声墙壁可以用于隔音室、电影院等需要严格控制噪音的场所。

3.吸声地板:吸声地板是通常被忽视的一种吸声结构。

它可以通过选择有弹性的材料,如橡胶地板或软质木地板,来减少脚步声和其他噪音的传播。

吸声地板还可以通过在地板下铺设隔音层,如隔音绒或泡沫塑料,来降低噪音的穿透。

4.隔音窗户:隔音窗户是一种专门设计的窗户结构,旨在减少室外噪音的传播。

它可以采用双层或三层玻璃窗,并在中间填充空气或隔音膜,以提高窗户的隔声效果。

此外,隔音窗户还可以采用特殊的框架和密封材料,以防止噪音通过窗框和缝隙进入室内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五大类吸声材料及吸声结构简介
1、多孔吸声材料
(1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。

聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。

(2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。

材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。

微孔向外敞开,使声波易于进入微孔内。

(3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。

a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。

但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。

常用的多孔材料的厚度为:
玻璃棉,矿棉50—150mm
毛毡4---5mm
泡沫塑料25—50mm
b.材料容重的影响
改变材料的容重可以间接控制材料内部微空尺寸。

一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。

合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。

c.背后空气层的影响
多空材料背后有无空气层,对于吸声特性有重要影响。

大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。

材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料
离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。

d.材料表面装饰处理的影响大多数吸声材料在使用时常常需要进行表面装饰处理.常见的方法有:表面钻孔开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。

这些方法都将影响材料的吸声特性。

半穿孔的矿棉吸声板增加了材料暴露在声波中的面积,既增加了有效吸声面积,因此提高了材料的吸声特性。

粉刷油漆等于在材料表面上加了一层高流阻的材料,将会影响材料的吸声特性,特别是在高频段影响更显著。

采用金属网,玻璃布和低流阻的材料或选择穿孔率大于20%的穿孔板做护面层时,对材料的吸声性能影响不大。

若穿孔率小于20%时,对高频段的吸声会有影响,低频影响不大。

2、穿孔板共振吸声结构
采用穿孔的石棉水泥、石膏板、硬质纤维板、胶合板以及钢板、铝板,都可作为穿孔板共振吸声结构,在其结构共振频率附近,有较大的吸收,适于中频,穿孔板的共振频率的公式,即:
fo=CP/Zπ L(T+δ)
fo—穿孔板的共振频率,HZ
C—声速,CM/S
L—后空气层厚度,CM
t—板的厚度,CM
δ—孔口末端休整量,CM
P—穿孔率,即穿孔面积与总面积之比
3、薄膜吸声结构
包括皮革、人造革、塑料薄膜等材料,具有不透气、柔软、受张拉时有弹性等特性,吸收共振频率附近的入射声能,共振频率通常在200~1000HZ范围,最大吸声系数约为0.3~0.4,一般把它作为中频范围的吸声材料。

如果在薄膜的背后空腔内填放多孔材料,这时的吸声特性取决于膜和多孔材料的种类以及薄膜的装置方法。

4、薄板吸声结构
把胶合板、硬质纤维板、石膏板、石棉水泥板等板材周边固定在框架上,连同板后的封闭空气层,构成振动系统,其共振频率多在80~300HZ,其吸声系数约为0.2~0.5,可以作为低频吸声结构。

决定薄板吸声结构的吸声性能的主要因素有:
(1)薄板质量m的影响增加板的单位面积重量,一般可以使其共振频率向低频移动。

而选用质量小的,不透气的材料如皮革,有利于共振频率向高频方向移动。

(2)背后空气层厚度的影响改变空气层的厚度和改变板的质量一样,共振频率也会发生变化。

在空气层中填充多孔材料,可使共振频率附近的吸声系数有所提高。

(3)板后龙骨构造及板的安装方式的影响由于薄板吸声结构有一定的低频吸声能力,而对中高频吸声差,因此在中高频时就具有较强的反射能力。

能增加室内声能的扩散。

通过改变龙骨构造何不同的安装方法,设计出各种形式的反射面,扩散面和吸声---扩散结构。

5、特殊吸声结构
(1)帘幕
帘幕是具有通气性能的纺织品,具有多孔材料的吸声特性,由于较薄本身作为吸声材料使用是得不到大的吸声效果的。

如果将它作为帘幕,离开墙面或窗洞一定距离安装,恰如多孔材料的背后设置了空气层,因而在中高频就能够具有一定的吸声效果。

当它离墙面1/4波长的奇数倍距离悬挂时就可获得相应频率的高吸声量。

(2)空间吸声体
将吸声材料作成空间的立方体如:平板形,球形,圆锥形棱锥形或柱形,使其多面吸收声波,在投影面积相同的情况下,相当于增加了有效的吸声面积和边缘效应,再加上声波的衍射作用,大大提高了实际的吸声效果,其高频吸声系数可达1.40.在实际使用时,根据不同的使用地点和要求,可设计各种形式的从顶棚吊挂下来的吸声体。

6、如何正确布置吸声材料
(1)装置吸声材料时,如穿孔板,应结合灯具及室内装修统一考虑,进行分块组合,尽可能使吸声材料均匀分布,有利声场的均匀。

(2)要使吸声材料充分发挥作用,应将它布置在最容易接触声波和反射次数最多的表面上,如顶棚,顶棚与墙,墙与墙交接处1/4波长以内的空间等处。

(3)观众厅的后墙,挑台栏杆处,反射回来的声音可能产生回声干扰,常需在后墙的墙裙以上部位的墙面和挑台栏杆处,布置高吸声系数的材料。

(4)吸声材料分散布置,比集中式布置有利于声场扩散和改善音质条件。

(5)一般房间两相对墙面的总吸声量应尽量接近,有利于声场扩散。

(6)一般在顶棚较底的房间,狭长的走道,采用吸声处理方法,选用吸声系数大的材料或悬挂空间吸声体,对降低噪声的干扰效果很好。

相关文档
最新文档