第七章--立井提升设备选型设计
煤矿主井提升设备选型设计

煤矿主井提升设备选型设计选型设计的目标是选择适合煤矿主井的提升设备,以确保提升过程安全、高效、稳定。
在选型设计过程中,需要考虑以下几个关键因素:1.输送能力:根据煤矿的生产能力和日产量确定提升设备的输送能力。
一般来说,提升设备的输送能力应与煤矿的日产量相匹配,既不能过大以致浪费资源,也不能过小以致生产受限。
2.提升高度:提升设备需要能够满足煤矿主井的提升高度要求。
根据主井的深度确定提升设备的最大提升高度,同时考虑到煤炭或矿石的重量及途中的摩擦等因素,避免提升过程中出现问题。
3.运行速度:提升设备的运行速度应该适中,既要保证生产效率,又要考虑到设备的安全稳定性。
运行速度过快可能导致设备失控、安全隐患增加,运行速度过慢可能限制煤矿的生产能力。
4.可靠性与安全性:提升设备的选型应考虑到设备的可靠性和安全性。
选择具有稳定性高、故障率低、维修方便的提升设备,确保设备的安全运行。
5.经济性:选型设计过程还需要考虑到提升设备的经济性。
选择设备时要综合考虑设备的价格、维修成本、运行成本等因素,对于满足要求的设备进行经济性比较,并确定最优方案。
在实际选型设计过程中,可以采用以下步骤:1.明确需求:根据煤矿的特点、生产能力等确定提升设备的需求,包括输送能力、提升高度、运行速度等。
2.调研市场:调查市场上主要的提升设备种类和品牌,了解其性能参数、技术特点、应用范围等。
3.技术比较:对各种提升设备进行技术比较,包括设备的输送能力、提升高度、运行速度、可靠性等方面。
4.经济比较:对符合需求的提升设备进行经济性比较,包括设备的价格、维修成本、运行成本等。
5.选型决策:根据需求、技术比较和经济比较的结果,确定最适合煤矿主井的提升设备种类和参数。
6.设计安装:根据选型结果,进行设备的具体设计和安装工作,确保提升设备能够安全、高效、稳定地运行。
总之,煤矿主井提升设备的选型设计对于煤矿的正常运行和生产具有重要的影响。
通过合理选择和设计,可以提高煤矿的生产效率,确保提升过程的安全稳定,进而推动煤矿的可持续发展。
矿井提升及运输设备选型设计doc

上次课内容回顾及本次课内容引出:(5分钟)1、矿井提升机的操纵、限速装置2、深度指示器的类型、作用、结构、工作原理3、微拖动装置的结构、工作原理第七章矿井提升设备的选型设计第一节提升设备选型设计的基本原则、设计依据及内容一、选型设计的基本原则矿井提升设备的选择计算是否经济合理,对矿山的基本建设投资、生产能力、生产效率及吨煤成本都有直接的影响。
因此,在进行提升设备选择计算时,首先确定提升方式,在确定提升方式时要考虑下列各点:1、对于180万吨的大型矿井,有时主井需要采用两套箕斗同时工作才能完成生产任务。
副井除配备一套罐笼设备外,多数尚需设置一套单容器平衡锤提升方式,提升矸石。
2、对于年产量30万吨以下的小型矿井,可采用一套罐笼提升设备,使其完成全部主、副井提升任务是最经济的,也有采用两套罐笼设备的。
3、对于年产量大于30万吨的大中型矿井,由于提升煤炭和辅助提升任务较大,一般均设主井、副井两套提升设备。
因为箕斗提升能力大、运转费用较低、又易于实现自动化控制,一般情况主井均采用箕斗提升煤炭,副井采用罐笼提升矸石、升降人员和下放材料设备等辅助提升。
当决定提升方式时,在考虑年产量的同时,还要注意以下相关因素:1、矿井若有两个水平,且分前后期开采时,提升机、井架等大型固定设备要按照最终水平选择。
提升容器、钢丝绳和提升电动机根据实际情况也可以按照第一水平选择,待井筒延深至第二水平时,再更换。
2、中等以上矿井,主井一般都采用双容器提升,对于多水平同时开采的矿井(特别是采用摩擦提升机)可采用平衡锤单容器提升方式。
3、当地面生产系统距离井口较远,尚需一段窄轨铁路运输时,采用罐笼提升地面生产系统较为简单。
4、对于同时开采煤的品种在两种及以上并要求不同品种的煤分别外运的大、中型矿井,则应考虑采用罐笼提升方式作为主井提升。
对煤的块度要求较高的大、中型矿井,由于箕斗提升对煤的破碎较大,也要考虑采用罐笼作为主井提升。
5、对于中、小型矿井,一般采用单绳缠绕式提升系统为宜。
毕业设计(论文)-矿井提升设备的选型和设计

摘要随着国内外的发展,为了提高设备能力、自动化程度和安全可靠性;对现有的提升设备不断的进行技术改造,从而由单绳缠绕式提升机发展到多绳摩擦式提升机,提升速度加快,一次提升量也日益增大。
为了节省大量电能,降低运行费用和减少厂房面积的建设,因此我矿选用了落地式多绳摩擦式提升机。
多绳摩擦式提升机在一定程度上解决了单绳缠绕式提升机在深井条件下所出现的问题,提升机采用了尾绳平衡,以减少容器两端张力差,提高运行的可靠性。
而且采用了油缸后置式盘形制动器、操纵台采用了集成信号灯和数字式深度指示器,从而更有力的提高了安全性能。
矿井提升机的发展,都在采用最新的技术、最新的工艺、最新的材料,使提升设备向大型化、高效率、安全可靠、运行准确和高度集中化、自动化方向发展。
关键词:提升机;安全;可靠;制动;目录1绪论.............................................................1.1前言......................................................................1.2设计要求.................................................................. 2矿井提升设备的选型...............................................2.1主井提升设备的选型的计算..................................................2.2开采煤时主井提升能力校核..................................................2.3副井提升设备的选型计算....................................................2.4开采煤时副井提升能力校核..................................................3 矿井提升设备的安全管理..........................................3.1对提升司机的要求..........................................................3.2操作前的准备和检查........................................................3.3对提升机的有关规定........................................................3.4提升机的检查和维护........................................................结束语............................................................ 参考文献..........................................................致谢..............................................................1 绪论前言矿井基本资料:矿井七2煤与二1煤采用分期开拓开采的方式,初期开采七2煤,后期经技术改造后开采二1煤。
矿井提升设备的选型和设计

矿井提升设备的选型和设计矿井提升设备的选型和设计矿井提升设备是指在矿井或矿山生产中用于提升、运输物料的机械设备,具有重要的作用。
在矿山生产中,常常需要大量的机械设备来完成采矿、运输、挖掘等工作,其中矿井提升设备的重要性不言而喻。
在选择和设计矿井提升设备时,必须考虑到一系列因素,来实现设备的高效、稳定、安全运行。
本文将从矿井提升设备选型和设计的角度,探讨如何实现设备的高效、稳定、安全运行。
一、矿井提升设备选型1.1 设备的工作环境矿井提升设备的工作环境通常很恶劣,必须选择符合矿井环境的设备。
矿井深度、矿井温度、湿度、通风等因素都会影响设备的运行,因此我们需要选择具有高温、抗潮、耐磨、防爆、防腐等特性的设备。
例如,蒸汽起重机和手摇起重机通常不适用于矿井环境,可以考虑选用电动起重机或电液起重机,这些设备可靠性高,操作方便。
1.2 负荷情况负荷是指设备在工作过程中,所需承受的最大荷载。
在选型的过程中,需要考虑设备的负荷情况,来确定最适合负荷的设备。
在矿井提升设备中,钢丝绳和制动器是设备的主要受力部件,受力条件是影响设备负荷情况的重要因素。
因此,在选型和设计钢丝绳和制动器时,必须考虑设备的负荷情况,来确保设备的安全和可靠性。
1.3 运输距离运输距离是指矿井提升设备在工作过程中,需要运输物料的距离。
在选型的过程中,需要根据实际情况确定设备的运输距离,以便选择适当的提升高度和起重量。
例如,如果运输距离较短,可以选择起重量小、提升高度低的起重机,可以满足工程的需求;如果运输距离较长,需要选择起重量大、提升高度高的起重机,以满足工程的需求。
1.4 工作效率工作效率是指设备在工作过程中,完成单位工作量所需的时间。
在选型时,需要考虑设备的工作效率,来确定最适合该工程的设备。
提高设备的工作效率对于提升生产效率至关重要,在实际工程中,可以通过选用高速、高效的设备和优化设备的工作流程等方法来提高设备的工作效率。
二、矿井提升设备设计2.1 设备的结构设计矿井提升设备的结构设计对设备的运行安全和可靠性有着重要的影响。
(完整版)矿井提升设备选型设计

第三章矿井提升设备选型设计第一节提升方式的确定及提升设备选型依据一、矿并提升设备的作用矿井提升设备是矿井重要的大型机电设备之一,它是联系矿井井下与地面时主要生产设备。
矿井提升设备的任务是提升有益矿物(煤炭、矿石等)和矸石,升降人员和设备,下放材料等。
矿井提升设备的工作特点是在一定的距离内,以变速和匀速作往复直线运动,而且起动和停止频繁,因此它须具有良好的控制系统和完善的保护装置,以保证安全可靠地运转。
矿井提升设备的合理选型和正确的维护、管理和使用,对确保矿井提升设备的经济与安全运转具有重大的意义。
二、矿井提升设备的组成部分矿井提升设备一般包活捉升机、电动机、提升钢丝绳、提升容器、天轮、井架、装卸载设备,以及电控设备与安全保护装置等。
矿井提升机主要由缠绕机构(或主导轮)、减速器、联铀器、离合器、制动系统、深度指示器、液压站及操纵台等部分组成。
三、矿井提升系统根据提升方式的不同,矿井提升系统可分为以下几种:(1)竖并普通罐笼提升系统(2)竖井箕斗提升系统(3)斜井箕斗提升系统(4)斜井串车提升系统四、矿井提升设备的分类(一)按用途分类(1)主井提升设备,专供提升煤炭用的提升设备。
在特大、大和中型矿井,提升容器多采用箕斗,小型矿井多采用罐笼或矿车;(2)副井提升设备,专供提升歼石、升降人员、运送材料和设备的提升设备。
提升容器多为普通罐笼或翻转罐笼。
(二)按缠绳机构的型式分类(1)单绳缠绕式提升机,即等直径圆柱形卷筒提升机,多用于井深在350m以下的大、中、小型矿井提升,此外还有变直径圆柱圆锥形卷筒提升机;(2)多绳摩擦式提升机,适用于井筒较深、产量较大的矿井提升。
(三)按井筒倾角分类(1)竖并提升设备;(2)斜井提升设备。
(四)按提升容器分类(1)罐笼提升设备;(2)箕斗提升设备;(3)串车提升设备;斜井串车提升(5)吊桶提升设备。
(五)按拖动装置分类(1)交流感应电动机施动的提升设备;(2)直流电动机施动的提升设备;(3)液压传动的提升设备。
毕业设计(论文)-矿井提升机的选型设计及电气控制

矿井提升机的选型设计及电气控制前言矿井提升需要用一些专用的提升设备,主要有提升容器,提升钢丝绳,提升机,井架,装卸载设备以及一些辅助设备。
矿井提升设备是矿山较复杂而庞大的几点设备,它不仅承担无聊的提升与下放任务,同时还上下人员。
矿井运输是煤炭生产过程的一部分,煤炭的井工生产中,运输线路长,巷道条件多种多样,运输若不畅通,采掘工作就无法继续进行,井工生产的煤矿运输作业,包括从工作面到矿井地面的煤炭运输和辅助运输,辅助运输包括矸石、材料、设备和人员运输。
本次毕业设计主要对中型矿井生产所用的运输设备以及固定机械设备的选型及电气控制进行的一次合理选择。
选择系统配套附件,根据各设备外形尺寸及安装要求,并考虑其运行条件,最终确定提升机房的布置图。
毕业设计,作为毕业前夕一次综合性训练,是对我们所学理论知识的一次总结、检验和完善。
通过这次设计,对我们所学理论知识和生产实践相结合有很大帮助。
对于培养分析问题和解决问题的能力以及融会贯通和巩固发展所学知识也受益非浅;我们要较系统的了解矿用提升设备和排水设备在设计中的各个环节,包括从总体选型原则,从煤的开采、运输,及提升设备的选型、校核以及强度计算和经济合理性等等。
并通过这一实践,开阔了思维,丰富了知识,为我们即将做上工作岗位打下了良好的基础,可以说,毕业设计是一次难得的锻炼机会。
毕业设计是一个重要的教学环节,通过毕业实习使我们了解到一些实际与理论之间的差异。
在各位老师及有关技术人员的指导下锻炼自己独立思考、分析、解决问题的能力,把我们所学的课本知识与具体实践结合起来,真正达到学为所用。
矿井提升机是矿山的大型固定设备之一,是联系井下与地面的主要运输工具。
矿井提升工作是整个采矿过程中的重要环节。
从地下采出的煤炭、矿石必须提升至地面才有实际应用价值。
废石的提升,工作人员、材料及设备的升降等都要靠提升工作来完成。
提升设备的安全运行,不仅直接影响整个矿井生产,而且涉及人身安全。
第七章 矿井提升设备选型计算.pptx

9
12:14
提升钢丝绳规格选择计算
立井单绳缠绕提升钢丝绳的选择计算 钢丝绳最大静载荷Qmax为:
Qmax = m g + mz g + mp g Hc
A Hj
设:σb为钢丝绳钢丝抗拉强度(N/m2)
As为钢丝绳各钢丝断面积之和 (m2)
Hc Hs
ρ0为钢丝绳线密度(kg/m),则 需要满足
b As
1. 小时提升量Ah
式中 c—提升不均衡A系h 数。Anb《crat 煤f 矿工业设t/h计规范》规定,
有井底煤仓时为1.10~1.15,无井底煤仓时为1.20; af—提升能力富裕系数。主井提升设备对第一水平留有
20%的富裕能力。 2. 合理的经济提升速度
m/s 式中 H——提v升j 高(0.3度,0.5H) =HHs+Hx+Hz,m。 提升高度愈大,其系数取值愈大。一般情况下,当 H<200m时取0.3为宜,当H>600m时取0.5为宜。
11
12:14
4绳摩擦提升机天轮
12
12:14
天轮的选择计算
2、天轮的选择
根据《煤矿安全规程》规定,天轮直径Dt按以下条件确定:
井上
围包角不大于90o时
Dt Dt
60d
1200
围包角大于90o
时
Dt Dt
80d
1200
井下
围包角大于90o时
Dt Dt
60d
900
围包角不大于90o
13动。
12:14
卷筒宽度的验算
3、卷筒宽度的验算 卷筒上所需缠绕的钢丝绳总长度包括以下部分: ⑴ 提升高度H,m;H = Hs + Hx + Hz ⑵ 钢丝绳试验长度Ls,每6个月剁绳头5m 。 ⑶ 为减少钢丝绳在卷筒固定处的拉力,按规定应保留3圈 不动(称摩擦圈); ⑷ 多层缠绕时,为了避免上下层钢丝绳总是在一个地方过渡,需 要在每季度将钢丝绳错动1/4圈,一般错绳圈数 n’ = 2-4圈。
提升机选型设计说明书

1.提升容器的选择1)小时提升量:式中-----不均衡系数。
《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20;----提升能力富裕系数。
2)提升速度:式中---提升距离,罐笼提升时:;箕斗提升时:。
3)一次提升时间估算:式中---提升正常加速度,通常;---容器启动初加速及爬行段延续的时间,取5~10s;---提升容器在每次提升终了后的休止时间,s。
4)一次提升量的确定:2.钢丝绳的选择1)钢丝绳的端部荷重:立井:式中---容器的载重量,即实际一次提升量,kg ;---容器(包括连接装置)的重量,kg 。
斜井:式中---井筒的倾角;---提升容器在倾坡运输道上运动的阻力系数。
2)钢丝绳的单重:立井:斜井:式中---钢丝绳的公称抗拉强度,一般选=155~170;m----钢丝绳的静力安全系数;---提升距离, m ;---钢丝绳的摩擦阻力系数;---井架高度, m 。
---钢丝绳的最大悬垂长度,m 。
箕斗提升:罐笼提升:3.提升机的选择1)滚筒直径:;式中:---滚筒的计算直径,mm ;---已选定的钢丝绳直径,mm ;---已选定的钢丝绳中最粗钢丝的直径,mm 。
2)滚筒缠绕宽度及缠绕层数计算:单滚筒单层单钩提升:;单滚筒单层双钩提升:式中:---定期试验用的钢丝绳长度,一般取30m ;d---钢丝绳直径,mm;---钢丝绳在滚筒上缠绕时,钢丝绳间的间隙。
3)钢丝绳作用在滚筒上的力:a)钢丝绳作用在滚筒上的最大静张力:立井:;斜井:。
b)钢丝绳作用在滚筒上的最大静张力差:立井:;斜井:。
4.提升系统的确定1)天轮直径:;2)井架高度计算:立井:箕斗提升:;罐笼提升:式中:---容器的全高, m;---天轮半径, m;---过卷高度;---箕斗在卸煤位置时,高出卸载煤仓溜煤口的高度,一般取0.3~0.5m 。
斜井:斜井甩车场:式中:---钢丝绳从井口至天轮接触点的斜长,m;---钢丝绳的倾角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 立井提升设备选型设计4 课时第一节 竖井提升容器的选择一、提升容器的比较及其应用范围提升容器主要是底卸式箕斗和普通罐笼。
箕斗的优点是:质量轻,所需井筒断面积小,装卸载可自动化,且时间短,提升能力大。
箕斗的缺点是:井底及井口需要设置煤仓和装卸载设备,只能提升煤炭,不能升降人员、设备和材料,井架较高,需要另设一套辅助提升设备。
罐笼的优点是:井底及井口不需设置煤仓,可以提升煤炭、矸石,下放材料,升降人员和设备,井架较矮,有利于煤炭分类运输,罐笼的缺点是:质量大,所需井筒断面积大,装卸载不能自动化,而且时间较长,生产效率较低。
选择箕斗还是选择罐笼,需要根据多方面的技术、经济指标来确定。
二、主井箕斗规格的选择进行提升设备选型设计时,矿井年产量和矿井深度为已知条件。
当提升容器的类型确定后,还要选择容器的规格。
在提升任务确定之后,选择提升容器的规格有两种情况:一是选择较大规格的容器,一次提升量较大,则提升次数少。
这样,因为一次提升量较大,所需的提升钢丝绳直径和提升机直径较大,因而初期投资较多。
但提升次数较少,运转费用较少。
二是选择较小规格的容器,情况和上述的相反,因而初期投资较少,而运转费用则较多。
那么,应该如何选择提升容器的规格才是合理的呢?其原则是:一次合理提升量应该使得初期投资费和运转费的加权平均总和最小。
为了确定一次合理提升量,从而选择标准的提升容器,可按以下步骤计算:(1)确定合理的经济速度 与一次合理提升量相对应的,有一个合理的经济速度。
经研究证明,合理的经济速度 可用下式计算:H V j )5.0~3.0(= (1-1) 式中:H 为提升高度,m ,;为装载的高度,m ,18~25m ,为矿井的深度,m ,为卸载高度,m ,15~25m 。
(2)估算一次提升循环时间XT ' θμ+++='a V V H T j j X (1-2) 式中:a 为提升加速度,一般0.82;μ为箕斗低速爬行时间,一般取μ=10s ;θ为箕斗装卸载休止时间,一般取θ=10s 。
(3)计算小时提升量 )/(h t t b A Ca A s r nf s ⋅= (1-3)式中:C 为提升不均衡系数;为矿井设计年产量;为提升富裕系数;为提升设备每天工作小时数,一般为14h ;为提升设备每年工作日数,一般为300天(4)计算小时提升次数Xs T n '=3600(次) (1-4) (5)计算一次合理提升量Q 'sS n A Q =' (1-5) 根据式(1-5)求出的一次合理提升量Q ',查表选取与Q '相等或接近的标准箕斗,其名义装载量可以大于或小于Q '。
在不加大提升机滚筒直径的条件下,应尽量选用大容量箕斗,以较底的速度运行,降低能耗,减少运转费用。
(6)计算一次实际提升量 选取标准箕斗后,根据所选箕斗的有效容积和煤的松散容重计算一次实际升量QV Q γ= (1-6) 式中:γ为煤的松散容重,V 为标准箕斗的有效容积。
三、副井罐笼的选择副井罐笼规格的选择按如下规定确定:(1)根据井下运输使用的矿车名义载重量(主井为箕斗提升时按辅助运输矿车名义载重量)确定罐笼的吨位;(2)根据运送最大班下井工人的时间不超过40 或每班总作业时间是否超过5h 来确定罐笼的层数。
一般应先考虑单层罐笼,不满足要求时再选择双层罐笼。
此外,罐笼的选择还应考虑如下规定:(1)升降工人的时间,按运送最大班下井工人时间的1.5倍计算;(2)升降其他人员的时间,按升降工人时间的20%计算。
升降人员的休止时间按下列规定取值;单层罐笼每次升降5人及以下时,休止时间为20s ,超过5人,每增加1人增加;双层罐笼升降人员,如两层同时进出人员,休止时间比单层增加2 s 信号联系时间。
当人员只从一个平台选出罐笼时,休止时间比单层增加一倍,另外增加6 s 换置罐笼时间;(3)普通罐笼进出材料车和平板车休止时间为40~60s ;(4)提升矸石量按日出矸石量的50%计算;运送坑木、支架按日需量的50%计算;(5)最大班净作业时间为上述各项提升时间与休止时间之和,一般不得超过5 h ;(6)能够运送井下设备的最大和最重部件;(7)对于混合提升设备,每班提煤和提矸时间均应计人1.25不均衡系数,其提升能力不宜超过5.5 h 。
第二节 提升钢丝绳的选择计算提升钢丝绳的选择计算是提升设备造型设计中的关键环节之一。
钢丝绳在运转中受有许多应力的作用和各种因素的影响,如静应力、动应力、弯曲应力、扭转应力和挤压应力等,磨损和锈蚀也将损害钢丝绳的性能。
综合考虑以上应力因素的精确计算是很困难的,目前国内外都是按静载荷近似计算的。
我国是按《煤矿安全规程》的规定来设计的,其原则是:钢丝绳应按最大静载荷并考虑一定的安全系数来进行计算。
安全系数是指钢丝绳钢丝拉断力的总和与钢丝绳的计算静拉力之比。
但是应当注意,安全系数并不代表钢丝绳真正具有的强度储备,只不过表示经过实践证明在此条件下钢丝绳可以安全运行。
一、单绳缠绕式(无尾绳)立井提升钢丝绳选择计算图2-5所示为一立井单绳提升钢丝绳计算示意图。
钢丝绳的最大静拉力作用于A 点处,其值为:c z pH g Q Qg Q ++=max (2-1)式中:max Q 为钢丝绳承受的最大计算静载荷;Q 为一次提升的有益载荷z Q 为容器质量;p 为钢丝绳每米重力;c H 为钢丝绳悬垂长度,z s j c H H H H ++=。
j H 为井架高度;s H 矿井深度;z H 为容器装载高度。
根据《煤矿安全规程》对安全系数的规定,必须满足下式 :a c Z B m pH g Q Qg S ≥++0σ (2-3)式中:为新钢丝绳的安全系数。
一般钢丝绳的平均比重近似取0.09 N /3 ,于是有下式:)/(10000m N S p γ= (2-4)将式(2-4)代入式(2—3)并化简整理得:)/(10000m N H m S gQ Qg p C a B Z -+≥γσ (2-5)代人γ0 的值后,得出选择每米钢丝绳重的公式为:)/(11.0m N H m g Q Qg p C aZ -+≥ (2-6) 由于实际所选钢丝绳的γ0不一定是0.09 N /3,因此所选绳是否满足安全系数的要求必须按实际所选每米绳重按下式进行验算,即所选绳的实际安全系数为: C Z g qa pH g Q Q Q m ++= (2-7)二、多绳摩擦提升钢丝绳计算特点图2-5 钢丝绳计算示意图图2-6所示为多绳摩擦提升钢丝绳计算示意图,图中是尾绳环高度,可按下式计算:S H H g h 5.1+=式中:g H 为过卷高度,m ,S 为两容器的中心距,m ;h H 为容器卸载位置至天轮中心线的距离,m ,z H 为容器卸载高度,m 。
图2-6中的0H 为尾绳最大悬垂长度,m 。
多绳摩擦提升钢丝绳计算特点为:(1)有n 根提升钢丝绳,每根绳承受的终端载荷为();(2)有n 1根尾绳,设每根尾绳每米重力为q N /m ,而且根据主、尾绳每米重力的不同,又有等重尾绳、轻尾绳>和重尾绳<之分。
一般多采用等重尾绳,重尾绳有时也有采用,但轻尾绳则很少采用。
因此下面也分两种情况来分析。
①等重尾绳情况:计算公式:)/(11.0)(1m N H m gQ Q n p C aB Z --≥σ (2-8) 验算公式:C Z qa pH g Q Q n Q m ++=)(1 (2-9)②重尾绳情况:计算公式)/(11.0)(10m N H m H g Q Qg n p C aB Z -⋅∆++≥σ (2-10) 验算公式C Z qa PH H g Q Qg n Q m +⋅∆++=)(10 (2-11)图2-6 多绳摩擦提升 钢丝绳计算示意图第三节 提升机的选型计算选择提升机的主要参数有:卷简直径D ;卷筒宽度B;提升机最大静张力及最大静张力差。
其中卷筒直径D 为选择提升机规格型号的依据;其他三个参数为校核参数。
选择提升机卷筒直径的主要原则是:使钢丝绳在卷筒上缠绕时所产生的弯曲应力不要过大,以保证提升钢丝绳具有一定的承载能力和使用寿命。
理论与实践已证明,绕经卷筒和天轮的钢丝绳,其弯曲应力的大小及其疲劳寿命取决于卷筒与钢丝绳直径的比值。
图3-2所示是锁股(密封)钢丝绳进行弯曲试验的结果,由图示可知,在同一钢丝绳直径条件下,卷简直径愈大,弯曲应力愈小;在相同卷简直径条件下,绳径愈小,弯曲应力愈小,即比值D /d 愈大,弯曲应力愈小。
图3-3所示为在不同的D /d 弯曲条件下,钢丝绳试验载荷与其耐久性的关系。
由图3-3可知,在试验载荷相同时,D /d 愈大,钢丝绳所能承受的反复弯曲次数愈多,疲劳寿命愈长。
对于安装在地面的提升机,其直径与钢丝绳直径的关系如下:80D d '≥ (3-1)1200D δ'≥ (3-2)式中:D′为提升机卷筒直径;d 为提升钢丝绳直径;δ为提升钢丝绳中最粗钢丝绳直径。
对于安装在井下的提升机则有:60D d '≥ (3-3)900D δ'≥ (3-4)选定了标准卷简直径后,卷筒的标准宽度B 则为巳知,然后根据实际需要在卷筒上缠绕的钢丝绳长度来计算卷筒的实际宽度B’。
在提升机卷筒上应容纳以下几部分钢丝绳:(1)提升高度H ,m;图3-2 钢丝绳弯 曲应力图 图3-3 不向的时载荷与耐久性的关系(2)提升钢丝绳试验长度,规定每半年剁绳头一次,每次剁掉5 m ,按提升钢丝绳的使用寿命为三年计,则试验长度为30 m ;(3)为了减少钢丝绳在卷筒上固定处的拉力,钢丝绳在卷筒上松绳时,不能全部松放,应在卷筒表面保留三圈摩擦圈,则卷筒的实际容绳宽度B'为:30(3)()H B d Dεπ+'=++ (3-5) 式中:H 为提升高度;D 为提升机卷筒直径;d 为提升钢丝绳直径;ε为提升钢丝绳绳圈间的间隙,一般为2-3,卷筒直径较大时,取大值。
如果B′< B ,则所选提升机满足宽度要求,如小很多,可适当加大绳圈间隙。
如果B′>B :若提升机用于有升降人员的竖井副井提升,根据《煤矿安全规程》规定,钢丝绳在卷筒上只能缠绕一层。
但是如果B′比B 稍大一点,所选提升机仍可满足宽度要求,但是要是B′的差值暂时固定在卷筒内。
如果B′的差值较大,则所选提升机的宽度不满足要求,则应采取措施:一是另选强度较高的提升钢丝绳型号;二是把提升机卷筒直径增大一级。
重新计算B′到满足B′<B 为止。
若提升机用于竖井主井提升,当提升钢丝绳在卷筒上作单层缠绕时,当B‘>B 。
根据《煤矿安全规程》规定:竖井主井提升的提升钢丝绳可在卷筒上缠两层,作双层缠绕时,提升钢丝缠在卷筒上的实际缠绕宽度B'可按下式()()εππ+⎪⎪⎭⎫ ⎝⎛+'+++='d D k D n H B p 3330 (3-6) 式中:为平均缠绕直径;K 为缠绕层数;n′为错绳圈数。