浅谈古典概型与几何概型

合集下载

明辨古典概型和几何概型

明辨古典概型和几何概型
点数 之 和等 于 3的概 率.
2 .例 题 分 析

掷两枚骰子出现的点数之和的
2 , 3 , 4 , …, 1 2 } , 属 于 事件 A 的 一 例1( 1 ) 4  ̄ - N 间 [ o , 1 0 ] 上 任 意 取 一 个 可 能数 值为 {
整 数 , 则 z不 大于 3的概 率为

C AM<3 0 。 的概 率.
C 6 0
图3
( 2 )本题 如果 我们 仍然 用 上题 中的 时 间
亡 1
图 1
图 2
长度 之 比 , 得 到答 案 一 1, 这 个 结 果 是 错
U U 1 厶
分析 此题组 中的两个 问题 , 很显然
都 是几 何 概 型 的 问 题 , 但 是 考 察 的 测 度 不
为 告 .
问题 ( 2 ) 中, 因为 总 的基本 事件 是 [ 0 ,
2 ) , ( 2 , 1 ) 可 出现 , 其他 的情 况 可类 推.
麟 掷两枚骰子可能出现的情况:
1 , 1 ) , ( 1 , 2 ) , … , ( 1 , 6 ) , ( 2, 1 ) , ( 2, 2 ), … , 1 0 ] 上 的全 部 实 数 , 所 以基 本 事 件 总数 为 无 (
结果 只有 3 , 故 P( A) 一 .

( 2 )在 区 间[ O , 1 0 ] 上 任 意 取 一 个 实数

则 不 大 于 3的 概 率 为
《 麟 褥 当所述的基本事件是等可
能发 生 时 , 我 们 才 能 直 接 使 用 公 式 P( A)


本题中, 问题( 1 ) 因为总的基本

古典概型与几何概型的异同点

古典概型与几何概型的异同点

古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。

若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。

2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。

它是基于长度、面积、体积等几何量与概率的结合。

二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。

2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。

三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。

2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。

而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。

3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。

而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。

4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。

而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。

5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。

而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。

6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。

而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。

7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。

四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。

这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型[要点提示]古典概型即等可能事件概率,是概率中最基本的概率模型,是整个概率计算的基础.而模拟方法是古典概型问题的延伸,几何概型的引入是概率问题的进一步加强.它们在现实生活中都有着广泛的应用,而计算机模拟的引入使这些知识在科研领域也发挥了重要作用.[概念解析]1.古典概型:试验结果只有有限个,每次只出现其中的一个结果,每一个试验结果出现的可能性相同,我们把具有这样两个特征的随机试验的数学模型称为古典概率模型,简称古典概型.古典概型的计算方法()AP A 包含的基本事件的个数基本事件的总数提供了计算概率的一种方法,即不通过大量重复试验,而只是要对一次试验可能出现的结果进行分析,就可求出概率值.2.互斥事件:在一个随机试验中,我们把一次试验下不可能发生的两个事件A与B称为互斥事件.如果事件1A,2A,…,n A中的任何两个都是互斥事件,那么就说事件1A,2A,…,n A彼此互斥;从集合的角度看,事件A与事件B互斥,是指事件A与事件B所包含的结果构成的集合之间彼此的交集为空集;若事件A与事件B是互斥事件,那么A与B同时发生的概率为0.3.对立事件:如果A表示事件A发生,A表示事件A不发生,那么事件A 与A中必有一个发生,这种其中必有一个发生的互斥事件叫做对立事件.一般来说,对立事件一定是互斥事件,而互斥事件不一定是对立事件.4.几何概型的特征:进行一次试验相当于向几何体G 中取一点;对于G 内任意子集,事件“点取自g ”的概率与g 的测度(长度、面积或体积)成正比,而与g 在G 中的位置、形状无关,这类随机试验的数学模型称为几何概型.对于几何概型,如果随机事件A 可用G 中的一个区域g 表示(组成事件A 的所有可能结果与g 中的所有点一一对应),那么事件A 的概率规定为: ()G g P A =的测度的测度. [技巧点拨]1.若A,B 是互斥事件,则P(A+B)=P(A)+P(B),并且可以推广到三个及三个以上的情况.利用这一方法可以把求概率转化为求几个事件的概率的和.2.而A 与它的对立事件的和事件A+A 是一个必然事件,因此,()()()1P A A P A P A +=+=,故有时候可以通过求其对立事件的概率利用公式()1()P A P A =-来求原事件的概率.3.几何概型问题的计算通常需要计算几何图形的体积或面积进一步求比值可得概率.[例题精讲]例1.黄种人群中各种血型的人所占的比例如下表:已知同种血型的人可以输血,O 型可以输给人一种血型的人,其他不同血型的人不能互相输血.小明是B血型,若小明需要输血,问:(1).任找一个人,其血可以输给小明的概率是多少?(2).任找一个人,其血不能输给小明的概率是多少?[解析]:(1).任找一人若是B型血则记为事件M,是O型血的记为事件N,则P(M)=0.29,P(N)=0.35,可以给小明输血的事件为M+N,而显然M 与N是互斥的,故可以给小明输血的概率为P(M+N)=P(M)+P(N)=0.29+0.35=0.64;(2).任找一人,其血不能输给小明与M+N是对立事件,故概率为1-P(M+N)=1-0.64=0.36.[评析]:对于互斥事件的概率可以采用公式P(A+B)=P(A)+P(B)进行求解,而对立事件采用()1()P A P A=-进行求解都可以把题目进行简化.例2.向面积为S的△ABC任投一点P,求△PBC面积小于2S的概率. [解析]:如图,根据题意,若△PBC面积小于2S,则点P可分布在如图所示的过三角形的高的中点且EF与BC平行的梯形BCEF内,故满足条件的概率为:梯形的面积与△ABC面积的比,即334()4SP AS==.[评析]:对于几何概型,关键是要构造出随机事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.在高中阶段,我们主要研究与几何图形的长度,面积或体积有关的几何概型问题.在解题中要多加思考,培养逻辑思维能力.。

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型一)古典概型(1)特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A ;P (A )=nm 。

二)几何概型1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。

2.随机数的产生方法 3.几何概型的概念如果事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称模型为几何概率模型; 4.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。

5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与 线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成 正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积 (3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积 成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积题型一 古典概型类型1 骰子硬币型1.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3 ,则( ) A . P1=P2<P3 B . P1<P2<P3 C . P1<P2=P3 D .P3=P2<P12.将一颗骰子连续抛掷两次,至少出现一次6点向上的概率是( )A . 118 B .1136 C . 2536 D .1363.同时掷两颗骰子,下列命题正确的个数是( ) ①“两颗点数都是6”比“两颗点数都是4”的可能性小;②“两颗点数相同的概率”都是16; ③“两颗点数都是6”的概率最大;④“两颗点数之和为奇数”的概率与“两颗点数之和为偶数”的概率相等。

1.3古典概型与几何概型

1.3古典概型与几何概型

所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型古典概型和几何概型是概率论中的两个重要概念,它们被广泛应用于统计学、数学和其他科学领域。

本文将从古典概型和几何概型的定义、特点和应用等方面进行阐述,以帮助读者更好地理解和应用这两个概念。

1. 古典概型古典概型是指在确定试验中,每个基本事件发生的概率相等的情况。

简单来说,就是试验的结果可以列举出来,并且每个结果发生的可能性相同。

比如,投掷一个均匀的骰子,每个点数出现的概率都是1/6,这就是一个典型的古典概型。

古典概型的特点是简单明确,适用于具有确定结果的试验。

它可以用于求解事件的概率、计算期望值等问题。

古典概型在实际应用中有着广泛的应用,比如扑克牌、硬币、骰子等常见的游戏和赌博问题都可以用古典概型进行分析和计算。

2. 几何概型几何概型是指试验的结果在几何空间中的分布情况。

与古典概型不同的是,几何概型中的基本事件并不一定具有相等的概率。

几何概型常用于描述连续型随机变量的分布情况,比如长度、面积、体积等。

几何概型的特点是可以用几何图形来表示,更加直观直观形象。

在几何概型中,我们可以通过计算几何形状的面积、体积等来求解概率和期望值。

几何概型在实际应用中有着广泛的应用,比如连续型随机变量的概率密度函数和分布函数的计算等。

3. 古典概型与几何概型的联系与区别古典概型和几何概型都是概率论中常用的概念,它们都可以用于描述试验结果的概率分布情况。

但是古典概型强调的是试验结果具有相等的概率,而几何概型则不一定具有相等的概率。

古典概型适用于离散型随机变量的分析,一般用于计算排列组合、事件概率等问题。

而几何概型适用于连续型随机变量的分析,一般用于计算几何空间的面积、体积等问题。

古典概型和几何概型在实际应用中常常结合使用。

例如,在计算连续型随机变量的概率时,可以先用几何概型计算几何形状的面积或体积,然后再根据总体积或面积计算概率。

4. 古典概型与几何概型的应用举例古典概型和几何概型在实际应用中有着广泛的应用。

古典概率与几何概率的区别

古典概率与几何概率的区别

古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。

几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。

一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。

三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。

古典概型和几何概型

古典概型和几何概型

一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈古典概型与几何概型
在一种概率模型下,如果随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。

例如:掷一次硬币的实验,只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的。

又如对有限件外形相同的产品进行抽样检验,也属于这个模型。

这种模型称之为古典概型,它是概率论中最直观和最简单的模型。

因此一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。

相应地,如果每个事件发生的概率只与构成该事件区域的长(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称为几何概型。

几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关。

具有这种性质的随机试验(掷点),称为几何概型。

关于几何概型的随机事件“ 向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G 的度量之比,即P=g的测度/G的测度。

古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每
个基本事件发生的可能性是相同的。

若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。

然而当随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。

几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。

此时事件A的概率计算公式为:
用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量. 对于一些简单的几何概型问题,可以快捷的找到解决办法。

典例透析
几何概型两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去。

求两人能够会面的概率。

解:设两人到达的时间分别为7点到8点之间的x分钟、y分钟.用
表示每次试验的结果,则所有可能结果为:

记两人能够会面为事件A,则事件A的可能结果为:
.
如图所示,试验全部结果构成区域Ω为正方形ABCD. 而事件A所构成区域是正方形内两条直线,所夹中间的阴影部分. 根据几何概型公式,得到:
.
所以,两人能够会面的概率为5/9。

根据以上的解法和分析,把此类疑难问题的解决总结为以下四步
(1)构设变量:从问题情景中,发现哪两个量是随机的,从而构设为变量x、y。

(2)集合表示:用(x,y)表示每次试验结果,则可用相应的集合分别表示出试验全部结果Ω和事件A所包含试验结果. 一般来说,两个集合都是几个二元一次不等式的交集。

(3)作出区域:把以上集合所表示的平面区域作出,先作不等式对应的直线,然后取一特殊点验证哪侧是符合条件的区域。

(4)计算求解:根据几何概型的公式,易从平面图形中两个面积的比求
得。

古典概型 (分房问题)设有n 个人,每个人都等可能地被分配到
N 个房间中的任意一间去住(n ≤N ),求下列事件的概率:
1)A= 指定的n 个房间各有一人住 ;
2)B= 恰好有n 个房间,其中各有一人住 。

解:因为每一个人有N 个房间可供选择(没有限制每间房住多少人),所以n 个人住的方式共有n
N 种,它们是等可能的。

1)n 个人都分到指定的n 间房中去住,保证每间房中个有一人住;第一人有n 分法,第二人有n-1种分法,……最后一人只能分到剩下的一间房中去住,共有 n(n-1)…….21种分法,即A 含有n !个基本事件:
)(A P =n N n !
2) n 个人都分到的n 间房中,保证每间只要一人,共有n!种分法,而
n 间房未指定,故可以从N 间房中任意选取,共有 n N C 种取法,故B 包
含了n N C 种取法。

=n n N N n C !
综上所述:利用古典概型的公式计算事件的概率关键是要求基本事件总数和A 的有利事件数,则需要利用数列和组合的有关知识,且有一定的技巧性,有时正面求较困难时,可以转化求它的对立方面,要讲究一些技巧。

分房问题中的人与房子一般都是有个性的,这类问题是将人
一个个地往房间里分配,处理实际问题时要分清什么是“人”,什么是“房子”,一般不可颠倒,常遇到的分房问题有:n个人相同生日问题,n 封信装入n个信封的问题(配对问题),掷骰子问题等,分房问题也称为球在盒子中的分布问题。

几何概型问题不仅指与几何图形有关的概率问题,还包括可以抽象成几何概型的概率问题,如关于时间、实数等的随机问题.那么如何计算几何概型中事件的概率呢?①选择适当的观察角度(从等可能性的角度观察);②找出所有基本事件对应的区域d;③找出随机事件a对应的区域d。

几何概型是古典概型的发展与推广。

相关文档
最新文档