戴维南定理例题资料
§3-4 戴维南定理和诺顿定理例题

§3-4 戴维南定理和诺顿定理求图示电路中通过12Ω电阻的电流i 。
将原电路从a、b 处断开,求左端部分的戴维南等效电路。
解:Ω6ΩΩ20Ω20Ω10Ω10V 15Ω5aioc 10201515201020101215155V33u =⨯-⨯++=⨯-⨯=-Ω33.13=30400=30200=2×10+2010×20=eqR将移出的支路与求出的戴维南等效电路进行连接Ω6Ω12ieqR ocu 解(续).eq 560096A612612612i R -=⨯=-⨯+++Ω20Ω20Ω10Ω10Ω5abeq求图示单口网络的戴维南等效电路。
解:开路电压su 11i 1i α2R a eqR 方法1:外加电源法求(αααs 2oc 122s11u R u i R R u R R ==-=-11i 2R 10i a 001i i =-()0eq 21u R αR i ==-()()()0102002021u αi i R αi i R αi R=+=-+=-有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)解(续)eqR 方法2:短路电流法求s u 2i 1R 1i α1i 2R sc1s2sc12==+R u i i i i 1sc =i αi ()ssc 11αu i αR =-()()2soc 1eq 2ssc 111R αu u R R αRαu i αR -===--方法3:VCR 确定法解(续)s11u i i R =-s u 11i 1i α2R a +-ui ()12u αi i R =-()2s 211R u αu αR iR =---eqR ocu b求图示电路的诺顿等效电路。
4V 2kΩ3k Ωx 40001u +-xu 解:分别求短路电流和等效电阻。
由于0=x u ,所以mA 8.0=3000+20004=sc i 4V 2k Ω3k Ω4000x u sc-xu +Ωk 10=8.08==sc oc eq i u R 求开路电压oc x oc 40001×2000+4==u u u V 8=ocu eqR sci解:求出BD以左的戴维南等效电路。
戴维宁定理七种例题

戴维宁定理例题例1 运用戴维宁定理求下图所示电路中的电压U0图1剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。
(1)求开路电压U oc,电路如下图所示由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V(2)求等效电阻R eq。
上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。
法一:加压求流,电路如下图所示,依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0´6/(6+3)=(2/3)I0(并联分流),所以U=9´(2/3)I0=6I0,R eq=U/I0=6Ω法二:开路电压、短路电流。
开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。
在求解短路电流的进程中,独立源要保存。
电路如下图所示。
依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω终究,等效电路如下图所示依据电路联接,得到留心:核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。
戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。
设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。
当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。
戴维南定理例题

第四章电路定理◆重点:1、叠加定理2、戴维南定理和诺顿定理◆难点:1、熟练地运用叠加定理、戴维南定理和诺顿定理分析计算电路。
2、掌握特勒根定理和互易定理,理解这两个定理在路分析中的意义。
4-1 叠加定理网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
4.1.1 几个概念1.线性电路——Linear circuit由线性元件和独立源组成的电路称为线性电路。
2.激励与响应——excitation and response在电路中,独立源为电路的输入,对电路起着“激励”的作用,而其他元件的电压与电流只是激励引起的“响应”。
3.齐次性和可加性——homogeneity property and additivity property“齐次性”又称“比例性”,即激励增大K倍,响应也增大K倍;“可加性”意为激励的和产生的响应等于激励分别产生的响应的和。
“线性”的含义即包含了齐次性和可加性。
齐次性:可加性:4.1.2 叠加定理1.定理内容在线性电阻电路中,任一支路电流(电压)都是电路中各个独立电源单独作用时在该支路产生的电流(电压)之叠加。
此处的“线性电阻电路”,可以包含线性电阻、独立源和线性受控源等元件。
2.定理的应用方法将电路中的各个独立源分别单独列出,此时其他的电源置零——独立电压源用短路线代替,独立电流源用开路代替——分别求取出各独立源单独作用时产生的电流或电压。
计算时,电路中的电阻、受控源元件及其联接结构不变。
4.1.3 关于定理的说明1.只适用于线性电路2.进行叠加时,除去独立源外的所有元件,包含独立源的内阻都不能改变。
3.叠加时应该注意参考方向与叠加时的符号4.功率的计算不能使用叠加定理4.1.4 例题1.已知:电路如图所示–6V+4– 6V +求:X U 及两个独立源和受控源分别产生的功率。
解:根据叠加定理,电路中电压源和电流源分别作用时的电路如图(b )、(c )所示。
戴维南定理解析与练习

戴维宁定理一、知识点:1、二端(一端口) 网络的概念:二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。
如图所示:等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。
等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。
二、 例题:应用戴维南定理解题:戴维南定理的解题步骤:1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。
2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。
3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。
4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。
解:(1) 断开待求支路求开路电压U OCU OC = U 2 + I R 2 = 20 +2.5 ⨯ 4 =30V或: U OC = U 1 – I R 1 = 40 –2.5 ⨯ 4 = 30VU OC 也可用叠加原理等其它方法求。
(2) 求等效电阻R 0将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)(3) 画出等效电路求电流I 3例2:试求电流 I 1A 5.24420402121=+-=+-=R R U U I Ω=+⨯=221210R R R R R A 21323030OC 3=+=+=R R U I解:(1) 断开待求支路求开路电压U OCU OC = 10 – 3 ⨯ 1 = 7V(2) 求等效电阻R 0R 0 =3 Ω(3) 画出等效电路求电流I 3解得:I 1 = 1. 4 A【例3】 用戴维南定理计算图中的支路电流I 3。
(完整版)复杂直流电路习题戴维南专题

复杂直流电路戴维宁定理专题1.利用戴维南定理求解如题83图中的电流I。
(1)断开待求支路,则开路电压U O=V;(5分)(2)等效电阻R O=Ω;(4分)(3)电流I= A。
(3分)题83图83.如图如示,试求:(1)用电源模型的等效变换求ab支路电流I;(6分,要有解题过程)(2)电压源端电压U;(3分)(3)3A恒流源的功率(2分),判断它是电源还是负载(1分)。
第83题图84.(12分)如题84图所示,试分析计算:(1)断开R,利用戴维南定理求有源二端网络的等效电压源模型。
(6分)(2)若a、b两端接上负载R,则R可获得最大功率是多少?(3分)(3)若负载R两端并接一个4μF的电容C,则C储存的电场能量是多少?(3分)第84题图解:(1)利用戴维南定理求解过程:第一步,开路电压U ab=_____V。
第二步,将题84图电路除源,画出无源二端网络如下:则无源二端网络的等效电阻R ab=____Ω.第三步,画出题84图的等效电路如下:(2)负载R L可获得最大功率的计算如下:(3)电容C储存的电场能量的计算如下:84.有源二端网络如图(a)所示,试分析计算:(1)利用戴维南定理求其等效电压源。
(8分)(2)若a、b两端接如图(b)所示电路图,则R L可获得的最大功率是多少?(4分)解:(1)利用戴维南定理求解过程:第一步,开路电压U ab=_____V。
(3分)第二步,将图(a)电路除源,画出无源二端网络如下:(2分)则无源二端网络的等效电阻R ab=____Ω.(1分)第三步,画出图(a)的等效电路如下:(2分)(2)如图(b)所示,负载R L可获得最大功率的计算如下:(4分)84、如题84(a)图所示电路中,用戴维宁定理求6Ω电阻中的电流I的大小,并计算30V 电压源的功率Pus,并说明是吸收功率还是产生功率。
解:第一步:将待求之路和3A电流源一起移开后如题84(b)图所示,求有源线性二端网络的开路电压U ab= V。
《电路分析》戴维南定理的解析与练习

《戴维南定理》习题练习一、知识点1、二端(一端口) 网络的概念:二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。
如图所示:等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。
等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。
二、例题:应用戴维南定理解题戴维南定理的解题步骤:1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。
2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。
3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。
4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
【例1】电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。
解:(1) 断开待求支路求开路电压U OCU OC = U 2 + I R 2 = 20 +2.5 ⨯ 4 =30V或: U OC = U 1 – I R 1 = 40 –2.5 ⨯ 4 = 30VU OC 也可用叠加原理等其它方法求。
(2) 求等效电阻R 0将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)(3) 画出等效电路求电流I 3A 5.24420402121=+-=+-=R R U U I Ω=+⨯=221210R R R R R A 21323030OC 3=+=+=R R U I【例2】 用戴维南定理计算图中的支路电流I 3。
戴维南定理例题.

叠加原理: 对于线性电路,任何一条支路的电流,都可以看 成是由电路中各个电源(电压源或电流源)分别 作用时,在此支路中所产生的电流的代数和。 + E– R1 + E = – R2 R1
IS I1
I2
I1'
I2'
+ R2 R1
IS
I1'' (c)
I2''
R2
(a) 原电路
(b) E 单独作用
叠加原理
无源 二端 网络
a R
b + _E
a
ቤተ መጻሕፍቲ ባይዱ
无源二端网络可 化简为一个电阻
b
a
电压源 (戴维南定理) b a 有源二端网络可 化简为一个电源 电流源 (诺顿定理) b
总目录 章目录 返回 上一页 下一页
有源 二端 网络
a b
R0
IS
R0
戴维南定理 任何一个有源二端线性网络都可以用一个电动势 为E的理想电压源和内阻 R0 串联的电源来等效代替。 a I a I + 有源 + R0 RL U 二端 U RL + – E _ 网络 – b 等效电源 b 等效电源的电动势E 就是有源二端网络的开路电 压U0,即将负载断开后 a 、b两端之间的电压。 等效电源的内阻R0等于有源二端网络中所有电源 均除去(理想电压源短路,理想电流源开路)后所 得到的无源二端网络 a 、b两端之间的等效电阻。
IS单独作用
总目录 章目录 返回 上一页 下一页
应用戴维南定理求解的步骤:
1、将电路分成待求支路和有源二端网络两部分;
2、把待求支路断开,画出有源二端网络求有源二端网络的 开路电压Uoc;画出无源二端网络(即有源二端网络中的所 有独立电源不工作,非独立电源保留)求等效电阻Req; 3、画出有源二端网络的等效电路,E= Uoc R0= Req。然后 在等效电路两端接入待求支路,求出待求支路的电流。 必须注意:代替有源二端网络的电源的极性应与开路电压 Uoc一致,若Uoc为负值,则电动势的方向与图中相反。
戴维南定理

戴维南定理测试题
例题1.电路如图所示,(1)用戴维南定理求I;(2)求3A电流源的功率。
例题2.电路和各元件参数如图所示,试求
(1)当RL=3时,电流I为1A,求此时的US的值;
(2)当RL为何值时可获得最大功率,此时获得的最大功率Pmax为多少;
(3)当电压源US调至何值时,RL两端的电压始终为零且与RL的值无关。
例题3.如图所示电路中,当开关打在2位置时,电流表读数为2A,当开关打在1位置时,电流表读数为1A,试求:
(1)ab虚线左侧部分电路的等效电源参数;
(2)电流源IS2的电流为多少?
(3)要使开光打在1位置时,电流表读数为0,电流源IS2的电流为多少?
例题4.电路如图所示,(1)用戴维南定理求电流I1;(2)计算电阻R4消耗的功率;(3)求恒流源IS的功率。
例题5.开关S置位置1时电压表读数为4V,求开关S置位置2时电压表的读数。
例题6.将图(a)所示电路等效成图(b)所示的电压源。
要求
(1)计算等效电压源的Uou,Rab;
(2)若在ab之间接入一个电流表,计算电流表读数(不考虑电流表内阻对电路的影响);
(3)若在ab之间接入一个电阻R,当R获得最大功率时,计算R的值和最大功率Pmax。
例题7.电路如图(a)所示。
已知图(b)所示电路中,电流表的读数是2A;图(c)(d)所示电路中的电流I1、I2分别是0.5A和1A。
求
(1)A部分电路的等效电源参数Uso、Ro的值;
(2)R和Is的值;
(3)图(a)电路中5欧姆电阻的功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总目录 章目录 返回 上一页 下一页
应用戴维南定理求解的步骤:
1、将电路分成待求支路和有源二端网络两部分;
2、把待求支路断开,画出有源二端网络求有源二端网络的 开路电压Uoc;画出无源二端网络(即有源二端网络中的所 有独立电源不工作,非独立电源保留)求等效电阻Req;
3、画出有源二端网络的等效电路,E= Uoc R0= Req。然后 在等效电路两端接入待求支路,求出待求支路的电流。 必须注意:代替有源二端网络的电源的极性应与开路电压 Uoc一致,若Uoc为负值,则电动势的方向与图中相反。
总目录 章目录 返回 上一页 下一页
例1:电路如图,已知E1=40V,E2=20V,R1=R2=4,
R3=13 ,试用戴维南定理求电流I3。
a
a
E1
+ –
+ E2–
R3
I1 R1 I2 R2
I3
Req +
Uoc _
R3 I3
b 有源二端网络
b 等效电源
注意:“等效”是指对端口外等效 即用等效电源替代原来的二端网络后,待求 支路的电压、电流不变。
总目录 章目录 返回 上一页 下一页
例1:电路如图,已知E1=40V,E2=20V,R1=R2=4,
R3=13 ,试用戴维南定理求电流I3。
a
E1
+ –
+ E2–
R3
I1 R1 I2 R2
I3
E1
+ –
R1
+ E2– I
a +
R2
Uoc –
b
b
解:(1) 断开待求支路求有源二端网络的开路电压Uoc
1.11 戴维南定理及其应用
二端网络的概念: 二端网络:具有两个出线端的部分电路。 无源二端网络:二端网络中没有电源。 有源二端网络:二端网络中含有电源。
R1 R2
a
+
R4
E
IS
–
R3
+ E
– R2 R1
a
IS
R3
b 无源二端网络
b 有源二端网络
总目录 章目录 返回 上一页 下一页
无源 二端 网络
总目录 章目录 返回 上一页 下一页
戴维南定理证明:
Ia
Ia
+
+
NS
UR
NS
-
替代原理
U
Is=I
-
叠加原理
(a) b I ' =0 a
+
N0
NS
+ U ' =Uoc
-
Req
(c) b
(b) b I " =I a
+
U"=﹣ReqI Is=I
-
(d) b
Ia
++
_E =Uoc
U R0=Req
R
-
( e)b
a
Req +
Uoc _
R3 I3
b
解:(3) 画出等效电路求电流I3
I3
Uoc Req R3
30 A 2 13
2
A
b
总目录 章目录 返回 上一页 下一页
课程实践: EWB仿真软件来验证例1的正确性。
EWB链接
总目录 章目录 返回 上一页 下一页
例2:电路如图,试求有源二端网络的戴维南等效电 路。
例1:电路如图,已知E1=40V,E2=20V,R1=R2=4,
R3=13 ,试用戴a维南定理求电流I3。
a
E1
+ –
+ E2–
R3
I1 R1 I2 R2
I3
R1
R2 Req
b
b 解:(2) 求二端网络的等效电阻Req
除去所有电源(理想电压源短路,理想电流源开路)
从a、b两端看进去, R1 和 R2 并联
Req=Uoc/Isc
1
1
+
NS
U-oc Isc
+
_ Uoc Isc
Req
1’ 总目录 章目录 返回 1’上一页 下一页
戴维南开路电压Uoc的计算方法: 戴维南等效电路中电压源电压等于将外电路断开时 的开路电压Uoc ,电压源方向与所求开路电压方向 有关。计算Uoc的方法视电路形式选择前面学过的 任意方法,使易于计算。
叠加原理: 对于线性电路,任何一条支路的电流,都可以看 成是由电路中各个电源(电压源或电流源)分别 作用时,在此支路中所产生的电流的代数和。
+
E– IS R1 I1
I2
(a) 原电路
+ = E– R2 R1
I1'
I2'
+ R2 R1
IS I1''
I2'' R2
(b)
(c)
E 单独作用
IS单独作用
叠加原理
-12V+ I-U/10 a
4
+
I0-.20U.2+UI-oUc /10
00..22UUoc 6 10 U=0
-
a
+ 15V 12.5
b
b
解:(1) 求端口开路电压Uoc
列KVL方程:(4+10)I+6(I-0.2Uoc)-12=0
解得:
I=Uoc/10 Uoc=15V
总目录 章目录 返回 上一页 下一页
U=Uoc-ReqI
U=E-R I 总目录 章目录 返回 0上一页 下一页
替代定理: 在网络中,若第k条支路的电流和电压为ik和uk, 则不论该支路由什么元件组成,可以用一个e=uk 的恒压源或用一个is=ik的恒流源去替代。
I1
I2
R1
I3
R2
+ R3 E1
+ E2
总目录 章目录 返回 上一页 下一页
aI
aI
有源 +
二端 U 网络 –
RL
R0
+
+U
RL
E_ –
b 等效电源
b
等效电源的电动势E 就是有源二端网络的开路电
压U0,即将负载断开后 a 、b两端之间的电压。 等效电源的内阻R0等于有源二端网络中所有电源
均除去(理想电压源短路,理想电流源开路)后所
得到的无源二端网络 a 、b两端之间的等效电阻。
E2+(R2+R1)I-E1=020+(4+I R2 = 20V +2.5 4 V= 30V
或:Uoc= E1 – I R1 = 40V –2.5 4 V = 30V
Uoc
也可用节点电压法、叠加原理等其它方法求。 总目录 章目录 返回 上一页 下一页
戴维南等效电阻Req的计算方法: 1、电路等效变换法:适用于比较简单的电路;
2、伏安关系法:单口网络中所有独立电源不激励,
所有受控源保留,在端口接一个恒压源Us(或恒流 源Is)时计算端口电流I(或端口电压U),等效电 阻为
Req=Us/I
或 Req=U/Is
3、实验法(开路电压与短路电流相比法):
有源 二端 网络
a
b
+ _E R0 a
b IS
a R
b a
b a R0
b
无源二端网络可 化简为一个电阻
电压源 (戴维南定理)
有源二端网络可 化简为一个电源
电流源 (诺顿定理)
总目录 章目录 返回 上一页 下一页
戴维南定理
任何一个有源二端线性网络都可以用一个电动势
为E的理想电压源和内阻 R0 串联的电源来等效代替。
所以,Req
R1 R2 R1 R2
2
求Req时,关键要弄清从a、b两端看进去时各
电阻之间的串并联关系。
总目录 章目录 返回 上一页 下一页
例1:电路如图,已知E1=40V,E2=20V,R1=R2=4, R3=13 ,试用戴维南定理求电流I3。
a
E1
+ –
+ E2–
R3
I1 R1 I2 R2
I3