增材制造(3D打印)国内外发展状况

合集下载

增材制造(3D打印)国内外发展状况报告

增材制造(3D打印)国内外发展状况报告

增材制造(3D打印)技术国内外发展状况--西安交通大学先进制造技术研究所2013-07-09一、概述增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。

自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。

名称各异的叫法分别从不同侧面表达了该制造技术的特点。

美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。

增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。

3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。

增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。

而且越是复杂结构的产品,其制造的速度作用越显著。

近二十年来,增材制造技术取得了快速的发展。

增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。

目前已有的设备种类达到20多种。

这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。

增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。

增材制造全国行业发展概况介绍

增材制造全国行业发展概况介绍

增材制造全国行业发展概况介绍
增材制造作为一种新兴的制造技术,近年来在全国范围内取得了快速发展。

增材制造,又称为3D打印技术,是一种将数字模型直接转化为实物的制造方法,通过逐层堆叠材料来构建
物体。

相比传统的减材制造方法,增材制造具有快速、灵活、成本低等优势。

随着技术的不断进步,增材制造在全国范围内得到了广泛应用。

目前,增材制造在航空航天、汽车制造、医疗器械、建筑等领域都取得了显著的成果。

在航空航天领域,增材制造技术被用于制造复杂零部件,如发动机喷嘴和涡轮叶片,提高了零件的性能和可靠性。

在汽车制造领域,增材制造被用于制造轻量化零部件,提高了汽车的燃油效率和安全性能。

在医疗器械领域,增材制造技术被用于制造个性化的假肢、牙齿和骨骼支架等,为患者提供了更好的医疗解决方案。

在建筑领域,增材制造技术被用于建造独特的建筑结构,如曲线墙体和复杂的支撑结构,提高了建筑的设计自由度和施工效率。

同时,国内的增材制造技术也在不断创新和发展。

目前,国内已经形成了一些具有核心竞争力的增材制造企业,推动了增材制造技术的应用和产业化。

政府也加大了对增材制造行业的支持力度,出台了一系列政策和措施,鼓励企业加大研发投入,提高技术水平,推动行业的健康发展。

总体来说,增材制造作为一种新兴的制造技术,在全国范围内呈现出快速发展的态势。

随着技术的不断进步和市场需求的不断增长,相信增材制造行业在未来还会取得更大的发展。

激光增材制造技术的研究现状及发展趋势

激光增材制造技术的研究现状及发展趋势

激光增材制造技术的研究现状及发展趋势一、本文概述激光增材制造技术,也称为激光3D打印或激光粉末床熔化(LPBF),是一种先进的增材制造技术,它利用高能激光束熔化粉末材料,逐层堆积形成三维实体。

由于其在材料利用率、制造精度和复杂结构制造能力等方面的独特优势,激光增材制造技术正受到全球科研界和工业界的广泛关注。

本文旨在深入探讨激光增材制造技术的当前研究现状,包括其基本原理、主要应用领域、关键技术和挑战等,并展望其未来的发展趋势。

通过对国内外相关文献的综述和案例分析,本文期望为激光增材制造技术的发展提供有价值的参考和启示。

二、激光增材制造技术研究现状激光增材制造(LAM,Laser Additive Manufacturing)技术,作为增材制造(AM,Additive Manufacturing)领域的一种重要技术手段,近年来在全球范围内受到了广泛的关注和研究。

该技术利用高能激光束作为热源,将粉末或丝状材料逐层熔化并堆积,从而构建出具有特定形状和性能的三维实体。

材料体系日益丰富:随着材料科学的进步,可用于激光增材制造的材料已经从最初的金属粉末扩展到了陶瓷、高分子材料以及复合材料等多元化体系。

这为激光增材制造技术在不同行业的应用提供了更多的可能性。

设备工艺持续优化:激光增材制造设备的精度和稳定性直接关系到最终产品的质量和性能。

目前,研究者们正致力于优化激光束的控制系统、粉末输送装置以及环境控制系统等关键部件,以提高设备的整体性能。

过程监控与质量控制:随着制造过程复杂性的增加,对制造过程中的监控和质量控制提出了更高的要求。

目前,研究者们正尝试将人工智能、机器学习等先进技术引入激光增材制造过程中,以实现对制造过程的实时监控和智能调控。

应用领域不断拓展:激光增材制造技术以其独特的优势,在航空航天、医疗器械、汽车制造等领域得到了广泛的应用。

随着技术的不断进步,其应用领域还将进一步扩大。

绿色环保与可持续发展:随着全球对环境保护意识的提高,激光增材制造技术作为一种近净成形技术,具有减少材料浪费、降低能源消耗等绿色环保特点。

增材制造技术的现状及发展趋势

增材制造技术的现状及发展趋势

增材制造技术的现状及发展趋势
增材制造技术(Additive Manufacturing Technology)是一种通过一层层的添加材料来制造物品的技术,也被称为3D打印技术。

从其产生至今,增材制造技术一直在不断发展,在医疗、汽车、航空航天、工业设计等领域得到广泛应用。

当前,增材制造技术已经被应用于各种材料,如塑料、金属、陶瓷、玻璃等,同时在制造技术中的应用也变得越来越多样。

在医疗领域,3D打印技术被用来制造人体器官的模型,以帮助医生更好地进行手术规划和操作,同时也可以用来制造个性化的假肢。

在汽车制造中,3D打印技术可以用来制造零部件,以提高生产效率和降低成本。

在航空航天领域,增材制造技术可以制造轻量化的零部件,以提高飞行效率和降低燃油消耗。

随着技术的不断发展,增材制造技术也在不断地创新与升级。

目前,一些制造商已经开始使用金属3D打印技术,以制造具有高强度和高耐久性的零部件。

同时,一些3D打印技术也正在不断改进,以提高打印速度和打印精度。

例如,碳纤维3D打印技术可以制造比传统工艺更轻、更坚固的部件,而生物3D打印技术可以用来制造可移植的人工器官。

未来,增材制造技术将会继续快速发展。

一些专家预测,未来的3D 打印技术可以用来制造建筑物,以及更大型、更复杂的机器和设备。

同时,随着3D打印技术的成本不断降低,它也将越来越普及,成为各行业的主流生产工艺之一。

总的来说,增材制造技术的现状是多样化和不断创新的。

它已经在各行各业得到了广泛应用,并且随着技术的不断发展,它的应用领域也会不断扩大。

未来,增材制造技术将会成为一个重要的生产工艺,为各行各业带来更多的机会和发展空间。

典型无机非金属材料增材制造现状与创新研究

典型无机非金属材料增材制造现状与创新研究

典型无机非金属材料增材制造现状与创新研究摘要:随着科学技术的快速进步,增材制造(3D打印)技术得到了快速发展,已经成为国内外研究的热点,我国在无机非金属材料制造领域方面进行了大量的研究,并取得了较大的进展和成效,具有非常大的应用空间。

本文阐述了无机非金属材料增材制造发展情况,分析了典型无机非金属材料增材制造的应用现状以及创新路径。

关键词:无机非金属材料;增材制造;应用现状;创新路径一、无机非金属材料增材制造发展(一)无机非金属材料3D成形发展现状三维打印(3D)技术起源于美国麻省理工学院,是一种类似于微滴喷射方式来进行增材制造的过程。

目前,国内外的3D成形技术主要应用方向是陶瓷材料。

作为一类重要无机非金属材料,陶瓷材料有着大多数无机非金属材料的众多优点,如,高强度、耐腐蚀、耐高温等。

国外在20世纪90年代就开始研究Al2O3陶瓷材料,美国学者Sachs等人通过3D打印方法制备模具替代传统模具,成形过程时间短、干燥时间短。

此外,德国学者R.Melecher等人运用3D打印技术制造出Al2O3胚体,再经高温煅烧制取陶瓷制品,然后在高温状态下来制备得到复合体,获得理想材料。

我国学者运用3D打印技术制作出Si3N4陶瓷制品,有着较好抗弯强度。

(二)无机非金属材料SLS成形发展现状SLS由美国得克萨斯大学奥斯汀分校最早提出,先在表面预置粉末,再由激光进行烧结、固化,层层叠加而得到所需形状的零件。

从黏结剂角度来看,在成形中分为需要添加黏结剂、不黏加粘结剂两类,材料以无机非金属材料、高分子材料为主。

在无机非金属材料中,SLS成形主要用于陶瓷材料成形,重点制备Al2O3、ZrO2、SiC以及某些复合陶瓷制品,取得了良好效果。

以Al2O3的SLS成形为例,以激光作为热源逐层烧结制备出陶瓷型坯,经过脱脂、烧结等方式得到理想型坯,改变了传统陶瓷制备慢、成型效果差的问题。

(三)无机非金属材料SLM成形发展现状在SLS基础,国外科学家展开SLM研究,选择恰当热源(一般为激光)融化固体粉末,以层层叠加方式获得零件。

《增材制造十年发展及展望》

《增材制造十年发展及展望》

《增材制造十年发展及展望》【原创版】目录1.增材制造产业发展概况2.我国增材制造产业现状3.我国增材制造产业竞争力4.增材制造产业发展趋势5.增材制造未来发展方向正文增材制造,又称 3D 打印,是一种将数字化设计转化为实体产品的革命性技术。

过去十年,增材制造在全球范围内取得了显著的发展,我国也不例外。

我国增材制造产业发展概况:从以进口为主到以自主生产为主,我国增材制造产业发展态势良好。

无论是金属增材制造装备还是桌面级光固化增材制造装备,都保持了领跑地位。

整体来看,我国增材制造产业的竞争力较强,国产设备关键指标已经达到国际先进水平。

我国增材制造产业现状:根据统计,2022 年我国增材制造的专用材料、零部件、装备和服务各环节的营业收入分别占到了 12.4%、5.9%、53.2% 和 26%。

这表明我国增材制造产业已经形成了较为完整的产业链,具备了一定的规模和实力。

我国增材制造产业竞争力:在政策支持和市场需求推动下,我国增材制造产业竞争力不断增强。

表现在以下几个方面:一是国产增材制造装备的市场份额持续扩大;二是增材制造技术在航空航天、医疗、汽车等领域的应用不断拓展;三是增材制造产业集群效应初步显现,产业链上下游企业协同发展。

增材制造产业发展趋势:未来,增材制造产业发展将呈现以下几个趋势:一是技术创新持续推进,如高性能材料研发、生物 3D 打印等;二是应用领域不断拓宽,如消费品、建筑、能源等;三是产业规模持续扩大,市场份额进一步提高;四是国际化程度加深,全球合作更加紧密。

增材制造未来发展方向:我国应继续加强增材制造产业的政策支持,推动产业技术创新,拓展应用领域,培育龙头企业,深化国际合作,以实现增材制造产业的高质量发展。

总之,我国增材制造产业在过去十年取得了长足的发展,未来发展前景也十分广阔。

2023年增材制造行业市场调查报告

2023年增材制造行业市场调查报告

2023年增材制造行业市场调查报告增材制造,又称为三维打印、即时制造、快速成型等,是指通过一定的工艺将材料逐层堆积,以构建三维实物的一种制造技术。

随着制造业的不断升级,增材制造技术在各个行业中得到了广泛的应用。

本篇报告将对增材制造行业的市场进行调查和分析。

一、市场规模增材制造行业市场规模在近年来持续增长。

根据市场研究公司的数据显示,2019年增材制造市场规模达到了115亿美元,而到2024年预计将达到340亿美元。

市场规模的增长主要得益于增材制造技术的不断发展和应用领域的不断扩大。

二、应用领域增材制造技术在各个行业中都有广泛的应用。

首先是制造业领域,增材制造可以用于制造各种复杂零部件和模具,提高生产效率和产品质量。

其次是医疗领域,增材制造可以用于制造人工关节、植入物等医疗器械,提供个性化的医疗解决方案。

此外,增材制造还在航空航天、汽车、建筑等行业中得到了广泛的应用。

三、市场竞争格局目前增材制造行业竞争激烈,市场上存在众多的企业。

主要的竞争对手包括3D Systems、Stratasys、EOS、HP等公司。

这些公司在增材制造技术研发和解决方案提供方面具有一定的优势。

此外,传统制造业企业也开始加大在增材制造领域的投入,加剧了市场上的竞争。

四、市场发展趋势增材制造行业未来的发展趋势主要包括以下几个方面:1.技术进步和创新:随着技术的不断进步,增材制造技术的精度和速度将得到提高,同时新的材料也将被开发出来,扩大应用领域。

2.个性化定制:随着人们对个性化产品的需求不断增加,增材制造技术将有更广阔的应用前景。

个性化定制的产品将成为市场的主流。

3.节能环保:增材制造技术可以实现材料的精确使用,减少材料的浪费,同时也可以减少对环境的污染。

4.产业链完善:随着增材制造技术的发展,相关的产业链也将逐渐完善,包括材料供应商、设备制造商、解决方案提供商等。

五、市场前景总体来说,增材制造行业有着广阔的市场前景。

随着技术的不断进步和应用领域的不断扩大,增材制造技术将在各个行业中得到更广泛的应用。

3D打印技术的现状和未来发展趋势

3D打印技术的现状和未来发展趋势

3D打印技术的现状和未来发展趋势1. 介绍3D打印技术3D打印技术,也被称为增材制造技术,是一种将数字模型转化为实物模型的先进制造技术。

该技术使用计算机辅助设计软件将数字模型转换为可供3D打印机处理的可读格式。

然后使用3D 打印机将数字模型打印成物理模型。

3D打印技术已经成为当今制造业中最先进的技术之一,其应用范围非常广泛。

2. 3D打印技术的现状目前,3D打印技术已经迅速成为现实。

该技术主要用于工业和制造业的领域,如航空、汽车、医疗设备、机械等行业。

在医疗设备方面,3D打印技术已经用于制造人工器官和传感器,这些器官可以与人体互动,从而极大地改善医疗保健。

在航空领域,3D打印技术已经应用于制造飞机零部件。

这种技术可以生成更轻、更强的零部件,减轻了飞机的重量并提高了飞机的燃油效率。

在汽车行业方面,3D打印技术已经被用于制造汽车零部件。

使用这种技术,公司可以简化制造过程,降低成本并提高汽车的性能。

3. 3D打印技术的未来发展趋势未来将出现更多的3D打印材料。

目前,3D打印技术使用的材料种类很少,但预计未来将开发出更多的材料。

这些材料将包括金属材料、生物可降解材料、能够承受高温和高压的材料等,这将使3D打印技术能够应用于更多的领域。

3D打印设备将更加便宜。

如今,3D打印机价格仍然很高,但是随着技术的不断发展,未来的3D打印机将简化制造过程并降低成本。

将出现更多的应用程序。

与日俱增的3D打印材料和3D打印机将使3D打印技术得到更多的应用。

这将包括制造更多的医疗设备、汽车和航空零部件,此外,3D打印技术还可以用于建筑和制造工艺方面。

4. 结论总之,3D打印技术已经成为制造业的重要领域,其应用范围非常广泛,将来有望得到更广泛的应用。

预计未来3D打印材料将不断增加,3D打印设备将更加便宜,并且将出现更多的应用程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增材制造(3D打印)技术国内外发展状况--西安交通大学先进制造技术研究所 2013-07-09一、概述增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。

自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。

名称各异的叫法分别从不同侧面表达了该制造技术的特点。

美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。

增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。

3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。

增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。

而且越是复杂结构的产品,其制造的速度作用越显著。

近二十年来,增材制造技术取得了快速的发展。

增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。

目前已有的设备种类达到20多种。

这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。

增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。

美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活方式。

美国奥巴马总统在2012年3月9日提出发展美国振兴制造业计划,向美国国会提出“制造创新国家网络” (NNMI),计划投资10亿美元重振美国制造业计划。

其目的在夺回制造业霸主地位,要以一半的时间和费用完成产品开发,实现在美国设计在美国制造,使更多美国人返回工作岗位,构建持续发展的美国经济。

为此,奥巴马政府启动首个项目“增材制造”,初期政府投资3000万美元,企业配套4000万元,由国防部牵头,制造企业、大学院校以及非赢利组织参加,研发新的增材制造技术与产品,使美国成为全球优秀的增材制造的中心,架起“基础研究与产品研发”之间纽带。

美国政府已经将增材制造技术作为国家制造业发展的首要战略任务给予支持。

美国专门从事增材制造技术技术咨询服务的Wohlers协会在2012年度报告中,对各行业的应用情况进行了分析。

2011年全球直接产值17.14亿美元,2011年增长率29.1%,其中,设备材料:8.34亿美元,增长28.0%,服务产值:8.79亿美元,增长30.7%,其发展特点是服务与设备对半。

在应用方面消费商品和电子领域仍占主导地位,但是比例从23.7 %降低到20.6 %;机动车领域从19.1 %降低到17.9 %;研究机构为7.9 %;医学和牙科领域从13.6 %增加到15.9 %;工业设备领域为12.9 %;航空航天领从9.9%增加到 12.1%。

在过去的几年中,航空器制造和医学应用是增长最快的应用领域。

世界上各许多国家与地区都在开发或应用增材制造技术。

增材制造系统的数量一定程度上表现了国家的经济活力与创新能力。

自1988~2011年,美国、日本、德国、中国成为主要的设备拥有国,其中,美国占全球总设备量的38.3%,中国占8.6%。

预计2012年将增长25%至21.4亿美元,2019年将达到60亿美元。

增材制造发展有诱人的发展前景,也存在巨大的挑战。

目前最大的难题是材料的物理与化学性能制约了实现技术。

例如,在成形材料上,目前主要是有机高分子材料,金属材料直接成形是近十多年的研究热点,正在逐渐向工业应用,难点在于如何提高精度和效率。

新的研究方向是用增材制造技术直接把软组织材料(生物基质材料和细胞)堆积起来,形成类生命体,经过体外培养和体内培养去制造复杂组织器官。

二、增材制造分类自上世纪80年代美国出现第一台商用光固化成形机后,在至今近三十年时间内得到了快速发展。

较成熟的技术主要有以下四种方法:光固化成形(Stereolithography,SL)、叠层实体制造(Laminated Object Manufacturing,LOM)、选择性激光烧结(Selective Laser Melting,SLS)、熔丝沉积成形(Fused Deposition Modeling,FDM)。

叠层实体制造设备逐渐消落。

其他几种方法逐渐向低成本、高精度、多材料方面发展。

1.SL工艺的过程:树脂槽中盛满液态光固化树脂,紫外激光器按照各层截面信息进行逐点扫描,被扫描的区域固化形成零件的一个薄层。

当一层固化后,工作台下移一个层厚,在固化好的树脂表面浇注一层新的液态树脂,并利用刮板将树脂刮平,然后进行新一层的扫描和固化,如此重复,直至原型构造完成。

SL 工艺的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑,加工环境气味重等问题。

2.LOM 的层面信息通过每一层的轮廓来表示,激光扫描器的动作由这些轮廓信息控制,它采用的材料是具有厚度信息的片材。

这种加工方法只需加工轮廓信息,所以可以达到很高的加工速度,但材料的范围很窄,每层厚度不可调整是最大缺点。

3.SLS工艺利用高能量激光束在粉末层表面按照截面扫描,粉末被烧结相互连接,形成一定形状的截面。

当一层截面烧结完后,工作台下降一层厚度,铺上一层新的粉末,继续新一层的烧结。

通过层层叠加,去除未烧结粉末,即可得到最终三维实体。

SLS 的特点是成形材料广泛,理论上只要将材料制成粉末即可成形。

另外,SLS成形过程中,粉床充当自然支撑,可成形悬臂、内空等其他工艺难成形结构。

但是,SLS技术需要价格较为昂贵的激光器和光路系统,成本较其他方法高,一定程度上限制了该技术的应用范围。

4.FDM是将电能转换为热能,使丝状塑料挤出喷头前达到熔融状态。

由计算机控制喷头移动,根据截面轮廓信息,使熔融塑料成形一定形状的二维截面。

通过层层叠加,形成塑料三维实体。

FDM无需价格昂贵的激光器和光路系统,成本较低,易于推广。

但是,该方法成形材料限制较大,并且成形精度相对较低,是限制该技术发展的主要问题。

随着增材制造技术工艺和设备的成熟,新材料、新工艺的出现,该技术由快速原型阶段进入快速制造和普及化新阶段,最显著地体现在金属零件直接快速制造以及桌面型3D打印设备。

目前,真正直接制造金属零件的增材制造技术有基于同轴送粉的激光近形制造(Laser Engineering Net Shaping, LENS)技术和基于粉末床的选择性激光熔化(Selective Laser Melting, SLM)及电子束熔化技术(Electron Beam Melting, EBM)技术。

LENS技术能直接制造出大尺寸的金属零件毛坯;SLM和EBM 可制造复杂精细金属零件。

LENS 技术在惰性气体保护之下,通过激光束熔化喷嘴输送的粉末流,使其逐层堆积,最终形成复杂形状的零件或模具。

该方法得到的制件组织致密,具有明显的快速熔凝特征,力学性能很高,并可实现非均质和梯度材料制件的制造。

目前,应用该工艺已制造出铝合金、钛合金、钨合金等半精化的毛坯,性能达到甚至超过锻件,在航天、航空、造船、国防等领域具有极大的应用前景。

但该工艺成形难以成形复杂和精细结构,主要用于毛坯成形,且粉末材料利用率偏低。

SLM技术利用高能束激光熔化预先铺在粉床上薄层粉末,逐层熔化堆积成形。

为了保证金属粉末材料的快速熔化,SLM材料较高功率密度的激光器,光斑聚焦到几十μm到几百μm。

SLM制造的金属零件接近全致密,强度达锻件水平,精度可达0.1mm/100mm。

该工艺的主要缺陷有金属球化、翘曲变形及裂纹等,还面临成形效率低、可重复性及可靠性有待优化等问题。

EBM与SLM系统的主要差别在于热源不同,成形原理基本相似。

EBM技术成形室必须为高真空,才能保证设备正常工作,这使得EBM 整机复杂度增大。

电子束为热源,金属材料对其几乎没有反射,能量吸收率大幅提高。

在真空环境下,材料熔化后的润湿性也大大增强,增加了熔池之间、层与层之间的冶金结合强度。

但是,EBM技术还存在如下问题:真空抽气过程中粉末容易被气流带走,造成系统污染;在电子束作用下粉末容易溃散,因此需预热到800℃以上,使粉末预先烧结固化。

采取预热后制造效率高,零件变形小,无需支撑,微观组织致密;但预热温度对系统整体结构要求高,加工结束后零件需要在真空室中冷却相当长一段时间,降低了零件的成形效率。

由于系统成本较高、材料特殊以及操作复杂,在目前阶段增材制造技术主要应用于科研以及工业应用。

随着桌面型3D打印技术(Three-dimensional printing, 3DP)的产生和应用,增材制造技术的应用范围得到了极大扩展。

3DP的工作方式类似于桌面打印机。

核心部分为若干细小喷嘴组成的打印系统。

材料主要包括两大类:其一,类似于SLA工艺用的液态光敏树脂材料;其二,类似于SLS用的粉末材料。

如果采用液态树脂材料,则成形原理类似于SLA,但实现方式有所不同。

先由喷嘴喷出具有特定形状的一薄层树脂截面,利用面紫外光照射使其固化;然后再由喷嘴喷出下一层截面,进而固化并与上一层粘结在一起;如此反复,直至实体制件成形完毕为止。

当成形材料为粉末时,其成形过程类似于SLS工艺,但原理不尽相同。

先铺一层粉,由喷嘴按照截面形状喷一层粘结剂,使成形制件截面内的粉末粘结成一体;工作台下降一个层厚,铺上一层新粉,并由喷嘴按照该层制件截面形状喷出一层粘结剂,使该层截面内的粉末发生粘结,同时与上一层制件实体粘结为一体;如此反复,直至制件成形完毕为止。

该种工艺无需激光器、扫描系统及其他复杂的传动系统,结构紧凑,体积小,可用作桌面系统,特别适合于快速制作三维模型、复制复杂工艺品等应用场合。

但是,该技术成形零件大多需要进行后处理,以增加零件强度,工序较为复杂,难以成形高性能功能零件,如金属零件等。

相关文档
最新文档