控制系统的采样与仿真
离散控制系统中的仿真与实验验证

离散控制系统中的仿真与实验验证离散控制系统是一种基于样本信号的控制系统,它将连续时间的信号转化为离散时间的信号,并利用离散时间信号进行控制和调节。
仿真和实验验证是离散控制系统设计和调试过程中非常重要的一部分,本文将针对离散控制系统中的仿真与实验验证进行探讨。
一、离散控制系统的仿真在离散控制系统中,仿真是一种重要的工具,用于模拟和评估系统的性能。
通过仿真,我们可以在电脑上构建一个离散控制系统的模型,并根据不同的输入信号,预测系统的动态响应。
1.1 离散控制系统的建模离散控制系统的仿真首先需要建立系统的数学模型。
通常,我们可以通过离散系统差分方程来描述系统的动态特性。
差分方程可以将系统的输入信号和输出响应相联系,从而实现系统性能的仿真。
例如,对于一个离散时间系统,差分方程可以表示为:y(k) = a1*x(k) + a2*x(k-1) + b1*u(k) + b2*u(k-1)其中,y(k)表示系统的输出信号,x(k)表示系统的状态变量,u(k)表示输入信号,a1、a2、b1、b2分别为系统的系数。
通过将差分方程转化为状态空间模型,我们可以更加方便地进行仿真分析。
状态空间模型可以用矩阵形式表示为:x(k+1) = F*x(k) + G*u(k)y(k) = H*x(k) + I*u(k)其中,F、G、H、I为状态空间模型的系数矩阵。
1.2 离散控制系统的仿真工具为了进行离散控制系统的仿真,我们通常会借助一些专门的仿真软件或工具。
例如MATLAB/Simulink等工具提供了丰富的离散控制系统仿真模块,可以方便地进行系统建模、仿真和参数调试。
通过在仿真软件中构建离散控制系统的模型,并设置各种参数和输入信号,我们可以获取系统的动态响应曲线和性能指标。
二、离散控制系统的实验验证仿真虽然可以提供对离散控制系统性能的预测,但最终的验证还需要通过实验来完成。
实验验证可以帮助我们检验仿真模型的准确性,并对系统的实际性能进行评估。
(自动控制原理)采样控制系统

且有 deg M( s ) ≤ deg N( s )以及 deg N( s ) = n . 展开成部分分式和的形式, 将 X(s)展开成部分分式和的形式,即
n
Ai X(s)= ∑ i =1 s + si 式中: 的零点, 的极点, 式中: i 为 N(s)的零点,即 X(s) 的极点,且设为 s
①线性性质 若 Z[ x1(t )] = X 1( z ), Z[ x2(t )] = X 2( z ) , a1, a2为常数 则 Z[a1 x1(t )+ a2 x2(t )] = a1 X 1( z )+ a2 X 2( z ) ②平移定理 若 Z[ x(t )] = X( z )
Z[ x(t + kT )] = z k X( z )− z k − j x( j ) ∑ 则 j =0 Z[ x(t − kT )] = z − k X( z ) 若 k = 1时,有 Z[ x(t + T )] = z[ X( z )− x(0)] Z[ x(t − T )] = z −1 X( z )
若上述级数收敛,则称 E ( z ) 为采样信号的z变换。 为采样信号的z变换。 若上述级数收敛, 为了书写方便, 为了书写方便,通常写成 E ( z ) = Z [e(t )] ,但仍理 变换。 解为是对取 Z 变换。
(2)常用函数的 Z 变换和 Z 变换的性质 变换见表8 1)常用普通时间函数的 Z 变换见表8-1 表8-1 Z 变换表
* n=0
+∞
( n 式中 e nT ) = e t )t = nT , (
(完整版)控制系统数字仿真题库

控制系统数字仿真题库一、填空题1. 定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。
2.系统的三大要素为:实体、属性和活动。
3.人们描述系统的常见术语为:实体、属性、事件和活动。
4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。
5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。
6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。
7. 系统是指相互联系又相互作用的实体的有机组合。
8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,其中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。
9、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统内在规律的模型称为数学模型。
10.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数学表达形式一般是微分方程和差分方程。
11.系统模型根据描述变量的函数关系可以分类为线性模型和非线性模型。
12 仿真模型的校核是指检验数字仿真模型和数学模型是否一致。
13.仿真模型的验证是指检验数字仿真模型和实际系统是否一致。
14.计算机仿真的三个要素为:系统、模型与计算机。
15.系统仿真的三个基本活动是系统建模、仿真建模和仿真试验。
16.系统仿真根据模型种类的不同可分为:物理仿真、数学仿真和数学-物理混合仿真。
17.根据仿真应用目的的不同,人们经常把计算机仿真应用分为四类,分别为:系统分析、系统设计、理论验证和人员训练。
18.计算机仿真是指将模型在计算机上进行实验的过程。
19. 仿真依据的基本原则是:相似原理。
20. 连续系统仿真中常见的一对矛盾为计算速度和计算精度。
21.保持器是一种将离散时间信号恢复成连续信号的装置。
22.零阶保持器能较好地再现阶跃信号。
控制工程基础-计算机采样控制系统(2)

11
脉冲传递函数(10)
1.有采样开关分隔的两个环节串联时,其脉冲传递函数等于各 环节的脉冲传递函数之积。
X (z) G1(z) R(z)
C(z) G2 (z) X (z)
将X(z)代入C(z) C(z) G2 (z)G1zRz
Cz Rz
G1
z
G2
z
2.没有采样开关分隔的两环节串联时,其脉冲传递函数为各个
2021/2/20
第九章 计算机采样控制系统
15
脉冲传递函数(14)
令
G' p s Gp ss
并根据前面介绍的环节串、并联脉冲传递函数求取方法,参照上图
,则带保持器的广义控制对象脉冲传递函数
Gz
C1
z C2 U z
z
G1z
G2
z
G1z
C1 z U z
Z
Gp' s
Z
g p' t
G2z
1 G1H (z)
闭环传递函数 (z) 的推导步骤:
1) 在主通道上建立输出 C(z)与中间变量 E(z)的关系;
2) 在闭环回路中建立中间变量 E(z) 与输入 R(z) 的关系;
3) 消去中间变量 E(z),建立C(z) 和 R(z) 的关系。
2021/2/20
第九章 计算机采样控制系统
21
脉冲传递函数(20)
Gz ZGs
即符号 ZGs、ZL1Gs 和 Z g*(t) 、 ZgkT 是等价的。
Gz Zg*(t) ZgkT ZL1Gs ZGS
2021/2/20
第九章 计算机采样控制系统
7
脉冲传递函数(6)
如果系统的输入为任意函数 的采样脉冲序列 r(kT) ,其Z变换
离散控制系统中的采样和保持

离散控制系统中的采样和保持(正文)离散控制系统中的采样和保持技术是一种广泛应用的信号处理方法,它在信号转换和传输中起着重要的作用。
本文将从采样和保持的基本概念出发,探讨其在离散控制系统中的应用及其重要性。
一、采样和保持的基本概念采样和保持技术是将连续时间信号转换为离散时间信号的方法之一。
在离散控制系统中,由于控制器和被控制对象之间的通信往往是通过数字信号进行的,所以需要将被控制对象的连续时间信号转换为离散时间信号进行处理。
采样是指将连续时间信号在一系列离散时间点上进行测量,而保持则是指在采样的瞬间将信号的值保持不变,以便进行后续的数字信号处理。
二、采样和保持的应用在离散控制系统中,采样和保持技术广泛应用于信号的获取、转换和传输过程中,具有以下几个方面的重要应用。
1. 信号采集与传输在离散控制系统中,传感器通常用于将被控制对象的物理量转换为电信号,进而通过模数转换器(ADC)将连续时间信号转换为离散时间信号。
采样和保持技术能够确保在信号转换过程中采样信号的准确性和稳定性,保证了被控制对象的实时监测和数据传输的可靠性。
2. 控制系统的数据处理在离散控制系统中,控制器通过接收采样后的离散时间信号来进行控制决策和计算处理。
采样和保持技术能够确保采样信号的精确性和完整性,从而保证了控制系统对被控制对象的准确控制和运算的可靠性。
3. 信号滤波在离散控制系统中,由于采样信号的获取过程中会引入一定的噪声和干扰,为了减小噪声对信号处理的影响,需要对采样信号进行滤波处理。
采样和保持技术可以在采样瞬间将信号的值保持不变,在此基础上进行滤波处理,提高信号的质量和可靠性。
4. 时序控制在离散控制系统中,时序控制是一种重要的控制方式。
采样和保持技术可以实现对时间规律信号的采样和保持,从而确保时序控制的准确性和可靠性。
比如在工业生产过程中,需要按照一定的时间规律对工艺参数进行控制,采样和保持技术能够实现对关键信号的准确采样和时序保持,从而确保生产过程的稳定性和安全性。
离散控制系统中的采样与保持

离散控制系统中的采样与保持离散控制系统是一种常见的控制系统,其特点是信号是在离散的时间点上进行采样和处理。
在离散控制系统中,采样与保持是一项关键技术,它能够保证信号的准确性和稳定性。
本文将深入探讨离散控制系统中的采样与保持技术。
一、采样在离散控制系统中,采样是指将连续时间域的信号转换为离散时间域的过程。
采样的目的是为了将连续时间的信号转换为数字信号,在数字控制器中进行处理。
采样的频率是决定离散控制系统性能的重要指标之一。
1. 采样定理根据采样定理,为了正确地还原连续时间信号,采样频率必须至少是信号频率的两倍。
如果采样频率低于信号频率的两倍,会出现混叠现象,导致信号失真。
因此,在进行采样时,需要根据信号频率合理选择采样频率,以保证信号的准确性。
2. 采样方式常见的采样方式有脉冲采样和保持采样。
脉冲采样是指在固定时间间隔内对信号进行采样,采样值即为该时刻的信号值。
保持采样则是指在采样时,将采样值保存并保持一段时间,以确保连续时间段内采样值的一致性。
二、保持保持是指在离散控制系统中,将采样得到的信号值保持不变的过程。
保持的目的是为了在离散时间域内,保证信号的稳定性和延续性。
1. 保持电路保持电路是用来保持信号值的电路,在离散控制系统中被广泛应用。
常见的保持电路有电容保持电路和运放保持电路。
电容保持电路通过将信号值存储在电容中,实现信号值的保持。
运放保持电路则通过运放的放大和缓冲特性,保证信号值的稳定性。
2. 保持时间保持时间是指信号值在保持电路中保持不变的时间长度。
保持时间的选择需要综合考虑信号的变化速率以及系统的响应要求。
如果保持时间过长,会导致信号延迟;而保持时间过短,则可能会引入噪声和失真。
三、应用案例采样与保持技术在离散控制系统中有广泛的应用,下面以电力系统的稳压控制为例,介绍采样与保持技术的具体应用。
电力系统中,稳压控制是保证电网稳定运行的重要控制任务之一。
在稳压控制中,需要对电网电压进行采样,并在数字控制器中进行处理。
天津大学计算机控制系统——第6.1课 (理解)计算机控制系统理论基础—采样与保持

1 e −Ts 1 − e −Ts = Gh 0( s ) = L [ g (t ) ] =− s s s
再令s=jw,得零阶保 1 − cos (ωT ) + j sin (ωT ) 1 − e − jωT − j = = h 0 ( jω ) 持器的频率特性为: G jω ω
sin (ωT ) − j 1 − cos (ωT ) =
本章要点总结
总结
1. 2. 3. 4. 1. 2. 3. 4. 计算机控制系统的信号流程 采样定理 采样周期的选择 信号的恢复与保持 画出计算机控制系统信号流程,并说明。 采样周期的经验选择方法。 如何理解信号的恢复过程? 零阶保持器存在哪些局限性?
作业
第六章 计算机控制系统理论基础
课程安排
• 与计算机控制系统相关的接口技术 • 计算机控制系统的输入输出通道 • 计算机控制数据预处理 • 计算机控制系统理论基础
讲课16学时
• 计算机控制系统分析 • 计算机控制系统设计(经典和现代)
计算机控制系统理论基础
本章结构 • 6.1 概述 • 6.2 采样与采样定理 • 6.3 信号的恢复与保持 • 6.4 Z变换和Z反变换 • 6.5 脉冲传递函数
模拟信号:定义在连续时间上的信号,且其幅值也是连续变
化的。
数字信号
计算机控制系统理论基础
本章结构 • 6.1 概述 • 6.2 采样与采样定理 • 6.3 信号的恢复与保持 • 6.4 Z变换和Z反变换 • 6.5 脉冲传递函数
6.2 采样与采样定理
1 什么是信号采样 把一个连续信号变为离散信号的过程成为采样
6.3 信号的恢复与保持
3 零阶保持器-幅相特性 其幅频特性和相频特性如图所示
控制系统仿真实验报告

采样控制系统仿真实验报告姓名胡晓健班级13学号08001331课题内容1、应用采样工作原理和离散控制系统设计方法设计采样控制系统。
2、掌握采样控制系统的特点及采样控制系统仿真的特殊问题,运用采样控制系统数字仿真的一般方法(差分方程递推求解法和对离散、连续部分分别计算的双重循环法)及Simulink 对系统进行仿真。
3、给出仿真设计方案和仿真模型。
4、仿真分析。
具体内容:采样控制系统如下图所示:一. 设计要求① 设被控对象sss G o +=21)(,采用零阶保持器,数字控制器为5.015.2)(+-=z z z D ,采样周期T=0.1s 。
应用差分方程递推求解法求系统输出的单位阶跃响应,并求其超调量、上升时间、峰值时间。
设计方案和实现差分方程递推求解法在构成采样控制仿真模型时,若连续部分不要求计算内部状态变量或不含非线性环节,则可以同样的采样周期分别建立离散部分和连续部分的差分方程,然后采用差分方程递推求解。
由题意可知被控对象不含非线性环节且不要求计算其内部状态变量,为了简化仿真过程并提高仿真精度,将连续部分的离散化模型嵌入到整个仿真模型中,即求出系统闭环脉冲传递函数(离散化模型),得到系统的差分方程后递推求解由题意得数字控制器(离散部分)为5.015.2)(+-=z z z D求解传递函数的程序如下:Ts=0.1 %采样周期num1=[1]den1=[1,1,0]G1c=tf(num1,den1)G1d=c2d(G1c,Ts) %采用零阶保持法进行系统变换G2d=tf([2.5 -1],[1 0.5],0.1)Gd=G1d*G2dGHd=feedback(Gd,1) %建立闭环系统模型Ts =0.1000num1 =1den1 =1 1 0%G1c的传递函数Transfer function:1-------s^2 + s%G1c转换后的Z传递函数Transfer function:0.004837 z + 0.004679----------------------z^2 - 1.905 z + 0.9048Sampling time: 0.1%G2d的传递函数Transfer function:2.5 z - 1---------z + 0.5Sampling time: 0.1%开环系统的Z传递函数Transfer function:0.01209 z^2 + 0.00686 z - 0.004679------------------------------------z^3 - 1.405 z^2 - 0.04758 z + 0.4524Sampling time: 0.1%闭环系统的Z 传递函数 Transfer function:0.01209 z^2 + 0.00686 z - 0.004679 ------------------------------------z^3 - 1.393 z^2 - 0.04072 z + 0.4477Sampling time: 0.1由上式可知当采样周期为T =0.1s 时,连续部分的脉冲传递函数为系统闭环脉冲传递函数系统差分方程为求解差分方程的MATLAB 程序如下clear allm=2;n=3; % 明确脉冲传递函数分子m=2;分母n=3 A=[-1.393 -0.04072 0.4477]; % 脉冲传递函数分母多项式的系数行向量 B=[0.01209 0.00686 -0.004679]; % 脉冲传递函数分子多项式的系数行向量R=zeros(m+1,1); % 建立参与递推运算的输入信号序列存储列向量Y=zeros(n,1); % 建立参与递推运算的输出信号序列存储列向量 T=0.1; % 明确采样周期T =0.1sM=150; % 设定仿真总时间为M*T=15s(进行M=150次递推计算) yt=0;t=0;for k=1:MR(k)=1; % r (t )=1(t )的离散序列R(0)=R(1)=…R(k)=1 R=[R(k);R(1:m)];% 刷新参与递推运算的输入信号序列 yk=-A*Y+B*R; % 递推运算21219048.0905.1104679.0004837.0)(----+-+=zzz z z G 3213214477.004072.0393.11004679.000686.001209.0)()(1)()()()()(------+---+=+==zz z zzzz G z D z G z D z R z Y z G cl )3(004679.0)2(00686.0)1(01209.0)3(4477.0)2(04072.0)1(393.1)(---+-+---+-=k k r k r k y k y k y k yY=[yk;Y(1:n-1)];% 刷新参与递推运算的输出信号序列yt=[yt,yk]; % yt 为记载各采样(kT)时刻输出响应的行向量 t=[t,k*T]; % t 为记载各采样(kT)时刻的行向量(与yt 对应) endplot(t,yt,'*k'); % 绘制各采样(kT)时刻的输出响应图 grid;xlabel('time(s)'); ylabel('y(kT)');超调量 σ% 指响应的最大偏离量h(tp)与终值h (∞)的差与终值h (∞)比的百分数h(tp)-h %*100%h σ∞=∞()()峰值时间 tp 指响应超过其终值到达第一个峰值所需的时间上升时间 tr 指响应从终值10%上升到终值90%所需的时间求超调量的程序 maxy=max(yt); yss=yt(length(t));pos=100*(maxy-yss)/yss求峰值时间的程序 for i=1:50if yt(i)==maxy,n=i;end endtp=(n-1)*15/length(t)求上升时间的程序 for i=1:50if (yt(i)<yss*0.1),t1=i;end if (yt(i)<yss*0.9),t2=i;end endts=(t2-t1)*15/length(t)测试和结果.输出的单位阶跃响应为由程序算出的超调量,峰值时间和上升时间超调量pos = 14.0155峰值时间tp =3.5762上升时间ts =1.6887由上面两张截图算出的超调量σ%=(1.163-1.02)/1.02=14.02%峰值时间tp=3.6由上面两张截图可得上升时间tr=2-0.4=1.6性能分析该仿真算法不仅简单易行且仿真精度高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言连续系统数字仿真方法是指用数字计算机对连续系统进行仿真的方法。
采用这种方法时首先将连续系统的数学模型转变为适合在数字计算机上进行试验的仿真模型,实现这种转变的计算方法主要有微分方程数值解法和离散相似法。
MATLAB 产品家族是美国 MathWorks公司开发的用于概念设计、算法开发、建模仿真、实时实现的理想的集成环境。
是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和SIMULINK两大部分。
MATLAB由于其完整的专业体系和先进的设计开发思路,使得 MATLAB 在多种领域都有广阔的应用空间,特别是在科学计算、建模仿真以及系统工程的设计开发上已经成为行业内的首选设计工具,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB软件工具在自动化专业、测控技术与仪器和电气工程及其自动化等专业的本科生学习中,经常用来计算、仿真和设计,尤其是MATLAB软件的仿真功能,能使我们对所学知识有更加深入的理解和分析。
目录一、系统分析: ..................................................................................................................... 3 1. 绘制碾磨控制系统开环根轨迹图、BODE 图和奈奎斯特图,并判断稳定性; ....... 4 2.当控制器为()()()c K s a G s s b +=+,试设计一个能满足要求的控制器(要求用根轨迹法和频率响应法进行设计); ................................................................................................... 7 2.1进行根轨迹校正: .................................................................................................... 8 2.2频率校正: ................................................................................................................. 11 3.将采样周期取为0.02Ts =,试确定与()c G s 对应的数字控制器()c G z (要求用多种方法进行离散化,并进行性能比较); ......................................................................... 16 4、5、6:连续,离散单位阶跃输入响应比较 ................................................................. 24 6.比较并讨论4和5的仿真结果; .................................................................................... 26 7.讨论采样周期的不同选择对系统控制性能的影响; .................................................... 27 8.如控制器改为PID 控制器,请确定满足性能指标的PID 控制器参数。
................... 32 8.1用最优PID 控制法设计: ......................................................................................... 32 9.如希望尽可能的缩短系统的调节时间,请设计相对应的最小拍控制器,并画出校正后系统的阶跃响应曲线。
................................................................................................... 36 9.1采用无纹波最少拍系统设计 ..................................................................................... 36 10.课程设计总结: .. (39)11.参考资料: (40)采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁一、系统分析:某工业碾磨系统的开环传递函数为10()(5)G s s s =+要求用数字控制器D(z)来改善系统的性能,使得相角裕度大于45o,调节时间小于1s(2%准则)1. 绘制碾磨控制系统开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性;2.当控制器为()()()c K s a G s s b +=+,试设计一个能满足要求的控制器(要求用根轨迹法和频率响应法进行设计);3.将采样周期取为0.02T s =,试确定与()c G s 对应的数字控制器()c G z (要求用多种方法进行离散化,并进行性能比较); 4.仿真计算连续闭环系统对单位阶跃输入的响应; 5.仿真计算数据采样系统对单位阶跃输入的响应; 6.比较并讨论4和5的仿真结果;7.讨论采样周期的不同选择对系统控制性能的影响;8.如控制器改为PID 控制器,请确定满足性能指标的PID 控制器参数。
9.如希望尽可能的缩短系统的调节时间,请设计相对应的最小拍控制器,并画出校正后系统的阶跃响应曲线。
采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁1. 绘制碾磨控制系统开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性:G=zpk([],[0 -5],10);sisotool(G);margin(G);根轨迹图采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁Bode图:截止频率为1.88rad/s,相角裕度为69采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁N=0;R=0;Z=P-R=0;该系统稳定。
采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁2.当控制器为()()()c K s a G s s b +=+,试设计一个能满足要求的控制器(要求用根轨迹法和频率响应法进行设计):调节前Gs=tf(10,[1 5 0]); Close_S=feedback(Gs,1); Step(Close_S,'b'); hold on设计前调节时间为1.18s采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁设计前截止频率为1.88rad/s,相角裕度为69°(第一问中)2.1进行根轨迹校正:1,2=70=0.84.42.55/.25/53.75s n n nn arctg t w rad s w rad s w p w jw j γγξξξ====-±=-±取度由,求得=5,取=6要求的主导极点为要使得根轨迹向左转,要加入零点。
考虑到校正装置的物理 可实现性,加入超前校正装置。
111111111a ()b (a)()(2)(b),a 2b 1804050c g o o o o ooc s G s s K s G s s s s p p p p p p p p p ϕ+=++=++∠∠∠∠=-∠∠∠∠==K ()()开环传递函数为为了使得根轨迹通过根据相角条件(-)-(-0)-(-)-(-)求得(-0)=140,(-2)=90(-a )-(-b )超前装置提供的超前相角为111111115 3.7516.51210+511.4990+511.4991006.512=10gg p j p K p p p p p p K p K =-++=++++=≈+根据根轨迹的幅值条件系统的开环增益为采样控制系统分析与仿真 专业课程设计 11计算机应用技术 石王魁333 6.512()11.499 6.5126.499c c c s G s s z p p z p +=+==-10()所以()加校正装置后,除要求的主导极点,还有一个闭环零点和一个非主导极点。
根据(-5+j3.75)+(-5-j3.75)+=0+(-5)+(-11.499)-第八法则、对系统的影响,例如超调量可能会变大等,但闭环系统的性能主要由复数极点确定。
()100( 6.512)()()(5 3.75)(5 3.75)( 6.499)1()()()()C s s s R s s j s j s C s s R s s s+Φ==+-+++Φ=Φ加校正装置后,系统的闭环传递函数为系统的单位阶跃响应为=检验性能:>> Ds=tf(10*[1 6.512],[1 11.499]); Gs=tf(10,[1 5 0]);Close_S=feedback(Ds*Gs,1); Step(Close_S,'b'); hold on采样控制系统分析与仿真专业课程设计11计算机应用技术石王魁调节时间为0.863s,符合要求。
>> G=zpk([-6.512],[0,-5,-11.499],10);>> margin(G);>> G=zpk([-6.512],[0,-5,-11.499],100);margin(G);相角裕度为48°,符合要求。
2.2频率校正:详细设计要求:静态速度误差为20,相角裕度不小于45°,调节时间小于1s (2%)。
A. 根据静态误差指标确定开环增益100110lim ()()lim 2201(5)10v c s s Ts K s G s G s s K K Ts s s K α→→+=⋅=⋅⋅==++= B. 据确定的增益 K ,画出如下增益经调整后的未校正系统的Bode 图G=zpk([],[0,-5],100);margin(G);校正前的相角裕度为28°C. 计算为满足设计要求所需增加的相位超前角度从图可知为满足设计要求,还须25度左右的超前相角。